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Abstract: The variable hyperbolic circular arc tooth trace (VH-CATT) cylindrical gear is a new
gear suitable for heavy loads and high speed. The special structure of the gear provides excellent
mechanical properties but also increases the processing difficulty. The special machine tool for
VH-CATT gear provides a prerequisite for mass production, but the machining accuracy remains
to be improved. Therefore, this paper proposes a Kriging model based on the glowworm swarm
optimization algorithm of scene understanding (SGSO) to study the relationship between input
parameters and output precision. Then, the SGSO algorithm is used to optimize the parameters of
the Gaussian mutation function in the Kriging model to improve its fitting accuracy. When solving
four groups of tooth profile and tooth direction errors, the key precision index, R2, of SGSO-Kriging
all exceed 0.95. Additionally, the feasibility of the model is verified by the residual diagram and the
box diagram. The contour diagram and error results show that reducing the feeding velocity, vf, can
improve accuracy most efficiently, and the increase of rotational speed, n, is more conducive to the
accuracy of the tooth surface than the acceleration of the coolant, vQ. The above research provides an
optimization strategy of gear machining accuracy and a theoretical basis for the promotion of the
VH-CATT gear.

Keywords: VH-CATT cylindrical gear; special machining tool; processing parameter; machining
error; SGSO-Kriging model

1. Introduction

The variable hyperbolic circular arc tooth trace (VH-CATT) cylindrical gear is a new
type of gear which could be suitable for scenarios of heavy load and high precision [1]. Its
tooth line is a spatial arc trace, and the tooth thickness gradually decreases from the middle
to both sides. Compared with the spur or helical gear, the VH-CATT gear is insensitive to
installation coaxiality error and has the advantages of low noise and stable performance,
which can meet the transmission requirements of high speed and heavy load in aerospace
and other fields [2–5].

The above literature has demonstrated the advantages of the gear, but due to the lack
of efficient processing equipment, the VH-CATT gear has not been marketed. Therefore,
a special machine tool of VH-CATT gear was proposed, which mass produced the gear
according to the generating method [6–8]. The research on vibration and stability of the
special machine tools has been completed in previous work. According to the research
results, a series of kinetic parameters are selected, and gears with different modulus can
be successfully machined. Based on controlling the dynamic error of the machine tool,
the principle of reducing the error in the machining process is analyzed to guide the
machining parameter setting.

The error caused by machining is a part of the overall gear error that can hardly be
ignored. In the gear machining process, the process effect is often complicated. At present,
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the main solution to the machining error is in the form of compensation, commonly used
in the spur gear and the helical gear [9]. However, for sphere and other space surfaces,
the effect of compensation to reduce error is limited. The idea of this paper is to explore the
formation law of machining error as far as possible from the manufacturing process and
control the error generated by the manufacturing process through the control parameters.

In practical engineering, the relationship between uncertainties and design objectives
is highly nonlinear, and it is often expressed by implicit functions [10]. This paper uses
the surrogate model to explore the relationship between the machining setting and error.
For instance, the surrogate model can approximate the relationship between the input
conditions and output results, and it can establish the corresponding explicit expression.
Dey et al. established the Kriging surrogate model for stochastic free vibration analysis of
composite shallow doubly curved shells and analyzed the influence of random variation
of input parameters on output natural frequency [11]. Li et al. proposed a new local
approximation method using the most probable point (MPP) to find feasible constraints
and accurately approximates feasible constraints which can significantly improve the
optimization efficiency of reliability-based design optimization (RBDO) methods using the
Kriging model [12]. Bruce et al. extended the basic theory of Kriging, such as the design
and analysis of deterministic computer experiments, to random simulation settings [13].
Many scholars have studied Kriging and applied it to engineering. However, there is a
common problem of the limited accuracy and convergence in the face of specific problems.
Therefore, it is necessary to improve the performance of the surrogate model.

For the Kriging model, optimizing the parameters of the Gaussian mutation function
could help to improve accuracy by several optimization algorithms. Swarm intelligence op-
timization algorithms can be used to solve and predict some key parameters of the Kriging
model, including the glowworm swarm optimization algorithm (GSO) [14], the particle
swarm algorithm (PSO), the whale optimization algorithm (WOA) [15], and other swarm
intelligence optimization algorithms. Among many algorithms, the SGSO algorithm uses
the golden section [16] ratio and chaos optimization [17] to improve the search ability of the
population. In addition, the solution accuracy and efficiency of the algorithm is improved
through the scene understanding mechanism. Therefore, it is suitable for improving the
performance of the Kriging model.

In this paper, the influence of the main processing parameters of the VH-CATT cylin-
drical gear on the tooth surface error is discussed based on the surrogate model. First,
according to the results of the experiment design, 64 groups of experiments were conducted
to obtain the training set and test set. Then, the SGSO algorithm is introduced to improve
the Kriging model and to optimize parameters of the Gaussian mutation function. The
processing parameters include the cutter head speed and feeding speed as the independent
variables and the tooth surface error of the gear as the state function. Finally, the effective-
ness of the SGSO-Kriging model is verified by the residual graph and three convergence
indexes. The effect of the three factors on error can be clearly judged by observing the
contour map. The influence law of each factor is discussed, which provides a theoretical
basis for reducing the machining error and a reference for the subsequent industrialization
of the VH-CATT gears.

2. Special Machine Tool VH-CATT Cylindrical Gear

Duo to the special structure, the VH-CATT gear is expected to become the reduction
box gear of the new generation of the China Railway Highspeed Electric Multiple Units
(CRH-EMUs). Except that the tooth profile of the middle section is involute, the other
sections are envelopes of a family of hyperbolas with uniform change [1], whose structure
is shown in Figure 1. This structure obtains the ability of automatic alignment and does not
produce axial force. Compared with the helical gear, the load of bearing is reduced.
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Figure 1. Structure of VH-CATT gear: (a) digital model; (b) experimental prototype. 
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ating principle, the gear can be processed efficiently. The special machine tool consists of 

three translational axes and a gear grading mechanism. The cutter is fixed on the cutter 

head and rotates; the structure is shown in Figures 2 and 3. 
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Figure 1. Structure of VH-CATT gear: (a) digital model; (b) experimental prototype.

To promote the industrial application of this new gear, the author’s research group de-
signed and built a special machine tool for the VH-CATT gear. According to the generating
principle, the gear can be processed efficiently. The special machine tool consists of three
translational axes and a gear grading mechanism. The cutter is fixed on the cutter head
and rotates; the structure is shown in Figures 2 and 3.

Machines 2022, 10, x FOR PEER REVIEW 3 of 20 
 

 

  

(a) (b) 

Figure 1. Structure of VH-CATT gear: (a) digital model; (b) experimental prototype. 

To promote the industrial application of this new gear, the author’s research group 

designed and built a special machine tool for the VH-CATT gear. According to the gener-

ating principle, the gear can be processed efficiently. The special machine tool consists of 

three translational axes and a gear grading mechanism. The cutter is fixed on the cutter 

head and rotates; the structure is shown in Figures 2 and 3. 

 

Figure 2. The structure of VH-CATT gear machine tool. 

End face

End face tooth profile

Middle section tooth profile

Circular arc tooth profile

Figure 2. The structure of VH-CATT gear machine tool.

Machines 2022, 10, x FOR PEER REVIEW 4 of 20 
 

 

 

Figure 3. The executive component structure. 

3. Experimental Design 

3.1. Experimental Process 

The surrogate model establishes the relationship between the design parameter var-

iables and the response parameters according to the input and output variables of the 

actual model. The process of the surrogate model is shown in Figure 4. Therefore, the 

establishment of the surrogate model can generally be summarized as the following steps: 

(1) Determine the design variables and select the appropriate experimental design 

method to obtain the sample point input for establishing the surrogate model. 

(2) The corresponding value of each sample point is obtained by physical experiment, 

numerical simulation, or analytical calculation. 

(3) The input and output data obtained based on the above steps are fitted according to 

the different algorithms for establishing the surrogate model, the corresponding pa-

rameters are calculated, and the surrogate model is established.  

(4) For the established surrogate model, the accuracy of the surrogate model is tested 

according to the accuracy of practical application. The surrogate model that meets 

the test requirements can be used for prediction and optimization. 

Figure 3. The executive component structure.



Machines 2022, 10, 679 4 of 20

3. Experimental Design
3.1. Experimental Process

The surrogate model establishes the relationship between the design parameter vari-
ables and the response parameters according to the input and output variables of the actual
model. The process of the surrogate model is shown in Figure 4. Therefore, the establish-
ment of the surrogate model can generally be summarized as the following steps:

(1) Determine the design variables and select the appropriate experimental design method
to obtain the sample point input for establishing the surrogate model.

(2) The corresponding value of each sample point is obtained by physical experiment,
numerical simulation, or analytical calculation.

(3) The input and output data obtained based on the above steps are fitted according
to the different algorithms for establishing the surrogate model, the corresponding
parameters are calculated, and the surrogate model is established.

(4) For the established surrogate model, the accuracy of the surrogate model is tested
according to the accuracy of practical application. The surrogate model that meets the
test requirements can be used for prediction and optimization.
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3.2. Machining Characteristic Value

Taking the gear of a new generation of high-speed railway transmission gear as the
research object, this paper plans to use the VH-CATT cylindrical gear pair to replace the
helical gear pair used in the current transmission case to eliminate the excessive axial
force and prolong the service life of the bearing. To ensure the machining quality of the
VH-CATT cylindrical gear, the machining parameters of the gear are optimized to reduce
the machining error.

The data of processing is mainly composed of gear parameters, tool parameters,
machine tool parameters, and processing energy consumption. The gear parameters
mainly include the number of teeth, modulus, and pressure angle; the machining quality
requirements mainly include the accuracy grade requirements and the tooth surface error
requirements; the tool parameters mainly include tool quantity, modulus, accuracy grade,
maximum spindle speed, tool material and hardness, tool internal and external diameter,
pressure angle, number of processed teeth, and so on.

Since the original intention of the prototype proposed in this paper is to process high-
quality VH-CATT gears, this research focus is mainly on revealing the influence of process
parameters on the tooth surface error in the machining process. It is more practical to
explore the tool life and machining energy consumption in the subsequent mass production
stage. Because the machining method of large cutter head proposed in this paper has
certain similarities with the machining methods of hobbing and milling, they both belong
to the machining of tooth profile by the generation method. The cooling method is oil
cooling, and the tooth blank material is 45 steel. According to the reference, the factors
affecting gear machining include cutting speed, feeding speed, and the number of cutting
tools. Therefore, the corresponding critical process parameters considered in the paper
are the velocity of coolant, vQ, the velocity of cutter head, n, and the feed velocity, vf. The
ranges of values for the parameters is shown in Table 1.

Table 1. Critical process parameters and their ranges.

Process Parameters Unit Level 1 Level 2 Level 3 Level 4

Revolution speed n r/min 80 90 100 110
Coolant velocity vQ L/h 0 15 30 60
Feeding velocity vf mm/min 10.5 12 13.5 15

3.3. Variable Level Calculation

In the actual gear-processing process, the ranges of parameters could be too wide.
If the complete change range is directly selected, all data can ensure the accuracy of the
surrogate model and simulate the actual processing as much as possible. Once a long
complete range is selected, it will lead to heavy calculation and analysis workload, and the
experimental process will also consume expensive materials and time.

To make the best of the limited experimental samples, this paper combines the method
in the reference [18] with the experience method in the actual processing to minimize the
variation interval of each parameter and then uses the full factorials method to carry out
the experimental design to improve the efficiency and accuracy of the surrogate model.

To obtain the response value of the above parameters, the machining test is carried
out on the VH-CATT gear special machine tool. The gear blank is processed with different
processing parameters and is marked.

After the machining test, the four key errors, including concave tooth profile error
(Fal), convex tooth profile error (Far), concave tooth direction error (Fβl), and convex tooth
direction error (Fβr) are measured, and the error response values of the training set and
the test set are obtained. For example, the concave tooth profile error refers to the normal
distance between the actual cross-section tooth profile curve and the theoretical tooth
profile, and the concave tooth profile error is the normal distance between the actual tooth
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profile curve and the theoretical tooth profile. The distribution of the two curves is shown
in Figure 5, and the detection site is shown in Figure 6.
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The experimental design results based on the full factorials experimental design
method are shown in Tables 2 and 3. A total of 64 groups of experimental schemes were
obtained in which 48 groups were used to establish the surrogate model, and 16 groups
were used to verify the model.



Machines 2022, 10, 679 7 of 20

Table 2. Critical process parameters and response value (training set).

Order n vQ vf Fal Far Fβl Fβr

1 80 0 12 0.0098 0.0112 0.0097 0.0102
2 80 0 13.5 0.0125 0.0131 0.0086 0.0119
3 80 0 15 0.0135 0.0075 0.0060 0.0107
... ... ... ... ... ... ... ...

...
...

... ... ... ... ... ... ... ...
46 110 60 12 0.0086 0.0076 0.0086 0.0076
47 110 60 13.5 0.0098 0.0083 0.0094 0.0081
48 110 60 15 0.0118 0.0146 0.0101 0.0103

Table 3. Critical process parameters and response value (testing set).

Order n vQ vf Fal Far Fβl Fβr

1 80 0 10.5 0.0085 0.0084 0.0081 0.0129
2 80 15 12 0.0086 0.0065 0.0090 0.0125
3 80 30 13.5 0.0103 0.0095 0.0081 0.0102
... ... ... ... ... ... ... ...

...
...

... ... ... ... ... ... ... ...
14 110 15 13.5 0.0074 0.0105 0.0067 0.0131
15 110 30 12 0.0084 0.0067 0.0068 0.0074
16 110 60 10.5 0.0071 0.0067 0.0052 0.0069

4. Surrogate Model and Optimization
4.1. Common Surrogate Model

The most commonly utilized surrogate models include the response surface method-
ology (RSM), support vector regression (SVR), radial basis function (RBF), locally linear
embedding (LLE), gene expression programming (GEP), and the Kriging (KRG) model. Ac-
cording to the characteristics of data and the advantages of the surrogate model, the Kriging
model is selected to predict and optimize the error [18].

4.2. Kriging Model

The essence of the Kriging model is to approximate the result by random function
according to the existing samples. Finally, the linear weighting of response values of the
known sample functions is obtained as (1):

y(x) =
Ns

∑
j=1

β j f j + Z(x) (1)

where, Ns is the given number of sample points. fj is the primary function, βj is the weight
coefficient, Z(x) is a Gaussian static random process with mean value 0 and standard
deviation σ2. In addition, the covariance between the random variables corresponding to
two different points in the design space is:

Cov
[

Z(xi), Z(xi)
]
= σ2R2(xi, xj) (2)

where R(xi, xj) is called the correlation function, which represents the correlation between
random variables at different positions. The matrix, R, is defined as the correlation matrix
composed of the correlation function between all sample points and is the correlation vector
between the predicted point, rx, and the given sample point, which is expressed as:
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R2(xi, xj) =
Ns

∏
l=1

Rl(θl , xi
l , xi

l) (3)

R =


R
(

x(1), x(1)
)
· · · R

(
x(1), x(NS)

)
...

. . . . . .

R
(

x(NS), x(1)
)
· · · R

(
x(NS), x(NS)

)
 ∈ RNS×NS (4)

rx =
[

R
(

x(1), x
)

, R
(

x(2), x
)

, · · · , R
(

x(NS), x
)]
∈ RNS (5)

In the Equations, θl is the correlation parameter to optimize the correlation between
the different design points by adjusting the parameter. The model of variation function
models commonly used in the Kriging model include the exponential model, exponential
Gaussian model, Gaussian model, linear model, spherical model, cubic model, spline
function model, and so on. The model of variation function with the Gaussian model can
provide a relatively smooth and infinitely differentiable surface; thus, it is widely used
in engineering applications as a variation function. The mathematical expression of the
Gaussian function is as follows:

Rl = exp
[
−θl

∣∣∣xi
l − xj

l

∣∣∣2] (6)

4.3. Model Precision Index

To ensure the validity and rationality of the model, some test samples are generally
used to test the accuracy of the model. The surrogate model with test results meeting certain
requirements can replace the actual model for approximate calculation. The representative
evaluation methods include root mean square error (RMSE), R-Square (R2), and relative
maximum absolute error (RMAE). The specific expressions are shown in Equations (7)–(9).

RMSE =

√√√√√ n
∑

i=1
( fi − f̂i)

n
(7)

R2 = 1−

n
∑

i=1
( fi − f̂i)

n
∑

i=1
( fi − f̂i)

(8)

RMAE =
max

{∣∣∣ f1 − f̂1

∣∣∣∣∣∣ f2 − f̂2

∣∣∣, · · · ,
∣∣∣ fn − f̂n

∣∣∣}√
1
n

n
∑

i=1

(
fi − f̂i

) (9)

where n is the number of test sample points; fi is the true value of the actual model at
the ith test sample point; and f̂i is the predicted value of the proxy model at the ith test
sample point.

Reference [19] is the key to affect the accuracy of the Kriging model; thus, it was
necessary to find the optimal value of θl in Equation (6) for obtaining higher prediction
accuracy. Hence, an improve algorithm is proposed to solve the reasonable θl value.

5. Optimized Kriging Model Based on SGSO Algorithm
5.1. SGSO Algorithm

The glowworm swarm optimization (GSO) algorithm is a new bionic intelligent
algorithm, and its basic principle is to simulate the living habit of the glowworm swarm.
The basic principle of the GSO algorithm is as follows: N indiscriminate glowworm are
defined in the active region with a random brightness, li(t), and an individual perception
radius, ri

d(0 < ri
d < rs). Define the neighborhood set of all individuals whose fluorescein
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values are greater than their own as Ni(t). The selection probability, pij(t), is calculated by
the brightness of the glowworm individual in the field, and the optimal individual in the
neighborhood set, Ni(t), is moved and aggregated according to the pij(t) obtained. Repeat
the above process until the glowworm swarm moves near the optimal solution.

ri
d(t + 1) = min

{
rs, max

[
0, ri

d(t) + β(nt − |Nt(t)|)
]}

(10)

xi(t + 1) = xi(t) + s

(
xj(t)− xi(t)
‖xj(t)− xi(t)‖

)
(11)

Pij(t) =
lj(t)− li(t)

∑
k∈Ni(t)

lk(t)− li(t)
(12)

Ni(t) =
{

j : dij(t) < ri
d(t); li(t) < lj(t)

}
(13)

li(t + 1) = (1− ρ)li(t) + γ ∗ J[xi(t + 1)] (14)

where rs is the radius of the search area of the glowworm; β is the adjustment coefficient of
the glowworm perception radius; nt is the critical threshold near the glowworm individual;
Ni(t) is the neighborhood set of glowworm individuals; s is the step length of single
movement of glowworm individuals; ρ is the volatilization coefficient of fluorescein, usually
constant and ρ ∈ (0, 1); dij(t) is the distance between individuals i and j; γ is a constant
number of adjusting the position coefficient. The fitness function, J[xi(t + 1)], can be scaled
according to the position after moving.

Some glowworms will deviate from the group and fail in the search process, and the
solution accuracy of the GSO algorithm will be limited [14]. To enhance the glowworm
search ability of a few invalid searches and further improve the solving efficiency of the
glowworm population, this paper proposes the concept of natural enemy. The actual living
environment of the glowworm is simulated, and the parameter darkness is defined to rep-
resent the effect of the dark environment on the glowworm eviction. Specific improvement
measures are as follows:

Oi(t) =
{

i : dij(t) < ri
d(t)

}
(15)

di(t) =
Oi(t)[
rd

i (t)
]2 (16)

Pij(t) =
lj(t)− li(t)

∑
k∈Ni(t)

lk(t)− li(t)
−

dj(t)− di(t)

∑
k∈di(t)

dk(t)− di(t)
(17)

The number of glowworm individuals in the neighborhood with natural enemies
gradually approaches 0, and the darkness near the region reaches the maximum. The
darkness drives the continuous glowworm until it moves to the position where the main
group of glowworms can be searched. Parameter, Oi(t), represents the set of natural
enemies existing in the neighborhood of the glowworm swarm. It is necessary to set the
upper limit for the darkness to prevent the individual perception radius from decreasing
to zero and falling into local optimum. The optimized selection mechanism is shown in
Equation (17) to replace Equation (12).

In addition, the chaos-mapping strategy and the golden section ratio are used to
optimize the population. First, a D-dimension vector, X1 = [x11, x21, . . . , xD1], is chosen
according to the need of the objective function. The initialization is realized by chaotic
iteration according to Equation (18), and the vectors, X2, X3, . . . , XN, are obtained by
multiple iterations as the initial population of the glowworm.

xn+1 = cos (n arccos xn) (18)
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According to the value of fluorescein obtained from Equation (14), k individuals
with low fluorescein were screened out, and their attraction was hardly searched. The k
individuals are quadratically optimized according to the golden ratio partition rule.

xi
l = 0.618 i(xmax − xmin); i = 1, 2, . . . , k (19)

where, xmax and xmin represent the threshold of the glowworm individual search range.
Compared with the traditional GSO algorithm, the improved algorithm adds a scenario-
understanding mechanism; thus, it becomes the glowworm swarm optimization algorithm
of scene understanding (SGSO). A complete iterative loop of the SGSO algorithm consists
of the following steps:

• Step 1: Set the condition parameters and update of sensing radius as Equation (10).
Then, complete the optimization based on the chaotic-mapping strategy.

• Step 2: k individuals with low fluorescein were selected and optimized according to
Equation (18).

• Step 3: Calculate the next generation glowworm location and enemy neighborhood
with Equations (11) and (16).

• Step 4: Determine the selection probability as Equation (17).
• Step 5: Update the fluorescein and darkness of the neighborhood set as Equations (14) and (16).
• Step 6: Determine the value of di(t) of individual i. If di > dmax, update rd

i (t) to ensure
that di < dmax is followed by the next step.

• Step 7: Judge whether the solution satisfies the condition or reaches the maximum
iteration number. If it is, the output result is obtained. Otherwise, go to Step 3.

5.2. Algorithm Performance Test

To verify the influence of the optimization strategy on algorithm performance and
carry out reasonable comparisons with similar intelligent algorithms, four standard test
functions in Table 4 were selected for comparative simulation. The parameters involved in
the algorithms were set according to reference [20], as shown in Table 5.

Table 4. Test functions.

Test Functions Range Optimal Value

f1 = (|x1| − 5)2 + (|x2| − 5)2 xi ∈ [−10, 10], i = 1, 2 25

f2 = 0.5 + sin2
√

x2
1+x2

2−0.5

[1.0+0.001(x2
1+x2

2)]
2

x1 ∈ [−5, 10], x2 ∈ [0, 15] 0

f3 =
(

x2 − 5.1
4π2 x2

1 +
5x1
π − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 x1 ∈ [−5, 10], x2 ∈ [0, 15] 0.397898

f4 = 100(x2 − x1)
2 +

[
6.4(x2 − 0.5)2 − 5

π x1 − 0.6
]2 xi ∈ [−5, 5], i = 1, 2 0

Table 5. Initialization parameters of SGSO and GSO algorithms.

Parameter γ N Ot nt tmax β l0 s0 d0 dmax n k

Value 0.6 100 5 5 500 0.08 5 0.05 5 10 4 10

According to the above conditions, several independent repeated tests were conducted,
and the corresponding results were recorded. The simulation results of the GSO and CGSO
algorithms in the reference [20] are compared to the SGSO algorithm on accuracy and
efficiency. The results of each algorithm are shown in Table 6.

As the data in Table 6, it is easy to see some specific advantages of SGSO. The maximum
difference and average value of the four functions obtained by SGSO are better than both
the GSO algorithm and the CGSO algorithm.
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Table 6. Performance comparisons of SGSO, GSO. and CGSO.

Test Functions Algorithm Worst Value Optimal Value Mean Value Standard Deviation

f1

GSO 28.354 546 1797 25.005 989 1835 25.868 354 6221 1.003 464 4002
CGSO 25.092 758 4310 25.000 012 4222 25.011 470 3090 0.022 901 6010
SGSO 25.000 166 2657 25.000 005 5776 25.000 009 1245 0.000 054 9797

f2

GSO 0.009 432 3782 0.000 000 6524 0.003 743 7887 0.003 454 9371
CGSO 0.009 715 9695 0.000 001 0428 0.001 509 9618 0.002 534 5056
SGSO 0.009 124 7457 0.000 018 5562 0.001 305 3463 0.001 464 2360

f3

GSO 0.405 234 4922 0.656 780 4613 0.396 255 5441 0.024 235 4352
CGSO 0.398 458 2020 0.397 561 8095 0.397 895 8301 0.000 173 9578
SGSO 0.397 167 6744 0.397 565 1926 0.397 816 4575 0.000 001 6856

f4

GSO 0.376 498 8713 0.000 008 2027 0.005 234 2978 0.008 865 8564
CGSO 0.052 997 8803 0.000 000 0045 0.009 298 4251 0.012 949 0171
SGSO 0.000 052 7127 0.000 000 9359 0.000 004 7027 0.002 436 5876

In terms of accuracy, the majority results for the four standard test functions obtained
by the SGSO algorithm are basically optimal. The accuracy is improved by one and two
orders of magnitude, compared with the GSO and SGSO algorithms. In terms of stability of
the results, the standard deviation values of the SGSO algorithm are lower than those of the
GSO algorithm and the SGSO algorithm, indicating that the SGSO algorithm proposed in
this paper has higher stability and fewer single failure results, hence, the SGSO algorithm
has stronger solving performance.

In terms of convergence efficiency, it can be seen from Figure 7 that the inflection
point in the convergence curve of SGSO appeared earlier before 100 iterations, and the
convergence speed was significantly faster than the GSO algorithm. In terms of population
distribution, it can be seen from Figures 8 and 9 that in test functions, the glowworm
population in SGSO converges near the optimal solution, indicating that the improved
scenario-understanding mode and selection mechanism improve the solution performance
of the algorithm. In summary, the SGSO algorithm shows high accuracy, good stability,
strong population distribution rationality, and fast convergence speed.
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6. Results and Discussion

The accuracy evaluation of the surrogate model will comprehensively consider the
above three evaluation criteria, and the indicators obtained in this paper are shown in
Table 7. According to the data in the above table, the three precision indexes of SGSO-
Kriging are more superior than Kriging when solving Fa and Fβ. The SGSO-Kriging obtains
large R2 that are all over 0.95, and the majority of RMSE and RMAE are smaller, which
shows more reliable solution accuracy.

Table 7. Comparison of three evaluation criteria.

Objects Surrogate Model R2 RMAE RMSE

Fal
Kriging 0.856 701 0.776 140 0.000 765

SGSO-Kriging 0.972 765 0.304 820 0.000 938

Far
Kriging 0.882 206 0.972 477 0.000 945

SGSO-Kriging 0.952 070 2.008 392 0.001 457

Fβl
Kriging 0.904 232 0.966 012 0.000 867

SGSO-Kriging 0.966 258 1.521 527 0.001 655

Fβr
Kriging 0.866 012 1.260 895 0.001 128

SGSO-Kriging 0.964 603 0.511 945 0.001 827

The SGSO-Kriging is used to establish the approximate model between the input
parameters and the output error of the VH-CATT gear special machine tool, and the
optimized residuals, prediction results. and box diagram are shown in Figures 10 and 11.
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Figure 11. Comparison of actual and simulation value: (a) prediction results; (b) box diagram.

The order of magnitude of the error is 10−3 mm. However, among the samples of its
prediction set, only six samples can be well reproduced. Although 10 set samples cannot be
fully reproduced, the maximum error is below 10−3 mm. By observing the box diagram,
it can be found that the simulation value and the actual value share the same lower edge
and Q2 line, but the Q1 line between the two is slightly different. It is worth noting that the
Q3 line and upper edge of the simulation value are higher than the actual value, indicating
that there is still a small difference in the distribution of the simulation value.

Figure 12a shows that the variation trend of the convex tooth profile error (Fal) changes
with the rotational speed (n) and the coolant velocity (vQ) when the average feeding speed
(vf) is taken. The increase of the n will lead to a significant decrease in the error. However,
when the vQ increases, the Fal slightly decreases. It can be seen from Figure 12b,c that
compared with the n and vQ, the vf is the most important factor affecting the tooth profile
error of the convex tooth surface. It is obvious that when the vf increases, the corresponding
error almost increases linearly.

Similar to the analysis of Fal, vf is also the biggest factor affecting Far. The difference
is that the action law of n and vQ is clearer at this time. By observing Figure 13a, it
can be found that the higher vQ contributes more to the tooth surface accuracy when n
increases from 80 to 95 r/min. However, when n exceeds 95 r/min, the error almost linearly
decreases with n only. In Figure 13b,c, when n take the maximum value and vf takes the
minimum value, Far has the optimal solution. By contrast, vQ has a minimal impact, and
the contribution ratio of each factor to the error is basically consistent with Fal.

Due to the influence trend of the three factors on the error being similar to Fal and Far
in the previous analysis, it is not detailed for Fβl to avoid redundancy narration. On the
whole, the variation trend of the two errors of Fβl and Fβr is simple and intuitive. They are
mainly affected by vf, and the error is almost linear with vf. The only big difference is that n
of Fβr is more effective than vQ, but vQ is slightly more effective with Fβl.

The variation trend of errors is carried out by comprehensively analyzing the influence
of three key factors on the four types of errors. Among all the errors, the vf is the most
important, and the effect of reducing the vf on improving the accuracy is significantly
greater than the other two factors. When vf and vQ act on the convex tooth surface, their
effect on the error is close. However, the increase of rotational speed is more conducive to
the accuracy of the tooth surface than the acceleration of the coolant. Response surfaces
contour map of Fβl and Fβr are showed in Figures 14 and 15.
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7. Conclusions

To control the machining error, this paper explores the influence of important machin-
ing on the tooth surface accuracy of the VH-CATT gear. Through experiments of the special
machine tool and the data measurements, 64 groups of samples with three key parameters,
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n, vf, and vQ, were selected. An improved Kriging surrogate model is established, whose
convergence effect has been improved by using an improved SGSO algorithm. Based on
the results of data and the diagram, the influence trend of the key parameters on the error
is analyzed. The detail of results are as follows.

The VH-CATT gear machining experiment was carried out using the special machine
tool proposed by the research group, and different parameters were selected for machining
according to the machining experience. The tooth profile of the obtained gear sample was
measured, and the data verified the correctness of the previous study, which also provided
samples for subsequent analysis.

A Kriging model based on the SGSO algorithm optimization is proposed. The glow-
worm search ability is enhanced by the scenario-understanding mode, and the algorithm
is used to solve the hyperparameter optimization of the surrogate model to improve the
accuracy and iterative efficiency. The SGSO-Kriging surrogate model has been improved in
R2, RMAE, and RMSE, and there is better performance in the residuals.

The influence of three factors on the error is carried out in the contour map. Among
all the errors, reducing vf is the most effective way to reduce the error. Then, increasing
vf and n within the corresponding threshold shows a similar effect on the convex tooth
surface. However, the increase of the rotational speed is more conducive to the accuracy of
the tooth surface than the acceleration of the coolant.

Author Contributions: Conceptualization, L.H. and Y.D.; methodology, Q.Z.; software, H.Z.; valida-
tion, S.L. and P.L.; formal analysis, S.L.; investigation, H.Z.; resources, L.H.; writing—original draft
preparation, S.L.; writing—review and editing, S.L. and P.L.; supervision, Y.D.; project administration,
L.H.; funding acquisition, L.H. and Y.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant num-
ber 51875370, and Natural Science Foundation of Sichuan Province, grant number 2022NSFSC1975.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, F.; Hou, L.; Duan, Y.; Chen, Z.; Chen, Y.; Sun, Z. Research on the Forming Theory Analysis and Digital Model of Circular

Arc Gear Shaped by Rotary Cutter. J. Sichuan Univ. 2016, 48, 119–125.
2. Wu, Y.; Hou, L.; Ma, D.; Wei, Y.; Luo, L. Milling Machine Error Modelling and Analysis in the Machining of Circular-Arc-Tooth-

Trace Cylindrical Gears. Trans. FAMENA 2021, 44, 13–29. [CrossRef]
3. Zhang, Q.; Wen, G.; Liang, S.; Tong, Q.; Hou, L.; Yang, G. Prediction Mathematic Model and Influencing Factors of Contact Stress

of Cylindrical Gear with Arc Tooth. Complexity 2020, 2020, 8888407. [CrossRef]
4. Luo, P.; Wu, Y.; Liang, S.; Hou, L.; Fan, Q.; Wei, Y. TEHL analysis of VH-CATT cylindrical gear transmission in elliptical contact

considering time-varying parameters. Adv. Mech. Eng. 2022, 14, 1992379904. [CrossRef]
5. Wu, Y.; Hou, L.; Luo, L.; Ma, D.; Wei, Y. Tooth Root Bending Stress Distribution Characteristics of Gear in Wind Turbine Gear

Transmission System. J. Chin. Soc. Mech. Eng. 2020, 41, 311–324.
6. Liang, S.; Hou, L.; Zhang, H.; Luo, L.; Wu, Y.; Luo, P. Bifurcation and chaos analysis of cutter head-spindle system of VH-CATT

gear machine tool considering time-varying stiffness. Int. J. Adv. Manuf. Technol. 2022, SI, 1–14. [CrossRef]
7. Zhang, H.; Hou, L.; Liang, S.; You, Y.; Liao, K.; Li, J. Design and evaluation of module configuration scheme for special machine

tool of variable hyperbolic circular-arc-tooth-trace cylindrical gear. Adv. Mech. Eng. 2022, 14, 1–11. [CrossRef]
8. Zhang, H.; Hou, L.; Liang, S.; Wu, Y.; Chen, Z. Modular configuration design of a special machine tool for variable hyperbolic

circular-arc-tooth-trace cylindrical gears. Mech. Sci. 2022, 13, 55–65. [CrossRef]
9. Ikua, B.W.; Tanaka, H.; Obata, F.; Sakamoto, S. Prediction of cutting forces and machining error in ball end milling of curved

surfaces -I theoretical analysis. Precis. Eng. 2001, 25, 266–273. [CrossRef]
10. Ding, H.; Tang, J.; Zhong, J. Accurate nonlinear modeling and computing of grinding machine settings modification considering

spatial geometric errors for hypoid gears. Mech. Mach. Theory 2016, 99, 155–175. [CrossRef]
11. Dey, S.; Mukhopadhyay, T.; Adhikari, S. Stochastic free vibration analyses of composite shallow doubly curved shells—A Kriging

model approach. Compos. Part B Eng. 2015, 70, 99–112. [CrossRef]

http://doi.org/10.21278/TOF.444009419
http://doi.org/10.1155/2020/8888407
http://doi.org/10.1177/16878132221081615
http://doi.org/10.1007/s00170-021-08360-0
http://doi.org/10.1177/16878132221107258
http://doi.org/10.5194/ms-13-55-2022
http://doi.org/10.1016/S0141-6359(01)00077-0
http://doi.org/10.1016/j.mechmachtheory.2016.01.008
http://doi.org/10.1016/j.compositesb.2014.10.043


Machines 2022, 10, 679 20 of 20

12. Li, X.; Qiu, H.; Chen, Z.; Gao, L.; Shao, X. A local Kriging approximation method using MPP for reliability-based design
optimization. Comput. Struct. 2016, 162, 102–115. [CrossRef]

13. Ankenman, B.; Nelson, B.L.; Staum, J. Stochastic Kriging for Simulation Metamodeling. Oper. Res. 2010, 58, 371–382. [CrossRef]
14. Tianhong, L.; Shuang, L.; Hezeyin; Xia, Z. Path planning of robot based on glowworm swarm optimization algorithm of scene

understanding. J. Comput. Appl. 2017, 37, 3608–3613.
15. Kaur, G.; Arora, S. Chaotic whale optimization algorithm. J. Comput. Des. Eng. 2018, 5, 275–284. [CrossRef]
16. Sen, S.K.; Agarwal, R.P. Golden ratio in science, as random sequence source, its computation and beyond. Comput. Math. Appl.

2008, 56, 469–498. [CrossRef]
17. Dodson, M.; Parks, G.T. Robust Aerodynamic Design Optimization Using Polynomial Chaos. J. Aircr. 2009, 46, 635–646. [CrossRef]
18. Qi, Z.; Guang, W.; Lan, L.; Rui, T. Contact Stress Prediction Model for Variable Hyperbolic Circular Arc Gear Based on the

Optimized Kriging-Response Surface Model. Trans. FAMENA 2021, 44, 59–74. [CrossRef]
19. Yi, Z.; Hou, L.; Zhang, Q.; Wang, Y.; You, Y. Geometry Optimization Of Air-Assisted Swirl Nozzle Based On Surrogate Models

And Computational Fluid Dynamics. At. Sprays 2019, 7, 605–628. [CrossRef]
20. Shuhao, Y.; Shoubao, S. Research and Application of Chaos Glowworm Swarm Optimization Algorithm. J. Front. Comput. Sci.

Technol. 2014, 8, 352–358.

http://doi.org/10.1016/j.compstruc.2015.09.004
http://doi.org/10.1287/opre.1090.0754
http://doi.org/10.1016/j.jcde.2017.12.006
http://doi.org/10.1016/j.camwa.2007.06.030
http://doi.org/10.2514/1.39419
http://doi.org/10.21278/TOF.444011819
http://doi.org/10.1615/AtomizSpr.2019030959

	Introduction 
	Special Machine Tool VH-CATT Cylindrical Gear 
	Experimental Design 
	Experimental Process 
	Machining Characteristic Value 
	Variable Level Calculation 

	Surrogate Model and Optimization 
	Common Surrogate Model 
	Kriging Model 
	Model Precision Index 

	Optimized Kriging Model Based on SGSO Algorithm 
	SGSO Algorithm 
	Algorithm Performance Test 

	Results and Discussion 
	Conclusions 
	References

