Research on Processing Error of Special Machine Tool for VH-CATT Cylindrical Gear
Abstract
:1. Introduction
2. Special Machine Tool VH-CATT Cylindrical Gear
3. Experimental Design
3.1. Experimental Process
- (1)
- Determine the design variables and select the appropriate experimental design method to obtain the sample point input for establishing the surrogate model.
- (2)
- The corresponding value of each sample point is obtained by physical experiment, numerical simulation, or analytical calculation.
- (3)
- The input and output data obtained based on the above steps are fitted according to the different algorithms for establishing the surrogate model, the corresponding parameters are calculated, and the surrogate model is established.
- (4)
- For the established surrogate model, the accuracy of the surrogate model is tested according to the accuracy of practical application. The surrogate model that meets the test requirements can be used for prediction and optimization.
3.2. Machining Characteristic Value
3.3. Variable Level Calculation
4. Surrogate Model and Optimization
4.1. Common Surrogate Model
4.2. Kriging Model
4.3. Model Precision Index
5. Optimized Kriging Model Based on SGSO Algorithm
5.1. SGSO Algorithm
- Step 1: Set the condition parameters and update of sensing radius as Equation (10). Then, complete the optimization based on the chaotic-mapping strategy.
- Step 2: k individuals with low fluorescein were selected and optimized according to Equation (18).
- Step 3: Calculate the next generation glowworm location and enemy neighborhood with Equations (11) and (16).
- Step 4: Determine the selection probability as Equation (17).
- Step 5: Update the fluorescein and darkness of the neighborhood set as Equations (14) and (16).
- Step 6: Determine the value of di(t) of individual i. If di > dmax, update rdi (t) to ensure that di < dmax is followed by the next step.
- Step 7: Judge whether the solution satisfies the condition or reaches the maximum iteration number. If it is, the output result is obtained. Otherwise, go to Step 3.
5.2. Algorithm Performance Test
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, F.; Hou, L.; Duan, Y.; Chen, Z.; Chen, Y.; Sun, Z. Research on the Forming Theory Analysis and Digital Model of Circular Arc Gear Shaped by Rotary Cutter. J. Sichuan Univ. 2016, 48, 119–125. [Google Scholar]
- Wu, Y.; Hou, L.; Ma, D.; Wei, Y.; Luo, L. Milling Machine Error Modelling and Analysis in the Machining of Circular-Arc-Tooth-Trace Cylindrical Gears. Trans. FAMENA 2021, 44, 13–29. [Google Scholar] [CrossRef]
- Zhang, Q.; Wen, G.; Liang, S.; Tong, Q.; Hou, L.; Yang, G. Prediction Mathematic Model and Influencing Factors of Contact Stress of Cylindrical Gear with Arc Tooth. Complexity 2020, 2020, 8888407. [Google Scholar] [CrossRef]
- Luo, P.; Wu, Y.; Liang, S.; Hou, L.; Fan, Q.; Wei, Y. TEHL analysis of VH-CATT cylindrical gear transmission in elliptical contact considering time-varying parameters. Adv. Mech. Eng. 2022, 14, 1992379904. [Google Scholar] [CrossRef]
- Wu, Y.; Hou, L.; Luo, L.; Ma, D.; Wei, Y. Tooth Root Bending Stress Distribution Characteristics of Gear in Wind Turbine Gear Transmission System. J. Chin. Soc. Mech. Eng. 2020, 41, 311–324. [Google Scholar]
- Liang, S.; Hou, L.; Zhang, H.; Luo, L.; Wu, Y.; Luo, P. Bifurcation and chaos analysis of cutter head-spindle system of VH-CATT gear machine tool considering time-varying stiffness. Int. J. Adv. Manuf. Technol. 2022, SI, 1–14. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, L.; Liang, S.; You, Y.; Liao, K.; Li, J. Design and evaluation of module configuration scheme for special machine tool of variable hyperbolic circular-arc-tooth-trace cylindrical gear. Adv. Mech. Eng. 2022, 14, 1–11. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, L.; Liang, S.; Wu, Y.; Chen, Z. Modular configuration design of a special machine tool for variable hyperbolic circular-arc-tooth-trace cylindrical gears. Mech. Sci. 2022, 13, 55–65. [Google Scholar] [CrossRef]
- Ikua, B.W.; Tanaka, H.; Obata, F.; Sakamoto, S. Prediction of cutting forces and machining error in ball end milling of curved surfaces -I theoretical analysis. Precis. Eng. 2001, 25, 266–273. [Google Scholar] [CrossRef]
- Ding, H.; Tang, J.; Zhong, J. Accurate nonlinear modeling and computing of grinding machine settings modification considering spatial geometric errors for hypoid gears. Mech. Mach. Theory 2016, 99, 155–175. [Google Scholar] [CrossRef]
- Dey, S.; Mukhopadhyay, T.; Adhikari, S. Stochastic free vibration analyses of composite shallow doubly curved shells—A Kriging model approach. Compos. Part B Eng. 2015, 70, 99–112. [Google Scholar] [CrossRef]
- Li, X.; Qiu, H.; Chen, Z.; Gao, L.; Shao, X. A local Kriging approximation method using MPP for reliability-based design optimization. Comput. Struct. 2016, 162, 102–115. [Google Scholar] [CrossRef]
- Ankenman, B.; Nelson, B.L.; Staum, J. Stochastic Kriging for Simulation Metamodeling. Oper. Res. 2010, 58, 371–382. [Google Scholar] [CrossRef] [Green Version]
- Tianhong, L.; Shuang, L.; Hezeyin; Xia, Z. Path planning of robot based on glowworm swarm optimization algorithm of scene understanding. J. Comput. Appl. 2017, 37, 3608–3613. [Google Scholar]
- Kaur, G.; Arora, S. Chaotic whale optimization algorithm. J. Comput. Des. Eng. 2018, 5, 275–284. [Google Scholar] [CrossRef]
- Sen, S.K.; Agarwal, R.P. Golden ratio in science, as random sequence source, its computation and beyond. Comput. Math. Appl. 2008, 56, 469–498. [Google Scholar] [CrossRef] [Green Version]
- Dodson, M.; Parks, G.T. Robust Aerodynamic Design Optimization Using Polynomial Chaos. J. Aircr. 2009, 46, 635–646. [Google Scholar] [CrossRef]
- Qi, Z.; Guang, W.; Lan, L.; Rui, T. Contact Stress Prediction Model for Variable Hyperbolic Circular Arc Gear Based on the Optimized Kriging-Response Surface Model. Trans. FAMENA 2021, 44, 59–74. [Google Scholar] [CrossRef]
- Yi, Z.; Hou, L.; Zhang, Q.; Wang, Y.; You, Y. Geometry Optimization Of Air-Assisted Swirl Nozzle Based On Surrogate Models And Computational Fluid Dynamics. At. Sprays 2019, 7, 605–628. [Google Scholar] [CrossRef]
- Shuhao, Y.; Shoubao, S. Research and Application of Chaos Glowworm Swarm Optimization Algorithm. J. Front. Comput. Sci. Technol. 2014, 8, 352–358. [Google Scholar]
Process Parameters | Unit | Level 1 | Level 2 | Level 3 | Level 4 | |
---|---|---|---|---|---|---|
Revolution speed | n | r/min | 80 | 90 | 100 | 110 |
Coolant velocity | vQ | L/h | 0 | 15 | 30 | 60 |
Feeding velocity | vf | mm/min | 10.5 | 12 | 13.5 | 15 |
Order | n | vQ | vf | Fal | Far | Fβl | Fβr |
---|---|---|---|---|---|---|---|
1 | 80 | 0 | 12 | 0.0098 | 0.0112 | 0.0097 | 0.0102 |
2 | 80 | 0 | 13.5 | 0.0125 | 0.0131 | 0.0086 | 0.0119 |
3 | 80 | 0 | 15 | 0.0135 | 0.0075 | 0.0060 | 0.0107 |
... | ... | ... | ... | ... | ... | ... | ... |
⋮ | ⋮ | ||||||
... | ... | ... | ... | ... | ... | ... | ... |
46 | 110 | 60 | 12 | 0.0086 | 0.0076 | 0.0086 | 0.0076 |
47 | 110 | 60 | 13.5 | 0.0098 | 0.0083 | 0.0094 | 0.0081 |
48 | 110 | 60 | 15 | 0.0118 | 0.0146 | 0.0101 | 0.0103 |
Order | n | vQ | vf | Fal | Far | Fβl | Fβr |
---|---|---|---|---|---|---|---|
1 | 80 | 0 | 10.5 | 0.0085 | 0.0084 | 0.0081 | 0.0129 |
2 | 80 | 15 | 12 | 0.0086 | 0.0065 | 0.0090 | 0.0125 |
3 | 80 | 30 | 13.5 | 0.0103 | 0.0095 | 0.0081 | 0.0102 |
... | ... | ... | ... | ... | ... | ... | ... |
⋮ | ⋮ | ||||||
... | ... | ... | ... | ... | ... | ... | ... |
14 | 110 | 15 | 13.5 | 0.0074 | 0.0105 | 0.0067 | 0.0131 |
15 | 110 | 30 | 12 | 0.0084 | 0.0067 | 0.0068 | 0.0074 |
16 | 110 | 60 | 10.5 | 0.0071 | 0.0067 | 0.0052 | 0.0069 |
Test Functions | Range | Optimal Value |
---|---|---|
, | 25 | |
, | 0 | |
, | 0.397898 | |
, | 0 |
Parameter | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | 0.6 | 100 | 5 | 5 | 500 | 0.08 | 5 | 0.05 | 5 | 10 | 4 | 10 |
Test Functions | Algorithm | Worst Value | Optimal Value | Mean Value | Standard Deviation |
---|---|---|---|---|---|
GSO | 28.354 546 1797 | 25.005 989 1835 | 25.868 354 6221 | 1.003 464 4002 | |
CGSO | 25.092 758 4310 | 25.000 012 4222 | 25.011 470 3090 | 0.022 901 6010 | |
SGSO | 25.000 166 2657 | 25.000 005 5776 | 25.000 009 1245 | 0.000 054 9797 | |
GSO | 0.009 432 3782 | 0.000 000 6524 | 0.003 743 7887 | 0.003 454 9371 | |
CGSO | 0.009 715 9695 | 0.000 001 0428 | 0.001 509 9618 | 0.002 534 5056 | |
SGSO | 0.009 124 7457 | 0.000 018 5562 | 0.001 305 3463 | 0.001 464 2360 | |
GSO | 0.405 234 4922 | 0.656 780 4613 | 0.396 255 5441 | 0.024 235 4352 | |
CGSO | 0.398 458 2020 | 0.397 561 8095 | 0.397 895 8301 | 0.000 173 9578 | |
SGSO | 0.397 167 6744 | 0.397 565 1926 | 0.397 816 4575 | 0.000 001 6856 | |
GSO | 0.376 498 8713 | 0.000 008 2027 | 0.005 234 2978 | 0.008 865 8564 | |
CGSO | 0.052 997 8803 | 0.000 000 0045 | 0.009 298 4251 | 0.012 949 0171 | |
SGSO | 0.000 052 7127 | 0.000 000 9359 | 0.000 004 7027 | 0.002 436 5876 |
Objects | Surrogate Model | R2 | RMAE | RMSE |
---|---|---|---|---|
Fal | Kriging | 0.856 701 | 0.776 140 | 0.000 765 |
SGSO-Kriging | 0.972 765 | 0.304 820 | 0.000 938 | |
Far | Kriging | 0.882 206 | 0.972 477 | 0.000 945 |
SGSO-Kriging | 0.952 070 | 2.008 392 | 0.001 457 | |
Fβl | Kriging | 0.904 232 | 0.966 012 | 0.000 867 |
SGSO-Kriging | 0.966 258 | 1.521 527 | 0.001 655 | |
Fβr | Kriging | 0.866 012 | 1.260 895 | 0.001 128 |
SGSO-Kriging | 0.964 603 | 0.511 945 | 0.001 827 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.; Luo, P.; Hou, L.; Duan, Y.; Zhang, Q.; Zhang, H. Research on Processing Error of Special Machine Tool for VH-CATT Cylindrical Gear. Machines 2022, 10, 679. https://doi.org/10.3390/machines10080679
Liang S, Luo P, Hou L, Duan Y, Zhang Q, Zhang H. Research on Processing Error of Special Machine Tool for VH-CATT Cylindrical Gear. Machines. 2022; 10(8):679. https://doi.org/10.3390/machines10080679
Chicago/Turabian StyleLiang, Shuang, Pei Luo, Li Hou, Yang Duan, Qi Zhang, and Haiyan Zhang. 2022. "Research on Processing Error of Special Machine Tool for VH-CATT Cylindrical Gear" Machines 10, no. 8: 679. https://doi.org/10.3390/machines10080679
APA StyleLiang, S., Luo, P., Hou, L., Duan, Y., Zhang, Q., & Zhang, H. (2022). Research on Processing Error of Special Machine Tool for VH-CATT Cylindrical Gear. Machines, 10(8), 679. https://doi.org/10.3390/machines10080679