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Abstract: Fault diagnosis of rolling bearings can be a serious challenge, as rolling bearings often work
under complex conditions and their vibration signals are typically nonlinear and nonstationary. This
paper proposes a novel approach to diagnosing faults of rolling bearings based on variational mode
decomposition (VMD) and genetic algorithm-optimized wavelet threshold denoising. First, VMD
was used to decompose the vibration signals of faulty rolling bearings into a series of band-limited
intrinsic mode functions (BLIMFs). During the decomposition, the parameters of VMD were selected
by Kullback–Leibler (K–L) divergence. Then, the effective BLIMFs were determined by the analysis
of their correlation coefficients and variance contributions. Finally, genetic algorithm-optimized
wavelet threshold denoising was proposed to optimize the selection of important parameters, and
the optimized threshold function used not only ensures the continuity of the threshold function but
also avoids the fixed deviation of the soft threshold. The validity and superiority of the proposed
approach were verified by theoretical calculations, numerical simulations and application studies.
The results indicate that the proposed approach is promising in fault diagnosis of rotary machinery.

Keywords: fault diagnosis; rolling bearing; VMD; wavelet threshold function; genetic algorithm

1. Introduction

Bearings are common but essential machinery components. With high efficiency, low
friction resistance, simple assembly, and easy lubrication, bearings are widely used in the
machinery, electric power, mining, and aerospace industries [1]. Bearing damage affects
the safety and normal operation of the equipment directly, and therefore bearing fault
diagnosis is critically important. Bearing faults are usually caused by improper installation,
overloading, poor lubrication, foreign body invasion, or other external factors [2]. In
engineering practice, bearing monitoring is often accompanied by noise interference whose
impact on bearing fault diagnosis is very significant, and so effective separation of fault
signals from noise is a vital part of fault diagnosis.

The vibration signals of rolling bearings are typically nonlinear and non-stationary, and
the commonly used noise reduction methods include fast Fourier transform (FFT), wavelet
transform (WT), empirical mode decomposition (EMD), and empirical wavelet transform
(EWT). FFT is a fast way to compute the discrete Fourier transform (DFT) of a sequence
or its inverse [3]. FFT computes such transforms quickly by decomposing the DFT matrix
into a product of sparse factors, so it can compute the complexity of the DFT, reducing the
time required to define the computation when using the DFT. Zheng et al. [4] proposed a
new spectral envelope-based adaptive empirical Fourier decomposition (SEAEFD) method
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to improve the performance of adaptive empirical Fourier decomposition (AEFD) for the
analysis of vibration signals.

The noise reduction in vibration signals by WT falls into three categories: modular max-
imum noise reduction, threshold noise reduction, and spatial correlation noise reduction.
Mallat et al. [5] proposed a modulus maximum noise reduction method, which judges the
noise and denoise of the signals on the basis of the Lipschitz exponent. Donoho et al. [6,7]
presented a threshold noise reduction method, which, based on the method of all threshold
risks and the optimal estimation diagonal operator, obtains a threshold for dividing signals
and wavelets, also called the universal threshold. The threshold function suggested by
Yang et al. [8] is between hard and soft thresholding functions, but high frequency signals
zeroed out, resulting in excessive noise reduction. Liu et al. [9] proposed a continuous
function to remove gyroscopic noise, but it is non-differentiable at the threshold.

EMD decomposes nonlinear and non-stationary signals into a finite number of intrin-
sic mode functions (IMFs) [10,11], which resolves the problem of adaptive basis function
unavailable. Xiong et al. [12] used EMD to denoise and remove trend terms from the
vibration signals, and then employed the Alpha stable distribution to diagnose the faults of
low-speed bearings. However, EMD has some inherent defects, for which scholars have
proposed different improved algorithms, such as ensemble empirical mode decomposi-
tion (EEMD) [13,14], complete ensemble empirical mode decomposition (CEEMD) [15],
complete ensemble empirical mode decomposition with adaptive noise (CEMDAN) [16,17]
and so on. EWT is a non-stationary signal processing method proposed by Gilles [18]. It
provides a new adaptive time-frequency analysis of signals by combining the adaptive de-
composition concept of EMD and the compact support framework of wavelet transform theory.

Although EMD and its improvement are all adaptive, there exists the phenomenon
of mode mixing. Dragomiretskiy et al. [19,20] proposed an adaptive decomposition, vari-
ational mode decomposition (VMD), to obtain the center frequency and bandwidth by
iteratively searching for the optimal solution and then the mode function, which effectively
suppresses mode mixing. VMD boasts a more solid mathematical foundation and can
reduce the non-stationarity of time series with high complexity and strong nonlinearity,
suitable for non-stationary sequences. In addition, it has the characteristics of Wiener
filtering, which can remove noise more effectively. Xiang et al. [21] successfully applied
the VMD algorithm to rotor fault diagnosis. Zhao et al. [22] proposed a method that
combines VMD with singular value decomposition, and uses the noise reduction ability
of singular value decomposition to further denoise the reconstructed signals after VMD
to enhance fault information. While VMD also has its shortcoming, artificial selection of
the decomposition mode number K and the penalty factor α will affect the decomposition
effect. Therefore, this paper uses the K–L divergence method to optimize the parameters.

Since the vibration signals of rolling bearings are easily affected by strong background
noise, signal acquisition and transmission equipment, use of VMD alone for fault feature
extraction is undesirable in effect and further noise reduction is needed. The most com-
monly used WT denoising algorithm is the threshold noise reduction algorithm, which
uses a soft or hard threshold function. However, the hard threshold function is discon-
tinuous, resulting in local oscillation of the reconstructed signals, while the use of the
soft threshold function introduces a constant deviation between the wavelet coefficients,
leading to decreased accuracy of the reconstructed signals. Aimed at the deficiencies of soft
and hard threshold functions, this paper proposed a genetic algorithm-optimized wavelet
threshold denoising approach. The optimized threshold function used not only ensures the
continuity of the threshold function but also avoids the fixed deviation of the soft threshold.
This denoising approach achieved better noise reduction effect by adjusting three key
parameters. To avoid the uncertainty of artificial selection of parameters, this paper used
genetic algorithm to determine the optimal parameter value for better noise reduction.

Based on VMD and the proposed genetic algorithm-optimized wavelet threshold
denoising approach, this paper presented a novel approach for the fault diagnosis of
rolling bearings and verified the approach by means of simulations and actual measure-
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ment of bearing fault signals. The results were compared with those of EMD, CEEMD,
EWT and CEEMDAN-wavelet packet threshold (CEEMDAN-WPT) combined denoising
methods, pointing to the superiority of the proposed approach. It can effectively remove
noise from bearing vibration signals, thus resolving equipment detection problems in
engineering practice.

2. Methodologies
2.1. VMD

The VMD process solves a variational problem. In this algorithm, a BLIMF is defined
as an amplitude modulation–frequency modulation function with bandwidth limitation,
and the function of the VMD algorithm is to construct and solve the constrained variational
problem [23]. Decomposing the original signals into a specified number of BLIIMF com-
ponents can avoid mode mixing for an appropriate mode number K. The specific VMD
process is shown in Figure 1.
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This VMD also has shortcomings in that artificial selection of important VMD param-
eters, including the mode number K and penalty factor α, cannot yield the best results,
rendering it necessary to simply and directly select the optimal parameters. In this paper,
the K–L divergence, which is a description of the relationship between two probability
distributions P and Q, was used to optimize the parameters [24]. K–L divergence can be
defined as

DKL(P||Q) = ∑
i

p(i) log
P(i)
Q(i)

(1)

P(x) =
1

nh

n

∑
i=1

k
[

xi − x
h

]
, x ∈ R (2)

k(u) =
1√
2π

e−u2/2 (3)
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where P(x) is the kernel density estimation; k(u) the kernel function; h a given positive
number, usually called the window width or smoothing parameter.

In the real situation, the distribution of the signal is always unimodal and symmetri-
cal, so Equation (1) becomes the K–L divergence in the symmetrical form, which can be
defined as

D(P, Q) = DKL(P||Q) + DKL(P||Q) (4)

According to the given formulas, the divergence of D (P, Q) can be finally obtained. In
practical applications, P represents the real distribution of the observed data, and Q the
distribution of the theoretical data. By investigating the relationship between the theoretical
sub-signal and the actual original signal, the best sub-signal was selected for analysis. The
smaller the K–L divergence value, the closer the relationship is, and the theoretical sub-
signal is the true component of the signal; otherwise, it is the false component.

2.2. Optimized WT Denoising

Common threshold functions include hard and soft threshold ones [25]. The hard
threshold function is

ŵj,k =

sgn
(

wj,k

)
� wj,k

∣∣∣wj,k

∣∣∣ ≥ λ

0
∣∣∣wj,k

∣∣∣ ≤ λ
(5)

and the soft threshold function is

ŵj,k =

sgn
(

wj,k

)
�
(∣∣∣wj,k

∣∣∣− λ
) ∣∣∣wj,k

∣∣∣ ≥ λ

0
∣∣∣wj,k

∣∣∣ ≤ λ
(6)

Dai et al. [26] proposed a new threshold function based on the hard threshold one,
called a semi-hard threshold:

Ŵj,k =



Wj,k

∣∣∣wj,k

∣∣∣ ≥ a

0
∣∣∣wj,k

∣∣∣ < bL

a
a− bL

(
Wj,k − bL

)
other

(7)

This function divides the wavelet domain into three parts. When
∣∣∣Wj,k

∣∣∣ ≥ a,
∣∣∣Wj,k

∣∣∣ < bL, it

is consistent with the hard threshold function, but when bL ≤
∣∣∣Wj,k

∣∣∣ < a, it promises better
continuity than the hard threshold function. The disadvantage is that the function is not
continuous when

∣∣∣Wj,k

∣∣∣ ≥ a. This paper improved on this to overcome the shortcomings of
the above scheme and proposed an optimized wavelet threshold denoising as

ŵj,k =



sgn
(

wj,k

)
×

∣∣∣wj,k

∣∣∣− αλ

1 +
∣∣∣wj,k − λ

∣∣∣
 ∣∣∣wj,k

∣∣∣ ≥ a

0
∣∣∣wj,k

∣∣∣ < bL

sgn
(

wj,k

)
× a

a− bL

(∣∣∣wj,k

∣∣∣− bL

)
other

(8)

Equation (5) is discontinuous in the wavelet domain, Equation (6) has a constant
deviation in the wavelet coefficient, and Equation (7) is also discontinuous when

∣∣∣Wj,k

∣∣∣ ≥ a.
Taking a = bL = λ, and considering different values of α: (i) when α→ 0 , Equation (8)
is equivalent to the hard threshold denoising method; (ii) when α→ 1 , Equation (8) is
similar to the soft threshold denoising method; (iii) when 0 < α < 1, the function is
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continuous in the wavelet domain, overcoming the discontinuity of the hard threshold
function and reducing the deviation of the soft threshold function. The optimized wavelet
threshold denoising avoids the problems of local oscillation and reduced precision of the
reconstructed signals caused by the shortcomings of the traditional threshold denoising
method, and improves the noise reduction ability.

2.3. Genetic Algorithm

The optimal values were obtained by using MATLAB’s genetic algorithm toolbox
to improve the parameter settings in the wavelet threshold denoising. The results were
optimized by modeling, packaging, objective function building, and solution running. The
output and input values were set according to the evaluation index calculation codes. Since
the default optimal solution of the genetic algorithm is the minimum value of the objective
function, this paper took the inverse of the signal-to-noise ratio (SNR) as the output value
of the adaptive function, and the three variables were α, a, and b.

Before running the genetic algorithm, four operating parameters must be set: the
population size M, the crossover probability Pr, the mutation probability Pm, and the
maximum evolutionary algebra T. These parameters have a significant influence on the
solution and must be selected carefully [27].

(1) The size of the initial population M specifies the number of individuals contained in
the population and generally ranges from 20 to 100. Inbreeding occurs if the group
size is too small, resulting in diseased genes; conversely, if the group size is too large,
the convergence of the problem is difficult to achieve, leading to wasted resources
and reduced robustness.

(2) Crossover operation is the main method for generating new individuals in a ge-
netic algorithm, so the crossover probability Pr should generally take a larger value.
However, if Pr is too large, the good patterns in the group will be destroyed, which
adversely affects the evolutionary operation. If Pr is too small, the speed at which
new individuals are generated is slower. The recommended value of Pr is 0.4 to 0.99.

(3) The mutation probability Pm controls how often the mutation operation is used. If
Pm is too small, the population diversity declines too quickly, leading to the rapid
loss of effective genes which is not easy to repair. If Pm is too large, although the
population diversity is guaranteed, the probability of high-order patterns destroyed
also increases. Therefore, the range of Pm is generally 0.0001–0.1.

(4) The maximum evolutionary algebra T represents the termination condition of the
genetic algorithm. If the T is too small, the algorithm cannot easily converge, and
the population is not mature; if T is too large, the algorithm is already proficient or
the population is too precocious, in which case it is impossible to obtain a converged
solution. Generally, the value of T is set to be 100–500.

The operating parameters of the genetic algorithm used in this paper are shown in
Table 1.

Table 1. Operating parameters of genetic algorithm.

Genetic Algorithm Parameters Values

M 50
Pr 0.8
Pm 0.01
T 300

3. The Proposed VMD and Genetic Algorithm-Optimized Wavelet Threshold
Denoising Approach

In this section, an approach to fault diagnosis of rolling bearings based on VMD and
genetic algorithm-optimized wavelet threshold denoising is proposed and discussed. The
specific steps of the approach are as follows:
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(1) VMD of faulty rolling bearing signals: K–L divergence is used to obtain the optimal
penalty factor and mode number. After the determination of important parameters,
the signals are decomposed into multiple BLIMFs by VMD. Then, the correlation coef-
ficient and variance contribution rate of each component are analyzed, the effective
components are screened out and the signals are reconstructed.

(2) Wavelet decomposition of the reconstructed signals: The db4 wavelet base is selected,
the decomposition level j is determined to be 3 [28] (see Appendix A for parameter
selection), and then 3-level decomposition of the reconstructed signals is carried out.

(3) Threshold compression of wavelet decomposition coefficients: The optimal param-
eters are selected by using the genetic algorithm, and then the optimized wavelet
threshold denoising is used to perform threshold compression on the low-frequency
coefficients from the first to the third layers to remove the noise components.

(4) Signal reconstruction: Signals are reconstructed on the processed low-frequency
coefficients from the first to the third layers and the high-frequency coefficients in the
third layer.

4. Numerical Simulation
4.1. Establishment of Simulation Signals

The fault model is used to simulate the shock signal generated when there is a local
defect in the bearing inner ring [29]. Gaussian white noise with a noise variance of 0.2 is
added, and the simulated signal expression is

x(t) = s(t) + n(t) = ∑
i

Aih(t− iT) + n(t)

h(t) = exp(−Ct) cos(2π fnt)

Ai = 1 + A0 cos(2π fnt)

(9)

where s(t) is the periodic impact component, and n(t) Gaussian white noise component.
The amplitude A0 is 0.3, transpose frequency fr 30 Hz, attenuation coefficient C 700, and
resonance frequency fn 4 kHz. The sampling frequency fs is 16 kHz, and the number of
analysis points 4096. The shock signal and the waveform and spectrum after noise addition
are shown in Figure 2.
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4.2. Simulation Signal Denoising
4.2.1. IMF and BLIMF Selection

The correlation coefficient represents the similarity between two signals, and the
correlation coefficient between each component and the original signal can be calculated
to determine the effective components. The larger the correlation coefficient, the more
similar the component is to the original signal. According to the statistical significance of
the factor analysis method, the variance reflects the fluctuation characteristics of the rolling
bearing fault signals, and the variance contribution rate is a critical indicator of the relative
importance of the factor. The higher the variance contribution rate of the factor, the greater
its influence on the original signal. The correlation coefficient and variance contribution
rate of each order component were calculated as follows [30].

xg =
1
N

N

∑
j=0

x(j)hi(j + τ) (10)

mseb(i) =

1
N

k

∑
i=0

hi(j)
2

−
[

1
N

N

∑
j=0

hi(j)

]2

n

∑
i=1

 1
N

N

∑
j=0

hi(j)
2

−
[

1
N

N

∑
j=0

hi(j)

]2
 (11)

where hi is the i IMF or BLIMF components obtained after decomposition, xg(i) the corre-
lation coefficient between the ith order IMF or BLIMF component and the original signal,
mseb(i) is the variance contribution rate of the component, N the signal length, and τ the
time interval.

4.2.2. Comparative Analysis

By means of K–L divergence calculations, the optimal penalty factor for VMD was
found to be 100, and the optimal number of modes is 3. Five algorithms were used
to decompose the simulated signals. From Figure 3, it can be seen that the correlation
coefficients and variance contribution rates of the components vary with algorithms. The
variance contribution rate graph shows that the maximum variance contribution rates are
0.7413 and 0.8697 for the EMD and CEEMD algorithms, respectively. These results indicate
that the first IMF component greatly influences the original signal. The first IMF (IMF1)
has significant sensitivity information, so this component is retained.

IMF1 obtained by CEEMDAN has a large correlation and variance contribution rate
and therefore is the signal component. Part of IMF2 is a noise component, and other
components with low correlation are noise components, too. Therefore, IMF2 is denoised
with the wavelet packet threshold and reconstructed with IMF1. The correlation coefficient
of IMF2 decomposed by EWT is 0.9297, close to 1. Although the correlation coefficient of
IMF1 is also high, its variance contribution rate is relatively small, so only IMF2 is retained.
In the VMD algorithm, only BLIMF2 is retained after comparing the correlation coefficients
and variance contribution rates.

The root-mean-square error (RMSE), signal-to-noise ratio (SNR), and signal-to-noise
ratio gain (GSNR) of the denoised signals and the original signals were used to judge noise
reduction [31]. RMSE reflects the difference between the original and denoised signals,
with a smaller RMSE corresponding to better denoising. SNR and GSNR are traditional
methods for measuring the noise in a signal. The higher SNR and GSNR, the better the
filtering effect. The specific formulas are as follows:

RMSE =

√√√√ 1
N

N

∑
k=1

[ f (k)− y(k)]
2

(12)
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SNR = 10 log

N

∑
k=1

f 2(k)

N

∑
k=1

[ f (k)− y(k)]
2 (13)

GSNR = SNRdn/SNRn (14)

where: f (k) is the noise signal, y(k) the signal after noise reduction, N the signal length,
SNRdn the signal-to-noise ratio after denoising, and SNRn the signal-to-noise ratio of the
original signal.

The results are shown in Table 2. From the three objective noise reduction indicators, it
can be seen that the noise reduction effect using CEEMD and EMD is poorer than using the
other three methods. Comparison of the proposed approach with EWT and CEEMDAN–
WPT indicates that the proposed approach is far superior, as measured by RMSE, SNR, and
GSNR, and the original signal integrity is preserved to the greatest extent in noise removal.
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Figure 3. Component correlation coefficient and variance contribution rate under the decomposition
of five algorithms of rolling bearing: (a) EMD, (b) CEEMD, (c) VMD, (d) EWT, and (e) CEEMDAN.

Table 2. Comparison of noise reduction effect of simulated bearing.

Noise Reduction Method RMSE SNR GSNR

EMD 0.1740 3.4234 1.0583
CEEMD 0.1797 3.4797 1.0814

EWT 0.1687 3.9485 1.2271
CEEMDAN + WPT 0.1697 3.6651 1.1499

The proposed approach 0.0990 6.7350 2.1397

5. Actual Bearing Signal Noise Reduction

The data for a rolling bearing with inner ring failure were used to further verify the
proposed approach. The experimental dataset was collected from the test rig shown in
Figure 4a, the layout of the sensors is shown in Figure 4a, and acceleration sensors collected
signals at a sample frequency of 10240 Hz. The structure diagram of the test rig is shown
in Figure 4b. The fault rolling bearing was located in the outer bearing bracket. The
experimental bearing model is SKF 6308, and the specific data are shown in Table 3. The
time domain waveform of the rolling bearing vibration signal is shown in Figure 5.

Table 3. Bearing parameters.

Bearing Type Sampling Frequency
(Hz)

Rotating Speed
(r/min)

Fault Characteristic
Frequency (Hz)

SKF6308 10,204 1309 107.25

The vibration signals are decomposed by the CEEMDAN, EWT and VMD algorithms.
According to the K–L divergence optimization, the optimal penalty factor for VMD is 150,
the optimal number of modes is 4, and the convergence tolerance is set to be 10−5. The
number of CEEMDAN layers is 8, the NR of the white noise group is 100, the standard
deviation Nstd = 0.2, and MaxIter = 5000. The EWT number is consistent with that of VMD.
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Figure 5. Acceleration signal time domain waveform of inner race failure bearing.

The decomposition results are shown in Figure 6a–c. To better illustrate the decompo-
sition effect of EWT, the time scale of EWT was set to be 0.1. The boundaries of the spectrum
division of the CEEMDAN, EWT and VMD algorithms are given in Figure 7a–c. Figure 7a
shows the spectrum division diagram of the CEEMDAN method. It can be observed that
the seventh and eighth boundaries are relatively close and cannot be distinguished from
the spectrum. The spectrum division of the EWT method is shown in Figure 7b, and
the second and third boundaries are concentrated in the middle, almost overlapping and
indistinguishable from the spectrum. In Figure 7c, the optimized VMD was decomposed
into four BLIMFs components, the frequency range of BLIMF4 is 0–658 Hz, and the fault
frequency is mainly in this region, indicating that the optimized VMD has a good effect.

Each component’s correlation coefficient and variance contribution rate are shown
in Figure 8. It can be seen from Figure 8 that CEEMDAN is mainly concentrated in IMF1,
whose correlation is very high (up to 0.86) and whose variance contribution rate reaches
an astonishing 0.80, and a small number of signal features exist in IMF2. The variance
contribution rate of EWT is mainly concentrated in IMF1 and IMF4. Figure 6 shows obvious
periodic shocks in BLIMF1 and BLIMF2 after VMD.
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Another set of VMD algorithms without parameter optimization was added as a
control group. The number of decomposition layers was the same as for CEEMDAN,
and the three components with larger variance contribution rates were also selected. An
envelope spectrum analysis was performed on these components, and the results are shown
in Figure 9. In Figure 9a, IMF1 after the CEEMDAN algorithm can yield fBPFI and 2 fBPFI ,
but in IMF2 only fBPFI was observed. In IMF1 and IMF7 of the EWT in Figure 9b, 2 fBPFI
cannot be seen, and IMF8 yields nothing. In Figure 9c, the characteristic and rotational
frequencies of the inner ring fault can be clearly seen. In Figure 9d, only BLIMF3 can
identify both fBPFI and 2 fBPFI at the same time and the rest can only identify fBPFI .
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Comparison shows that the VMD algorithm after parameter optimization is better
than other methods. BLIMF1 and BLIMF2 decomposed by VMD were reconstructed, and
the optimized threshold denoising was used for further denoising (see Appendix B for the
code of the improved threshold denoising). The genetic algorithm was used to find the
optimal solution for the three parameters of optimized wavelet threshold denoising, and
the threshold of wavelet coefficients was adaptively modified. The parameter settings are
shown in Table 1, and the running process of the genetic algorithm is shown in Figure 10.

After parameter-optimized VMD decomposition, the envelope spectrum of the bearing
signals was obtained by further denoising using the improved threshold algorithm, as
shown in Figure 11. Except for the highest peak rotation frequency of 22.5 Hz, the frequency
has an obvious peak at 107.5 Hz, which is consistent with the inner ring fault frequency
obtained by calculations. Besides, it can also be found that there are speed frequency
sidebands around fBPFI and 2 fBPFI , which indicates that the bearing has been seriously
damaged and needs to be replaced immediately. Finally, the RMSE values and SNRs of the
other four methods after denoising are summarized in Table 4. The results show that the
approach proposed in this paper can denoise the signals more effectively and extract fault
features in a better way.
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Table 4. Comparison of noise reduction effect of actual bearing.

Noise Reduction Method RMSE SNR

EMD 0.3567 4.5971
CEEMD 0.3465 4.6352

CEEMDAN-WPT 0.3290 4.7264
EWT 0.2995 5.5910

The proposed approach 0.1981 7.1065

6. Conclusions

Aimed at the problem that the weak fault characteristics of rolling bearings can be
easily covered by noise, this paper proposed a novel approach for fault diagnosis of rolling
bearings based on VMD and genetic algorithm-optimized wavelet threshold denoising.
The approach was validated by simulation and experimental signals, and the following
conclusions were reached:

(1) Artificial selection of parameters cannot yield the best results for VMD, so K–L
divergence can be used to optimize the selection of parameters K and α in VMD to
reduce decomposition uncertainty.

(2) The optimized wavelet threshold denoising approach proposed not only ensures
the continuity of the threshold function but also avoids the fixed deviation of the
soft threshold.

(3) The verification results of simulation and measured signals show that the proposed
approach can reduce noise interference and accurately extract fault features. Com-
pared with the EMD, CEEMD, CEEMDAN–WPT, and EWT algorithms, the proposed
approach boasts better noise reduction capability and hence higher application value.
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Appendix A. Selection of Decomposition Parameters

Reference 25 used vibration signals of three kinds of rolling bearings, namely, the one
with the inner ring fault, the one with the rolling element fault, and the one with the normal
bearing and BP neural network, to train the results of three-layer and four-layer wavelet
packet decomposition. Compared with the three-layer wavelet packet decomposition, the
four-layer decomposition has a much higher error rate, so the number of decomposition
layers selected in this paper j = 3.

In the time domain, the wavelet transform is expressed as the convolution of the
signals and the wavelet basis function. Therefore, in the process of wavelet transformation,
if the waveform contained in the signals is similar to the shape of the selected wavelet basis
function, the signal features of the part similar to the wavelet basis function waveform
contained in the signals will be amplified, while other features of different shapes will be
amplified. Part of the signals will be suppressed, so as to achieve the purpose of extracting
signal fault features. The similarity between the wavelet basis function and the impulse
signals can be expressed as

λ =
n

∑
i=1

ai
h2

i
si

where: λ is the similarity coefficient, which is the dimensionless coefficient; si is the area
contained in each wave peak after the wavelet basis function is taken as the absolute value;
hi is the maximum value of each wave peak after the wavelet basis function is taken as the
absolute value; and ai is the wavelet basis function. The weighting coefficient of each wave
crest after taking the absolute value is found using ai =

hi
max(hi)

; n is the number of wave
crests after taking the absolute value of the wavelet basis function.

The correlation properties of the commonly used wavelet bases and the similarity
coefficient with the shock signals are summarized in Table A1, and the wavelet base function
waveform is shown in Figure A1. According to the correlation properties of wavelet bases,
the db4 with the largest λ is finally selected.

Table A1. Properties of wavelet basis functions.

Wavelet Function Harr Daubechies Symlets Meyer Morlet Coiflet

Symmetry Yes Far from Near from Yes Yes Near from
Orthogonal Yes Yes Yes Yes No Yes

Biorthogonal Yes Yes Yes Yes No Yes
Compact support Yes Yes Yes No No Yes

CWT Possible Possible Possible Possible Possible Possible
λ 6.5632 7.4970 6.3626 6.6082 7.2148 6.3298
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