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1. Smart Manufacturing (SM) Theories

Smart manufacturing (SM) distinguishes itself from other system paradigms by in-
troducing ‘smartness’ as a measure to a manufacturing system; however, researchers in
different domains have different expectations of system smartness from their own perspec-
tives. In this Special Issue (SI), SM refers to a system paradigm where digital technologies are
deployed to enhance system smartness by (1) empowering physical resources in production,
(2) utilizing virtual and dynamic assets over the internet to expand system capabilities,
(3) supporting data-driven decision making at all domains and levels of businesses, or
(4) reconfiguring systems to adapt changes and uncertainties in dynamic environments.
System smartness is measured by one or a combination of system performance metrics,
such as the degree of automation, cost-effectiveness, leanness, robustness, flexibility, adapt-
ability, sustainability, and resilience. This SI aims to present the most representative works
in advancing the theories, methods, and applications of SM.

Rapidly developed digital technologies have continuously stimulated shifts of man-
ufacturing system paradigms; most recently, the study of SM has attracted numerous
researchers in academia and practitioners in industry [1–5]. However, people in different
domains have highly diversified expectations of system smartness, leading to the ambiguity,
diversity, and inconsistency of SM concepts in terms of system architecture, reference mod-
els, enabling technologies, and evaluation matrices. Bi et al. [6] generalized the definition
of SM by unifying diversified expectations of system smartness as customizable measures,
and they presented two concepts of digital triad (DT-II) and the Internet of Digital Triad Things
(IoDTT) to emphasize the functional requirements (FRs) of SM to accommodate changes
and uncertainties in sustainable and cost-effective ways. Bányai [7] analyzed the needs of
adaptability and flexibility in matrix production; he argued that flexible manufacturing sys-
tems could be the correct solutions to deal with changes in production. He emphasized the
importance of effective models and methods in optimizing system controls. In particular,
he proposed a hybrid metaheuristic algorithm based on multiphase black hole and flower
pollination to plan and schedule manufacturing resources in material handling systems
using robots.

Sahal et al. [8] investigated the roles of digital twins (DTs) in modelling physical assets
and supporting decision-making activities in decentralized and distributed manufacturing.
They found that DTs required collaboration among stakeholders to reach the consensuses
of decisions and predict risks; the critical FRs of collaborations were defined in terms of
interoperability, authentication, scalability, and the avoidance of single-point failures. A
ledger-based collaborative framework was proposed to fulfill the identified FRs in smart
transportation systems, and the incorporated technologies included blockchain technolo-
gies (BCTs), predictive analysis techniques, and other digital technologies. Ubiquitous
smart things in the Internet of Things (IoT) make it feasible to collect real-time data of
the conditions of any manufacturing resources from anywhere at any time; Tan et al. [9]
adopted DTs to synchronize and utilize real-time data in a cyber space; the challenges of
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integrating DTs with smart things in IoT were explored, and a new scheme and framework
were constructed to simulate DTs with real-time data.

2. System Design Methods

SM has benefited greatly from rapidly developed information technologies, such
as DTs, BCT, IoT, cloud computing (CC), big data analytics (BDA), cyber-physical systems
(CPSs), and edge-computing. These technologies have been changing the landscape of
the research and development of SM radically, in a sense that (1) solutions of acquiring
and transferring data become increasingly more affordable in regards to implementing,
deploying, and integrating ‘smarter’ things in a system; (2) business-relevant data become
increasingly bigger in terms of ‘volume’, ‘variety’, and ‘velocity’, where advanced data
analytics can be used to capture, store, process, and utilize data to cope with changes in
dynamic environments; (3) the system boundary becomes increasingly vaguer, and system
architecture has to be dynamically adaptable to physical and virtual collaborations of
business partners over time [10–13].

System design methods are used to select system elements, configure these elements
into components and systems, and model, evaluate, and compare design options against key
performance indicators (KPIs) for system optimization. However, traditional system design
methods are mostly for the design of static systems with clear system boundaries. There are
needs required for the advancement of system design methods so that a smart manufactur-
ing system can be reconfigurable to achieve high-level smartness in its system lifecycle. The
configurations of a smart system must be customized to the constraints of manufacturing
resources and the prioritized KPIs. Bi et al. [14,15] proposed a systematic design methodol-
ogy as the guide for designs of smart manufacturing systems in specified applications. The
axiomatic design theory (ADT) was adopted and expanded to design, analyze, and assess
smart manufacturing systems, and the applicability of the proposed methodology was
verified using three case studies. Erasmus et al. [16] proposed an information architecture
to integrate CC and IoT with smart devices for human–robot collaboration; the architecture
was modularized for small- or medium-sized enterprises (SMEs) to access extensible cloud
services, and it was used as a reference architecture for information management systems in
Industry 4.0. The architecture was tested and evaluated with the information systems of ten
real-world factories. Kim and Lee [17] extended the SM concept to a maintenance system
in ship building and servicing; the framework, procedure, and architecture of a smart
maintenance system were developed to systematically design large-scale SM systems.

3. Applications

SM is expected to meet some emerging requirements of automation, adaptability, sus-
tainability, and resilience of modern manufacturing systems in the digital era at numerous
aspects, including (1) dealing with any level of system complexity relating to the number
and variants of system elements, the interactions of system elements, and anticipated and
unanticipated changes over time; (2) maximizing system entropy to adopt changes in a
dynamic environment; (3) responding to real-time changes in the shortest possible time;
(4) monitoring, diagnosing, and predicting system states and trends, generating preven-
tive solutions for adverse changes, and upgrading systems to adapt preferable changes;
(5) supporting the seamless coordination, collaboration, and cooperation of stakeholders;
(6) orchestrating manufacturing resources across enterprise bounds to seize novel opportu-
nities; (7) providing generic architecture applicable to different products, functions, and
regions [1,18–20].

Cutting-edge digital technologies have been widely explored in regard to solving
various engineering problems in real-world applications. For examples, Hou et al. [21]
developed a function–structure model to evaluate performance and cost in product devel-
opment; products were characterized in functional and structural domains, respectively,
and an evolutionary algorithm (EA) was used to map functions into corresponding struc-
tures for the verification of design constrains and the evaluation of design solutions. Kang
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et al. [22] discussed various challenges of using vibrioses to protect the environment dur-
ing fossil fuel exploration; numerical simulation models were developed to analyze the
response of a vibriosis subjected to specific boundary conditions and excitations, and simu-
lation results were used to identify the weakest vibriosis junctions. Liu et al. [23] proposed
an integrated robotic system for its application in an ill-structured on-site environment
with the purpose of cost-efficiency. The proposed system consisted of two-terminal ma-
nipulators for parallel sorting processes, and it was seamlessly integrated in an automated
assembly system to perform sorting tasks consistently in a shortened cycle time. Yung
et al. [24] discussed the challenges in designing and manufacturing highly diversified
space instruments. The specifications of space instruments were greatly distinguished
from those of products on Earth, and careful considerations had to be determined on the
size, weight, cost, complexity, and extreme space environments. A systematic literature
search method was used to look into the impact of product design and innovation on the
development of space instruments; the survey provided important information and critical
considerations for using cutting-edge digital technologies in designing and manufacturing
space instruments.

4. Future Research Directions

Increasingly more manufacturing enterprises are ready to incorporate newly devel-
oped technologies, such as DTs, CPSs, IoT, BDA, and BCT, with traditional manufacturing
technologies, such as flexible manufacturing systems (FMSs), total quality management (TQM),
supply chain management (SCM), enterprise resource planning (ERP), and computer-integrated
manufacturing (CIM). However, existing theories, methods, and tools still exhibit limitations
in supporting cost-effective vertical integration, decentralization, smart sensing and actuating,
autonomy and self-organization, and uses of semantic models [25]. The research of SM in
theories, methods, and applications should be advanced to transfer integrated digital tech-
nologies into productivity, profitability, and sustainability of systems. This Editorial Team
anticipated that future research in SM would mainly incorporate areas of (1) ubiquitous
sensing, (2) fusing and integrating data from heterogeneous sources, (3) effective BDA meth-
ods, (4) data visualization methods for human interactions, (5) data-driven decision-making
supports, (6) workflow composition methods, (7) the standardization and specifications of
smart modules, and (8) quantified criteria such as adaptability, sustainability, and resilience
for system evaluation [1,6,14].
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