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Abstract: Display color line defect detection is an important step in the production quality inspection
process. In order to improve the detection accuracy of low contrast line defects, we propose a display
line defect detection method based on color feature fusion. The color saliency channels in the RG|GR
and BY|YB channels were obtained using the relative entropy maximum criterion. Then, RG|GR
were combined with the a channel and BY|YB with the b channel to calculate the red-green and the
blue-yellow color fusion maps. The fusion color saliency map of the red-green and the blue-yellow
color fusion maps was obtained by color feature fusion. Finally, the segmentation threshold was
calculated according to the mean and standard deviation of the fusion color saliency map. The fused
color saliency map was binarized and segmented to obtain a binary map of color line defects. The
experimental results show that for the detection of multi-background offline defects, the detection
accuracy of the algorithm in this paper is better than 90%, while other mainstreams fail to detect.
Compared with state-of-the-art saliency detection algorithms, our method is capable of real-time
low-contrast line defect detection.

Keywords: liquid crystal display; defect detection; line defect; salient color feature; feature fusion

1. Introduction

The quality inspection of display products plays an important role in the production
process. Existing display quality inspection uses Automated Optical Inspection (AOI)
equipment for manual feeding to automatically detect defects in the display. The detection
accuracy of AOI equipment depends on the corresponding algorithm, which limits the
application of AOI technology [1]. Industrial production still relies on manual detection,
which has low efficiency and unstable accuracy due to the influence of subjective feelings
of testers [2]. In particular, color low-contrast defects are difficult to detect by the human.
Therefore, using machine vision and digital image processing technology to achieve display
defect detection has become an urgent problem to be solved.

Display defect detection technology has made great progress. Existing display defect
detection methods are mainly divided into three types: methods based on image registra-
tion [3,4], background reconstruction [5–10] and deep learning [11–17]. Zhang et al. [4]
utilized PatMax and image correction technology based on affine transformation to solve
the problem of incompletely aligned pixel edges when the template image is registered
with the test image. The method improves the accuracy of defect detection but cannot
extract the features from the uniform background for the registration process. Ma et al. [7]
proposed using the Gabor filter to remove noise and background from display images.
Aiming at the problem of low defect contrast, the method utilizes the optical properties
in printing to obtain images with the smallest contrast by blurring to achieve background
reconstruction. This method can detect low contrast defects, but requires strict display
background conditions and cannot be used in multi-display backgrounds. Lin et al. [11]
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proposed a deep channel attention-based classification network (DCAnet) as an image fea-
ture extractor and then proposed an adversarial training algorithm based on convolutional
neural networks (CNN) to detect Mura defects. Zhu et al. [12] proposed a channel attention
network based on layered multi-frequency. The network uses the attention mechanism to
solve the problem of large variation in the aspect ratio of scratch defects. Zhu et al. [13]
proposed a defect detection method for AOI equipment, which uses the Yolov3 [18] method
to detect display point defects and abnormal display defects, which can detect defects in
multiple backgrounds at the same time. Chang et al. [14] proposed a method combining
image preprocessing and CNN for display defect detection and proposed a training method
for the problem of small defect areas and the different background, which leads to sample
imbalance. The deep learning method needs to construct a large amount of sample data to
achieve effective detection, resulting in poor performance in small sample data.

Before defect detection, the screen needs to be powered on and display the test image.
Commonly used test images include solid color images (gray, white), grayscale transition
images, checkerboard images, and cross test images. The line defects appear as color or
dark lines in the test images. Multiple display backgrounds make it difficult to extract line
defect features. In the grayscale transition picture, the color of line defects will change
according to the grayscale transition background, and also manifest as defect brightness
change and defect contrast reduction, which makes it hard to accurately detect line defects
in multiple backgrounds.

Existing methods lack the ability to effectively detect colored line defects in multiple
backgrounds. Inspired by the theory of salient object detection, we propose a method for
display line defects detection based on color feature fusion. To overcome the difficulty in
extracting defect features under multiple display backgrounds, we adopted the salient color
features method and adaptively obtained the color saliency channel based on the criterion
of maximum relative entropy. To realize accurate low-contrast line defect detection, we
adopt the fusion calculation method of significant color features.

Our contributions are as follows:

(1) A novel display line defect detection method is proposed for the stable detection of
line defects under multiple backgrounds.

(2) A method of fusion salient color features is proposed to achieve background suppres-
sion of low-contrast defects and the enhancement of objects.

(3) A salient color channel selection method is proposed, which realizes the salient color
channel selection under multiple backgrounds.

This article is organized as follows. Section 2 presents related works, and Section 3
describes the proposed color saliency channel selection method and color feature fusion
method. In Section 4, we discuss the experimental results. In Section 5, we summarize the
content of this paper.

2. Related Works

In recent years, the defect detection technology of display has made significant
progress, among which the low contrast defect has drawn significant attention. Ngo et al. [5],
respectively, adopted low-pass filtering background reconstruction, polynomial fitting and
discrete cosine transform on the input image to obtain defect differential maps, followed by
threshold segmentation to detect the defects in the difference shadow image. Yang et al. [6]
proposed an anomalous region detection method using a gradient-based level set to ac-
curately segment defects in candidate regions. Cui et al. [19] proposed using the double-
segment exponential transform method to enhance the defect, solving the problem of close
defect value to the background in a differential image. Finally, the Otsu’s method was used
to achieve accurate segmentation of the defect. Hou et al. [20] proposed an Otsu’s-based
method to select defect candidate regions, and then used variance and meshing to detect
Mura and edge defects.

The salient object detection methods mainly focus on the places where the human
eye pays the most attention in natural scenes. Commonly used methods include the
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spectral residual-based method (SR) [21], and frequency domain-based methods include
(FT) [22], Phase spectrum of quaternion Fourier transform (PQFT) [23], Hypercomplex
Fourier transform (HFT) [24] and so on. The FT method considers that the salient region
is represented in a certain frequency range in the spectrum, and therefore uses difference
Gaussian filtering to achieve the detection of the salient region. The PQFT method considers
that the salient region can be represented by the phase spectrum in the frequency spectrum,
so a direct inverse transformation of the phase spectrum can obtain the salient region. The
HFT method uses a Gaussian kernel to convolve the frequency domain amplitude spectrum
to obtain the significant region, and the method requires the determination of the optimal
Gaussian kernel. These methods have been applied to the actual defect detection [25,26].
The advantage of the frequency domain-based method is that the periodic signal can be
removed by the frequency domain analysis method, which can process images with a large
number of periodic textures. These histogram-based contrast (HC) [27] and local histogram-
based contrast (LC) [28] methods based on color information mainly quantify the colors
in natural scenes to obtain saliency targets, but they are not effective for target detection
in monotonous scenes. Saliency methods mainly use multiple feature fusion methods to
detect salient objects [29], but rarely use individual features for salient object detection.

3. Methodology
3.1. Algorithm Architecture

Figure 1 shows the algorithm architecture of a display color line defect detection
method based on color feature fusion.

Figure 1. Algorithm Architecture.

First, the original image is decomposed into color features using RGBY color space
and Lab color space. Secondly, for the RG/GR-BY/YB opposite channel, the color saliency
channel is obtained according to the maximum relative entropy criterion. The third is
to calculate the red-green color fusion map and the blue-yellow color fusion map of the
combination of RG|GR and a channel BY|YB and b channel, respectively, to perform color
feature fusion. Color feature fusion is applied to obtain the fusion color saliency map
of the red-green saliency map and blue-yellow saliency map. Finally, according to the
segmentation threshold calculated by the mean and standard deviation of the fused color
saliency map, the fused color saliency map is binarized and segmented to obtain a binary
map of color line defects. It effectively realizes the accurate detection of display screen line
defects under multiple backgrounds.

3.2. Color Feature Extraction

There are two main color spaces commonly used in salient object detection. A saliency-
based color feature was proposed in RGBY [30], which is a wide-amplitude color-luminance
separation color space. The other is the Lab color space, which is the most commonly used
color space in saliency object detection. The original intention of the color space is designed
according to human eye perception. So, the color characteristics are also in line with human
eye perception [31].
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The RGBY color space calculation method is described as:
R = r− g+b

2 ,
G = g− r+b

2 ,
B = b− r+g

2 ,
Y = r+g

2 −
|r−g|

2 − b,

(1)


RG = R− G,
BY = B−Y,

I = r+g+b
3 ,

(2)

where r, g and b are the three channels of the original image. The RGBY color airdrop
decomposes the RGB input image into two parts, including the color feature and the I
brightness. The color information is the main features of line defects, so we only keep the
color features in the RGBY space.

In [32], it was pointed out that the human eye’s attention to color in the RGBYI space
mainly focuses on red and blue, thus forming an opposing color space. However, the
salient color under any channel in defect detection is useful. Therefore, we expand the
RGBY opposite space to form the RG|GR-BY|YB opposite color space. The calculation
method is described as: 

RG = R− G,
GR = G− R,
BY = B−Y,
YB = Y− B.

(3)

We decompose the original image into color as shown in Figure 2.

Figure 2. Decomposition of original image using Lab color space and RGBY color space.

As shown in Figure 2, the Lab color space divides the original image into two parts.
The brightness characteristics of the L channel are almost the same as the original image.
The purple line defects of the image in the a channel are highlighted, while the background
information is converted to a smaller value, and the position of the purple line in the b
channel is converted to a value close to 0. In RG|GR-BY|YB space, the original image is
mapped into four channels.
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3.3. Significant Color Channel Selection

We start from the design principles of RGBY color space and Lab color space. The
a channel of the Lab color space represents the color feature from red to green and the b
channel represents the color feature from blue to yellow. This is related to the RG/GR-
BY|YB color space we used. In RG|GR, the defect always occurs in one of the channels
or in none of the channels due to its opposite properties. So, it was necessary to choose
between opposite color channels. It is the same for BY|YB channels. We used the a-b
channels to select the target channel containing the defect, respectively.

In the RG|GR-BY|YB contrasting colors, most of the background information has
been eliminated while preserving the significant information of the defect. We used relative
entropy to compare the similarity of RG|GR to a channel and BY|YB to b channel.

Relative entropy is calculated as:

Hkl(P ‖ Q) = P(x)log ∑ P(x)
Q(x) (4)

The relative entropy represents the difference between the grayscale distribution P(x)
of the input feature P and the grayscale distribution Q(x) of the input feature Q. When the
two are the same, Hkl = 0, which can effectively measure the feature’s distribution distance.{

Hkl(RG, a) > Hkl(GR, a), RG|GR = GR
Hkl(RG, a) ≤ Hkl(GR, a), RG|GR = RG

(5)

{
Hkl(BY, b) > Hkl(YB, b), BY|YB = YB
Hkl(BY, b) ≤ Hkl(YB, b), BY|YB = BY

(6)

In the above way, we obtain the RG|GR-BY|YB color channels that only contains
the target.

3.4. Color Feature Fusion

In order to effectively separate the background and the target, we use feature fusion
to enhance the target and suppress the background information. After adopting color
feature selection in RG|GR-BY|YB space, we use RG|GR-BY|YB and a-b channels in Lab
color channel for feature fusion. The channel selected by RG|GR-BY|YB only contains
target information and a small amount of background noise, while the a-b channels contain
a large amount of background information on the target. We fused the corresponding
color channels so that the target in the a-b channels is enhanced while the background
is suppressed. {

Srg = RG
∣∣GR

⊗
a,

Sby = BY
∣∣∣YB

⊗
b,

(7)

where Srg represents the red-green fusion feature map. Sby represents the blue-yellow
fusion feature map. ⊗ fusion operation. Further feature fusion on the red-green and the
blue-yellow fusion feature maps are performed to obtain the fusion color saliency map:

Sc = Gass ∗
∣∣∣Srg

⊗
Sby

∣∣∣, (8)

where Sc is the color saliency map, |·| represents the modulo, and Gass represents a
Gaussian template.

We perform feature fusion twice, which can effectively separate color features from
background noise. Finally, the separation of target and background can be achieved by
using an adaptive threshold.

th = µsc + Kδsc, (9)

µsc =
1

M×N

M
∑

i=1

N
∑

j=1
Sc(i, j), (10)
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δsc =

√
1

M× N ∑M
i=1 ∑N

j=1 (Sc(i, j)− µsc)
2, (11)

where th is the segmentation threshold, K is a parameter, µsc is the mean value of the
color saliency map and δsc is the standard deviation of the color saliency map. M and N
represent the length and width of the input image, respectively.

4. Experimental Results
4.1. Experimental Setup

As shown in Figure 3, we used dark grayscale transition, light grayscale transition,
cross test, checkerboard, gray and white backgrounds with dark and color line defect
images of various contrasts. The image size is 951 × 1566. All images have corresponding
GT maps in which defective areas are set to 1 and non-defective areas are set to 0. All
experiments are run under MATLABR2018b with Inter Core I7-7700CPU, 16 G memory
and 64-bit operating system.

Figure 3. Typical Display Background.

4.2. Line Defect Detection Results

To show the detection results of the proposed method, we divided the line defects
into stable and changing ones according to defect characteristics. Stable line defects will
appear in any screen, as shown in Figure 4 below. The proposed method can directly detect
defects under the condition of complicated background texture for checkerboard images
and can effectively overcome the influence of transition background for grayscale images.
The red-green in row (c) and blue-yellow in row (d) color feature maps are a little different
but both describe the defect characteristics well.
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Figure 4. Stable feature defect detection results. (a) is the original image; (b) is the GT map;
(c) red-green fusion feature map; (d) blue-yellow fusion feature map; (e) color fusion saliency map;
(f) Threshold segmentation result map.

Figure 5 demonstrates the detection capability of our method for changing line defects.
Due to the influence of grayscale transition background, the color of the line defects is
not obvious to human eyes. It is difficult to find line defects when we directly observe
the original image. The proposed method is able to detect low contrast as well as dark
line defects. The color saliency map is shown in Figure 5e. The influence of the gray-scale
transition background is effectively suppressed, while retaining the defects.
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Figure 5. Change defect feature detection results. (a) original image; (b) GT map; (c) red-green
fusion feature map; (d) blue-yellow fusion feature map; (e) color fusion saliency map; (f) threshold
segmentation result map.

TDR and FDR metrics are used to evaluate the defect detection results of our method.

TDR = |S ∩ GT|
|S| (12)

FDR = |S ∩ GT|
|GT| (13)

where S is the threshold segmentation binary image, and GT is the ground truth image.
As shown in Table 1, the method in this paper achieves more than 90% TDR for both

stable line defects and changing line defects. This shows that our method can effectively
and stably detect color line defects in multiple backgrounds and achieve the accurate
detection of low-contrast line defects.

Table 1. Defect detection capabilities of our method.

Stability Defect Change Defect

TDR (%) 96.49 90.77
FDR (%) 86.49 89.48
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4.3. Comparison of Different Methods

We compare saliency detection methods used in object detection. As shown in Figure 6,
the saliency maps of FT, HC, Context-aware saliency detection (CA) [33], Graph-regularized
saliency detection (GR) [34] and PQFT are compared with our method. The CA method
uses local and global feature information to describe the salient regions and uses a priori
constraints for salient region acquisition. The GR method uses super-pixels to detect the
salient regions, which are determined by the super-pixel ensemble, and the method is
driven by the data.

Figure 6. Comparison of saliency maps of different methods.

As shown in Figure 6, in the grayscale transition picture, the FT method will consider
the bright areas as significant areas when the background brightness is changing, which
makes it difficult to separate the defects from the background.

It can be seen that the FT method is not useful for background suppression, making
it difficult to separate the background and defects, especially under the cross test pattern.
The detection results of the HC method is poor in the grayscale transition picture. Since
the method uses the histogram to select salient objects, it makes brighter regions easier to
be regarded as salient regions. The background and the target cannot be separated in the
checkerboard. The AC method is easier to focus on the edges and corners of the image,
which can only roughly describe the location of the defect and cannot accurately segment
the defect. From the saliency map of the GR method, we could observe that the method
cannot be used in the detection of in-line defects. The PQFT method has the ability to detect
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part of line defects, but its saliency map is relatively unstable. Among them, the purple line
fails to be detected under the cross-test picture and the gray picture. There is a considerable
amount of noise highlighted in grayscale transition images, which makes defect separation
more difficult. On the contrary, our proposed method can preserve only line defects in the
saliency maps, while suppressing the complicated backgrounds, making it simple to realize
thresholding segmentation.

We use the metrics of NSS [35] and AUC to evaluate the quality of saliency maps. The
NSS metric describes the object saliency of the saliency map. The larger the NSS value, the
better the saliency map. AUC represents the authenticity of the detection method. When it
is close to 1, the authenticity is the best, and when it is close to 0.5, the method is completely
invalid. Due to the real-time requirement of defect detection, we also compared the time
consumption of different methods, as shown in Table 2.

Table 2. Performance comparison of different saliency methods.

Background Measures FT [22] HC [27] CA [33] GR [18] PQFT [23] Ours

dark gray
transition

NSS 1.07 0.63 1.89 0.92 2.09 8.34
AUC 0.80 0.21 0.92 0.80 0.911 0.99
Time 2.00 1.09 70.01 3.65 0.24 0.46

light gray
transition

NSS 1.23 0.12 1.32 0.83 1.15 10.70
AUC 0.80 0.53 0.90 0.74 0.79 0.99
Time 1.07 4.14 37.68 3.08 0.24 0.47

cross test
NSS 2.99 2.16 0.66 0.44 0.08 8.89
AUC 0.98 0.94 0.77 0.57 0.53 0.99
Time 2.18 13.32 87.23 5.57 0.35 0.69

checkerboard
NSS 3.85 1.28 1.12 0.20 0.53 11.75
AUC 0.99 0.82 0.98 0.82 0.65 0.99
Time 2.24 29.43 30.51 4.69 0.43 0.71

white
NSS 0.12 0.07 0.02 0.32 1.30 4.22
AUC 0.75 0.85 0.76 0.50 0.95 0.99
Time 2.26 19.14 22.58 6.13 0.42 0.70

gray
NSS 3.89 1.91 0.96 3.02 0.41 9.09
AUC 0.99 0.91 0.98 0.76 0.34 0.99
Time 1.34 10.85 126.12 5.39 0.44 0.69

As shown in Figure 6 and Table 2, compared with other methods, we can see that the
PQFT method has the worst detection ability for dynamically changing images, with the
smallest NSS average value. The NSS values of the FT method are relatively stable but
small: around 1 under various display backgrounds, while the saliency map of the CA,
HC and GR methods fluctuate greatly with the change in the background. In contrast, the
proposed method has an average NSS value of 8 and is stable across different backgrounds.
It can be seen from Table 2 that the HC method is completely ineffective when detecting
changing defects, with the AUC values all close to 0.5. Compared with other methods,
our method achieves a AUC value of 0.99, which demonstrates the highest authenticity of
our method. When comparing time consumption, the PQFT method is the fastest, while
the CA method consumes much more time than other methods. The time consumption of
our method and the PQFT method is close to 0.7 s on average, which meets the needs of
actual production.

5. Conclusions

In this paper, we propose a color line defect detection method for display screens
based on color feature fusion. We use a salient color feature fusion method to effectively
achieve line defect feature extraction and enhancement in multiple backgrounds. In the
experimental section, we compare multiple methods, and the experimental results show
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that our proposed method is better than the existing methods. The method will soon be
deployed in a real display production line for display defect detection. We have tested our
proposed method with more defect types, and the results show that the method can detect
weak color features and the shape of color regions is not limited. Among other things, our
method can extract color Mura defects, which will be the next direction of our continued
research on the method.
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