An Improved Quasi-Z-Source Boost DC-DC Converter Using Single-Stage Switched-Inductor Boosting Technique
Abstract
:1. Introduction
2. Operation of the Proposed MQZS DC-DC Step-Up Converter
- The selected power semiconductors are ideal
- The proposed converter is working in the mode of continuous conduction
- Pulse-width modulation is the control approach utilized by switch S
3. Steady-State Analysis and Parameter Selection of the Suggested MQZS Converter
3.1. Analysis during Steady-State
3.2. Parameter Selection
4. Simulation Results
5. Hardware Results
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, G.; Ruan, X.; Ye, Z. Non-isolated high step-up DC-DC converter adopting auxiliary capacitor and coupled inductor. J. Mod. Power Syst. Clean Energy 2018, 6, 384–398. [Google Scholar] [CrossRef]
- Premkumar, M.; Kumar, C.; Sowmya, R. Analysis and implementation of high-performance DC-DC step-up converter for multilevel boost structure. Front. Energy Res. 2019, 7, 149. [Google Scholar] [CrossRef]
- Leon-Masich, A.; Valderrama-Blavi, H.; Bosque-Moncusí, J.; Martínez-Salamero, L. A High-Voltage SiC-Based Boost PFC for LED Applications. IEEE Trans. Power Electron. 2016, 31, 1633–1642. [Google Scholar] [CrossRef]
- Premkumar, M.; Kumar, C.; Anbarasan, A.; Sowmya, R. A novel non-isolated high step-up DC-DC boost converter using single switch for renewable energy systems. Electr. Eng. 2020, 102, 811–829. [Google Scholar] [CrossRef]
- Premkumar, M.; Sowmya, R.; Karthick, K. A dataset of the study on design parameters for the solar photovoltaic charge controller. Data Brief 2018, 21, 1954–1962. [Google Scholar] [CrossRef]
- Premkumar, M.; Sumithira, T.R. Design and implementation of new topology for solar PV based transformerless forward microinverter. J. Electr. Eng. Technol. 2019, 14, 145–155. [Google Scholar] [CrossRef]
- Forouzesh, M.; Siwakoti, Y.; Gorji, S.; Blaabjerg, F.; Lehman, B. Step-Up DC-DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [Google Scholar] [CrossRef]
- Richard, C.; McDonald, K.; St-Onge, X.; Saleh, S. A New Isolated DC-DC Converter for Discontinuous Input and Continuous Output. IEEE Trans. Ind. Appl. 2019, 55, 4215–4224. [Google Scholar] [CrossRef]
- Park, K.; Moon, G.; Youn, M. Non-isolated High Step-up Boost Converter Integrated with Sepic Converter. IEEE Trans. Power Electron. 2010, 25, 2266–2275. [Google Scholar] [CrossRef]
- Dwari, S.; Parsa, L. An Efficient High-Step-Up Interleaved DC-DC Converter with a Common Active Clamp. IEEE Trans. Power Electron. 2011, 26, 66–78. [Google Scholar] [CrossRef]
- Liu, H.; Li, F. Novel High Step-Up DC-DC Converter with an Active Coupled-Inductor Network for a Sustainable Energy System. IEEE Trans. Power Electron. 2015, 30, 6476–6482. [Google Scholar] [CrossRef]
- Dhananjaya, M.; Potnuru, D.; Manoharan, P.; Alhelou, H.H. Design and Implementation of Single-Input-Multi-Output DC-DC Converter Topology for Auxiliary Power Modules of Electric Vehicle. IEEE Access 2022, 10, 76975–76989. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, T.; Fu, D. Multicell Switched-Inductor/Switched-Capacitor Combined Active-Network Converters. IEEE Trans. Power Electron. 2015, 30, 2063–2072. [Google Scholar] [CrossRef]
- Prabhala, V.; Fajri, P.; Gouribhatla, V.; Baddipadiga, B.; Ferdowsi, M. A DC-DC Converter with High Voltage Gain and Two Input Boost Stages. IEEE Trans. Power Electron. 2016, 31, 4206–4215. [Google Scholar] [CrossRef]
- Premkumar, M.; Sumithira, T.R. Design and implementation of new topology for non-isolated DC-DC microconverter with effective clamping circuit. J. Circuits Syst. Comput. 2019, 28, 1950082. [Google Scholar] [CrossRef]
- Abdel-Rahim, O.; Orabi, M.; Abdelkarim, E.; Ahmed, M.; Youssef, M.Z. Switched inductor boost converter for PV applications. In Proceedings of the Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition, Orlando, FL, USA, 5–9 February 2012; pp. 2100–2106. [Google Scholar]
- Tang, Y.; Xie, S.J.; Zhang, G.H.; Xu, Z.G. Improved Z-source inverter with reduced Z-source capacitor voltage stress and soft-start capability. IEEE Trans. Power Electron. 2009, 24, 409–415. [Google Scholar] [CrossRef]
- Ghaderi, D.; Bayrak, G. Performance Assessment of a High-Powered Boost Converter for Photovoltaic Residential Implementations. Elektron. Elektrotech. 2019, 25, 40–47. [Google Scholar] [CrossRef]
- Ghaderi, D.; Çelebi, M.; Minaz, M.R.; Tören, M. Efficiency improvement for a DC-DC quadratic power boost converter by applying a switch turn-off lossless snubber structure based on zero voltage switching. Elektron. Elektrotech. 2018, 24, 15–22. [Google Scholar] [CrossRef]
- Ardi, H.; Ajami, A.; Kardan, F.; Avilagh, S.N. Analysis and implementation of a nonisolated bidirectional DC-DC converter with high voltage gain. IEEE Trans. Ind. Electron. 2016, 63, 4878–4888. [Google Scholar]
- Piresa, V.F.; Foitoa, D.; Silvab, J.F. A single switch hybrid DC/DC converter with extended static gain for photovoltaic applications. Elect. Power Syst. Res. 2017, 146, 228–235. [Google Scholar] [CrossRef]
- Marzang, V.; Hosseini, S.H.; Rostami, N.; Alavi, P.; Mohseni, P.; Hashemzadeh, S.M. A high step-up non-isolated dc-dc converter with flexible voltage gain. IEEE Trans. Power Electron. 2020, 35, 10489–10500. [Google Scholar] [CrossRef]
- Lee, S.; Do, H. Quadratic boost DC-DC converter with high voltage gain and reduced voltage stresses. IEEE Trans. Power Electron. 2018, 34, 2397–2404. [Google Scholar] [CrossRef]
- Maroti, P.K.; Al-Ammari, R.; Bhaskar, M.S.; Meraj, M.; Iqbal, A.; Padmanaban, S.; Rhaman, S. New tri-switching state non-isolated high gain DC-DC boost converter for microgrid application. IET Power Electron. 2019, 12, 2741–2750. [Google Scholar] [CrossRef]
- Padmanaban, S.; Maroti, P.K.; Holm-Nielsen, J.B.; Blaabjerg, F.; Leonowicz, Z.; Yaramasu, V. Quazi Z-Source Single Stage High Step-Up DC-DC Converter for Grid-connected PV Application. In Proceedings of the International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe, Genova, Italy, 10–14 June 2019; pp. 1–6. [Google Scholar]
- Shen, H.; Zhang, B.; Qiu, D. Hybrid Z-Source Boost DC-DC Converters. IEEE Trans. Ind. Electron. 2017, 64, 310–319. [Google Scholar] [CrossRef]
S. No. | Parameters | Range |
---|---|---|
1 | Output power, Pout | 400 W |
2 | Output voltage, Vout | 200 V |
3 | Input voltage, Vin | 30 V |
4 | Inductance, L1 and L2 | 300 µH |
5 | Capacitance, C1 and C2 | 10 µF and 100 µF |
6 | Switching frequency, fs | 100 kHz |
7 | Load resistance, R | 100 Ω |
S. No. | Components | Type | Range |
---|---|---|---|
1 | MOSFET | IRFB4110PbF | 100 V, 120 A |
2 | Diodes, D1−D5 | MUR860 | 600 V, 8 A |
3 | Inductors, L1 and L2 | Powdered Iron Core | 300 µH, 15 A |
4 | Capacitors, C1 and C2 | Electrolytic | 10 µF, 250 V and 100 µF, 250 V |
5 | Gate Driver | TLP250 | - |
6 | Load resistor, R | Wire wound | 100 Ω |
Parameters | Traditional QZS [16] | Proposed MQZS | ||
---|---|---|---|---|
Expression | Value | Expression | Value | |
Vout | 109.09 V at 0.57 duty cycle | 109.09 V at 0.45 duty cycle | ||
Vds | 109.09 V | 79.09 V | ||
109.09 V | 92.73 V | |||
Iin | Continuous | Continuous |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Premkumar, M.; Ramakrishnan, C.; Kumar, C.; Sowmya, R.; Sumithira, T.R.; Jangir, P. An Improved Quasi-Z-Source Boost DC-DC Converter Using Single-Stage Switched-Inductor Boosting Technique. Machines 2022, 10, 669. https://doi.org/10.3390/machines10080669
Premkumar M, Ramakrishnan C, Kumar C, Sowmya R, Sumithira TR, Jangir P. An Improved Quasi-Z-Source Boost DC-DC Converter Using Single-Stage Switched-Inductor Boosting Technique. Machines. 2022; 10(8):669. https://doi.org/10.3390/machines10080669
Chicago/Turabian StylePremkumar, Manoharan, Chandran Ramakrishnan, Chandrasekaran Kumar, Ravichandran Sowmya, Thulasimani Ramalingam Sumithira, and Pradeep Jangir. 2022. "An Improved Quasi-Z-Source Boost DC-DC Converter Using Single-Stage Switched-Inductor Boosting Technique" Machines 10, no. 8: 669. https://doi.org/10.3390/machines10080669
APA StylePremkumar, M., Ramakrishnan, C., Kumar, C., Sowmya, R., Sumithira, T. R., & Jangir, P. (2022). An Improved Quasi-Z-Source Boost DC-DC Converter Using Single-Stage Switched-Inductor Boosting Technique. Machines, 10(8), 669. https://doi.org/10.3390/machines10080669