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Abstract: In recent years, the recreational and commercial use of flight and driving simulators has
become more popular. All these applications require the calculation of orientation in either two
or three dimensions. Besides the Euler angles notation, other alternatives to represent rigid body
rotations include axis-angle notation, homogeneous transformation matrices, and quaternions. All
these methods involve transcendental functions in their calculations, which represents a disadvantage
when these algorithms are implemented in hardware. The use of transcendental functions in software-
based algorithms may not represent a significant disadvantage, but in hardware-based algorithms, the
potential of rational models stands out. Generally, to calculate transcendental functions in hardware,
it is necessary to utilize algorithms based on the CORDIC algorithm, which requires a significant
amount of hardware resources (parallel) or the design of a more complex control unit (pipelined). This
research presents a new procedure for model orientation using rational trigonometry and quaternion
notation, avoiding trigonometric functions for calculations. We describe the orientation of a gimbal
mechanism presented in many applications, from autonomous vehicles such as cars or drones to
industrial manipulators. This research aims to compare the efficiency of a rational implementation
to classical modeling using the techniques mentioned above. Furthermore, we simulate the models
with software tools and propose a hardware architecture to implement our algorithms.

Keywords: orientation; quaternions; rational trigonometry; gimbal mechanism; spherical wrist

1. Introduction

The kinematic analysis of a rigid body is usually done by taking its center of mass as
a reference. However, since not all bodies have high symmetry, it is necessary to specify
both position and orientation. The orientation can be visualized by adding an orthogonal
vector base to the center of mass. Many methods describe the orientation of a rigid body;
however, two of the most common techniques are the Euler angles and the quaternions.

Euler angles are properly called the six configurations in which the initial and final
rotations are made on the same axis (e.g., z-y-z). On the other hand, Tait–Bryan angles
(a.k.a., nautical angles) are three angles that define a rotation uniquely concerning the
body reference frame. Unlike Euler angles, the Tait–Bryan procedure develops sequence
rotation about different axes. In some literature, the Tait–Bryan sequence, x-y-z, is called
roll, pitch, and yaw. This rotation sequence is widely used in aerospace engineering, but in
some references, Tait–Bryan and Euler angles are used under the same terminology and are
simply called Euler angles.

The most important quality of Euler orientation is that any combination of rotations is
equivalent to a single rotation. Although matrix notation was introduced after the Euler
results, it can be shown that the rotation’s composition turns mathematically equivalent
to the product of orthogonal matrices. Another way of representing rotations is known
as the Euler vector or rotation vector, which states that every rotation matrix has a real
Eigenvector and represents the axis of rotation. Based on this idea, Euler introduced an
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alternative notation to determine the orientation, defined as a vector perpendicular to the
plane of rotation the module of which is equivalent to the rotated angle. Therefore, any
vector through the origin can represent a rotation.

A similar concept to Euler vectors is the quaternion representation, which includes
vectors of four components and a module equal to one. This has many advantages over
Euler representations since it is numerically more stable, computationally more efficient
and easier to convert into matrices.

The orientation of a rigid body in 3D space changes by rotation, and when the solid
has rotational symmetry, not all rotations are visually distinguishable. For instance, this
happens when a sphere is rotated around its center in any direction or a cylinder around
its symmetry-axis. All the above methods can be studied as purely geometric concepts,
applicable to describing rigid bodies’ orientation in space.

Regardless of the chosen method, there are two ways to implement an algorithm
in order to compute the orientation of a rigid body: by software or by hardware. These
involve transcendental functions, from their definitions to their calculations. On the other
hand, avoiding transcendental functions in software-based algorithms may not represent
a great advantage, because current processors are so fast. However, in hardware-based
algorithms, the potential of rational models stands out.

Generally, to compute transcendental functions in hardware, it is common to use
algorithms based on CORDIC, which requires a large number of hardware resources
(parallel) or the design of a complex control unit (pipelined). Some CORDIC algorithm
implementations require 21 stages to compute a transcendental function, and it is possible
to reduce these stages to at least 11 by losing accuracy. Many researchers use the CORDIC
algorithm to compute orientation [1,2], and some of them combine this with quaternion
representations to compute orientation [3]. In robotics, it is mandatory that applications
compute variables at least 30 times per second, or even faster [4].

This research presents a novel approach to model orientation using rational trigonom-
etry, avoiding trigonometric functions. We describe the orientation of a gimbal mechanism
present in many applications, from autonomous vehicles such as cars or drones to indus-
trial manipulators. This work aims to compare how the efficiency of implementation in a
rational way to classical modeling that utilizes the techniques previously mentioned.

The main contributions of this paper are two novel models based on rational trigonom-
etry: one for the orientation of a gimbal mechanism and the other for the position and
orientation of a wrist mechanism, based on quaternions and dual quaternions in a rational
way, respectively. It is worth mentioning that none of these proposed models involve using
transcendental functions, which reduces the hardware demands of rational models for
synthesizing circuits that compute additions, subtractions, multiplications, and some divi-
sions. This proposition has the advantage of allowing more efficient and smaller hardware
implementations than the classic CORDIC-based implementations.

The rest of the work is arranged as follows. In Section 2, a review of related works
is presented. Sections 3 and 4 are oriented to illustrate our proposed approach related to
the quaternion transformation. Section 5 presents an application focused on orienting a
robotic arm employing rational modeling. Section 6 shows the results of implementing our
proposal in rational Euler angles and on physical hardware. Lastly, Section 7 is focused on
concluding and highlighting some advantages of our proposal. Furthermore, Appendix A
explains rational concepts equivalent to distance and angle, for the better understanding of
the reader.

2. Related Work

In the film and advertising industry, there has been a need to use robotics to improve
and automate the film and commercial recording process. One of the most used mecha-
nisms to define the orientation of cameras and other devices is the so-called gimbal. This
mechanism is widely used in patents [5–8] and even in measuring large-scale systems such
as buildings [9].
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In the robotics field, companies such as the Motorized Precision Company use indus-
trial robotic arms to perform video capture. This company has adapted different kinematic
modeling and trajectory generation techniques to achieve a wide range of features on
its products, and orientation modeling is one of the fundamental factors in achieving all
these features.

Another field in which research has been invested to improve orientation models is
drone design [10,11]. Companies such as DJI sell devices that offer a wide range of features,
including autonomous flight and flight stabilization in different environmental conditions.

The orientation issue is present in many robotic mechanisms, from platform systems
for virtual reality to the most sophisticated manipulative robots. The described orientation
is influenced by the ease with which the user interprets it. For instance, Euler angles are
often preferred for orientation models because they are easier to understand and interpret
for the user [12].

Fu et al. [13] presented an efficient method based on dual quaternion for coordinate cal-
ibration of dual robots in collaborative motion. In contrast, we have developed a modeling
technique to describe the orientation of a gimbal mechanism using quaternions in a rational
way. We have called this method rational modeling because no trigonometric functions
have been used, as is common in all algorithms included in the bibliography [14–16]. We
generate a rational model analog for Euler angles. Then, we develop a new model to
describe the orientation of a robotic mechanism known as the spherical wrist, which is
present in most industrial manipulators [17,18].

When we refer to robotic arms, the wrist mechanism is the one responsible for the
orientation of the end effector. There are several techniques that try to reduce the number of
operations needed to calculate the orientation, as developed in the following works [19–21].

In robotics and automation, orientation holds an important role in welding tasks
because an efficient description of the orientation is required [22]. There are algorithms
used to calculate the orientation either online or offline. However, most of the time,
it is preferred to perform computations offline, since doing them online can be more
cumbersome, and many times the accuracy requirements of the process are not met [23,24].

Nowadays, computer vision is present in many industrial processes. In this area,
orientation modeling is required to control the position and orientation of objects in the
workspace. For instance, some techniques have been developed to control the position and
orientation of mobile robots based on control with neural networks [25,26].

3. Quaternions in a Rational Way

Rational trigonometry relies on the idea that algebra is more basic than analysis [27],
and that the true measurements in elementary geometry should be quadratic rather than
linear. In contrast to classical trigonometry, rational trigonometry does not require using
transcendental functions [28]. We have included some rational concepts equivalent to
distance and angle in Appendix A.

Quaternions are a form of four-dimensional algebra that lets us represent 3D rotations
in a simple way [29]. Every quaternion can be visualized in the diagram of Figure 1a, where
the blue sphere is the S3 sphere formed by all unit quaternions (i.e., |q| = 1), and the green
box is the usual 3D vector space. Any quaternion q has a component on the t-axis and
a projection in the vector space. Such a projection has a unique vector representing the
rotation axis in the 3D vector space.

In order to understand the quaternion transformation, we analyze what happens with
the space when we multiply by a general unit vector u. Suppose that vector u is orthogonal
to the plane formed by v and w according to Figure 1b. The first step in analyzing the
transformation is to break the 4D space into two planes, one span by {1, u} and the second
span by {v, w}, as shown in Figure 2.
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Figure 1. Representation of four-dimensional space. (a) 4D space where the blue sphere represents
an S3 sphere, the red sphere describes an S2 sphere, and q is a quaternion on the 4D space. (b) 4D
space where the V space in green is equal to a 3D space and the t-axis is orthogonal to this space.

Quaternion multiplication is not commutative, and it follows the rules:

u · 1 = u u · v = w u · w = −v

u · u = −1 v · u = −w w · u = v

u

-u

1

-1

l =ru u

l =ru u−−

(a) Plane formed by unit vectors and u.

v

-v

w

-w

l =ru u

l =ru u

−

−

(b) Plane formed by unit vectors v and w.

Figure 2. Decomposition of 4D space.

On the plane generated by the multiplication between {1, u} and u, the left and right
generate a counter-clockwise rotation, as shown in Figure 2a. However, if we conjugate the
imaginary unit u (i.e., ū = −u), the multiplication generates a clockwise rotation. In the
plane spanned by {v, w}, the multiplication by u on the left of any vector is equivalent to a
counter-clockwise rotation. In contrast, the multiplication by u on the right is equivalent to a
clockwise rotation. When we multiply by the conjugate of u, the right and left multiplication
generates a counter-clockwise and clockwise rotation, respectively.

To develop a transformation in a classical way, we choose a quaternion as:

q = (t, û) =
(

cos
(

θ
2

)
, sin

(
θ
2

)
ux, sin

(
θ
2

)
uy, sin

(
θ
2

)
uz

)
(1)

where θ is the amplitude of the rotation angle and ux, uy, uz are the components of the unit
vector û = (ux, uy, uz), which represents the rotation axis. The plane generated by {1, u}
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is invariant under this transformation; however, the plane generated by {v, w} suffers a
rotation twice the magnitude of θ.

In the rational method, we choose a quaternion more easily, and therefore we choose a
rotation axis ~u and a half-turn to compute the t parameter:

t =
| ~u |

h
(2)

where vector ~u does not have to be unitary. The quaternion components are:

q = ( t,~v ) = (t, vx, vy, vz). (3)

Lastly, the expression that describes a rotation in a rational way is the following:

ϕr(r) =
q · r · q̄
Q(q)

(4)

where Q(q) = q · q̄ is the quadrance of q and Q(q) = 1 when q is unitary. The connection
between angles and half-turns is done by the relation between the classical parameterization
and the rational parameterization of the unit circle:

(cos θ, sin θ) =

(
1− h2

1 + h2 ,
2h

1 + h2

)
. (5)

4. Dual Quaternions in a Rational Way

Dual quaternions let us encode both position and orientation with only one quaternion [30].
A dual quaternion is a dual number a + bε where a, b ∈ H; ε is tied to the dual part and satisfies
the expression ε2 = 0. Dual quaternion transformation can be analyzed into two parts, one for
pure translation and one for pure rotation.

The pure translation is represented by a dual quaternion in the next form:

Qt = Q∗t = (1, 0, 0, 0) +
(

0, rx
2 , ry

2 , rz
2

)
ε (6)

where rx, ry, and rz represent the displacements for each coordinate given in quadrances.
Applying transformation (4) with Qt and Q∗t to the vector position in dual form V =
(1, 0, 0, 0) + (0,~v)ε, we obtain a new dual quaternion V′:

V′ = QtVQ∗t = (1, 0, 0, 0) +
(
0, vx + rx, vy + ry, vz + rz

)
ε. (7)

To represent a pure rotation transformation, we need to apply transformation (4),
where quaternions Qr and Q∗r have the following form:

Qr = (t1, vx, vy, vz) + (0, 0, 0, 0)ε (8)

Q∗r = (t1,−vx,−vy,−vz) + (0, 0, 0, 0)ε (9)

if Qr and Q∗r are unity, Q(Qr) = 1, but in another case, the transformation is:

V′ =
QrVQ∗r
Q(Qr)

= (1, 0, 0, 0) + (t2, v′x, v′y, v′z)ε (10)

the components of dual part t2, v′x, v′y, and v′z are computed as:

t2 = t1(~v · ~u)− (t1~v + ~u×~v) · (−~u) (11)

~v′ = (~v · ~u)~u + t1(t1~v + ~u×~v) + (t1~v + ~u×~v)× (−~u) (12)
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where vectors ~v and û are the original position vector and the rotation axis, respectively. t1
encodes the amplitude of rotation according to Equation (1).

5. Orientation Model

The robotic mechanism called the spherical wrist is responsible for guiding the
tool placed at the robot’s tip. Figure 3 shows the wrist configuration of most industrial
robotic arms.

Figure 3. Spherical wrist mechanism for orientation of a robot manipulator.

In order to orient the mechanism in an arbitrary form, it is mandatory to define at least
three parameters (one for each joint). A common way to describe the orientation is as a
sequence of rotations on the Cartesian axes x, y, and z.

We use the z-y-z configuration for Euler angle notation, since it is used in most
industrial robot manipulators. The letters z-y-z are the sequence of axes on which the
rotations are made. Nevertheless, there are two ways to do this procedure, known as
extrinsic and intrinsic rotations [31]. An extrinsic rotation applies rotations around the axes
z-y-z belonging to the body frame, as shown in Figure 4a. On the other hand, an intrinsic
rotation involves rotations around the axes z-y-z belonging to the general reference frame,
as displayed in Figure 4b.

φ

θ

x y

z

x’

z’

y’

x’’

z’’

y’’

z’’’
ψ

x’’’

y’’’

(a) Intrinsic rotation.

y’

φ

θx y

z

x’

z’

x’’

z’’

y’’

z’’’
ψ

x’’’

y’’’

(b) Extrinsic rotation.

Figure 4. Kinds of rotations.

Euler angle representation is very useful because it adapts perfectly to the gimbal
mechanism, as shown in Figure 5a, and can be adapted to the mechanism presented
in Figure 3. However, the main problem of this mechanism is that it has singularities;
i.e., when two different rotation axes are aligned, the mechanism loses a degree of freedom,
as displayed in Figure 5b; the green axis rotates in the same direction as the red axis.
In short, this implies that there are infinite solutions that put the mechanism in a particular
configuration. Another popular representation for orientation is “roll-pitch-yaw”, also
called Tait–Bryan angles, which is used in drones.



Machines 2022, 10, 749 7 of 17

x y

z

(a) Gimbal mechanism.

x y

z

(b) Singularity of mechanism.

Figure 5. Kinds of rotations.

In contrast with the gimbal mechanism (Euler angles), the spherical wrist mechanism
does not have its joints at the same point. Therefore, we should add some displacements
between the joints, representing the length of robot joints. The following analysis is purely
geometric. Figure 6 shows the breakdown movement according to the robotic orientation
mechanism presented above.

O

P
f

C

P

L1

L2

x1

y1

y2

z1

z2

z3

x2

x3

y3

Figure 6. Orientation change.

According to Figure 6, it is important to point out the following:

• The point O corresponds to the fourth joint of an industrial robotic arm and is the first
degree of freedom for the orientation mechanism. Its rotation axis is parallel to the z1
axis of our main reference frame;

• The point C corresponds to the fifth joint of an industrial robotic arm and is the
second degree of freedom for the orientation mechanism. This point is where the three
rotation axes of the wrist intersect. The opening of this joint defines the final position
of the wrist mechanism, but this point remains fixed under any variation of the three
joint parameters;

• The point P corresponds to the sixth joint of the manipulator and is the last degree of
freedom for the orientation mechanism. P is where the end effector is, as long as the
first joint of the orientation mechanism does not change. Otherwise, the end effector
moves through the circular trajectory to Pf .

In this orientation modeling, we consider the reference frame at the point O that
exactly matches the origin of the Cartesian space.
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5.1. Euler Angles in a Rational Way

Euler angles can be represented in matrix form in the following way:

q =

 cos φ − sin φ 0
sin φ cos φ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (13)

where θ1, θ2, and θ3 represent the amplitude of rotation. Each rotation matrix can be
interchanged with a quaternion in the form of Equation (1), as shown below:

q = (cos φ
2 , sin φ

2 k̂) · (cos θ
2 , sin θ

2 ĵ) · (cos ψ
2 , sin ψ

2 k̂). (14)

If we replace the angles by half-turns in the above expression, we obtain a rational
representation for the configuration z-y-z of the Euler angles, as shown below:

q = (t1, 0, 0, 1) · (t2, 0, 1, 0) · (t3, 0, 0, 1) (15)

where t1, t2, and t3 are the magnitude of rotation according to Equation (2). Finally,
by computing and simplifying, we obtain a rational model for Euler angles.

q = (t2(t1t3 − 1), t1 − t3, t1t3 + 1, t2(t1 + t3)). (16)

The quaternion q is used to calculate the final orientation according to Equation (4).
Equation (16) only defines mechanism orientation, considering that there is no displacement
between the joints of the wrist mechanism.

5.2. Real Mechanism in a Rational Way

In order to obtain a real model of the mechanism depicted in Figure 6 that gathers
both position and orientation, we will use a dual quaternion for each joint as follows:

V′ =
QtQrVQ∗r Q∗t

Q(Qr)
. (17)

Applying Equation (17) for each joint, we obtain the following expression:

V′ =
Qt3Qr3Qt2Qr2Qt1Qr1VQ∗r1Q∗t1Q∗r2Q∗t2Q∗r3Q∗t3

Q(Qr1)Q(Qr2)Q(Qr2)
(18)

where each dual quaternion has the following parameters, according to Figure 6:

Qr1 = (t1, 0, 0, 1) + (0, 0, 0, 0)ε (19)

Qt2 = (1, 0, 0, 0) + (0, 0, 0,
L1

2
)ε (20)

Qr2 = (t2,−2t1, t2
1 − 1, 0) + (0, 0, 0, 0)ε (21)

Qt3 = (0, 0, 0, 0) + (0,
L2

2
~a
|~a | )ε (22)

Qr3 = (t3, 2t2(t2
1 − 1), 4t1t2, t2

2 − (t2
1 − 1)2 − 42

1) + (0, 0, 0, 0)ε (23)

where~a = (2t2(t2
1 − 1), 4t1t2, t2

2 − t4
1 − 2t2

1 − 1).
Computing all multiplications according to Equation (17), we obtain a unique dual

quaternion whose components transform the original vector V into V′. Figure 7 shows
each transformation independently, beginning from the origin frame and ending in the
final frame of the wrist mechanism. Note that Qt1 does not appear, since the first joint is on
the origin of the reference frame.
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Figure 7. Development of transformations for the rational orientation model.

6. Experimental Results
6.1. Rational Euler Angles Implementation

The direct kinematic problem for orientation consists of finding the final orientation
given three joint parameters. These three parameters are generally given in degrees or
radians. However, they could also be provided in any of the aperture measurements
discussed in Appendix A (spread, turn, or half-turn).

A common way of solving the direct kinematics for the orientation of a robotic arm
is to employ rotation matrices to represent the Euler angles z-y-z. As already mentioned,
this representation is not the most convenient, but it is one of the easiest to understand.
The equations are obtained after multiplying the three rotation matrices corresponding to
the axes z-y-z successively by an arbitrary vector ~v = (x, y, z):

x′ = (cos(α) cos(β) cos(γ)− sin(α) sin(γ))x
−(cos(α) cos(β) sin(γ) + sin(α) cos(γ))y
+(cos(α) sin(β))z

(24)

y′ = (sin(α) cos(β) cos(γ) + cos(α) sin(γ))x
+(cos(α) cos(γ)− sin(α) cos(β) sin(γ))y
+(sin(α) sin(β))z

(25)

z′ = − sin(β) cos(γ)x + sin(β) sin(γ)y + cos(β)z (26)

Thus far, the rotation has not been described and the equations do not contain tran-
scendental functions. Considering the concept of half-turn proposed in the Appendix A,
Equations (24)–(26) can be transformed in such a way that all the trigonometric functions
disappear, as shown below:

x′ = x(t2
1 + e2

1x − e2
1y − e2

1z) + 2y(e1xe1y − t1e1z) + 2z(e1xe1z + t1e1y)

y′ = y(t2
1 − e2

1x + e2
1y − e2

1z) + 2z(e1ye1z − t1e1x) + 2x(e1xe1y + t1e1z)

z′ = z(t2
1 − e2

1x − e2
1y + e2

1z) + 2x(e1xe1z − t1e1y) + 2y(e1ye1z + t1e1x)

(27)

x′′ = x′(t2
2 + e2

2x − e2
2y − e2

2z) + 2y′(e2xe2y − t2e2z) + 2z′(e2xe2z + t2e2y)

y′′ = y′(t2
2 − e2

2x + e2
2y − e2

2z) + 2z′(e2ye2z − t2e2x) + 2x′(e2xe2y + t2e2z)

z′′ = z′(t2
2 − e2

2x − e2
2y + e2

2z) + 2x′(e2xe2z − t2e2y) + 2y′(e2ye2z + t2e2x)

(28)
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x′′′ = x′′(t2
3 + e2

3x − e2
3y − e2

3z) + 2y′′(e3xe3y − t3e3z) + 2z′′(e3xe3z + t3e3y)

y′′′ = y′′(t2
3 − e2

3x + e2
3y − e2

3z) + 2z′′(e3ye3z − t3e3x) + 2x′′(e3xe3y + t3e3z)

z′′′ = z′′(t2
3 − e2

3x − e2
3y + e2

3z) + 2x′′(e3xe3z − t3e3y) + 2y′′(e3ye3z + t3e3x)

(29)

Equations (27)–(29) could be considered as the description of the orientation with
Euler angles, but in a rational way, since they do not contain any transcendental functions.
The parameters involved in the calculation of the orientation are tn and en, where tn is a
parameter obtained with Equation (2).

Vector~e = (enx, eny, enz) corresponds to the axis of rotation on which each half-turn
acts. The values x′′′, y′′′, and z′′′ represent the coordinates of the resulting vector ori-
ented according to the three parameters of half-turns entered by the user. As a result,
Equations (21)–(23) represent an alternative to model the orientation without the need to
involve trigonometric functions.

For Euler angle implementation, we used a graphical software called GeoGebra.
Figure 8a,b show the implementation of intrinsic and extrinsic rotation, respectively. On
other hand, Figure 8c exhibits the classical implementation of Euler angles using
Equations (24)–(26). Finally, Figure 8d displays the rational replacement for Euler angles
using Equations (27)–(29). The simulation of the wrist mechanism with dual quaternions is
presented in Figure 9a. Additionally, the rotation algorithms for one axis were implemented
in an Arduino-nano board, in order to prove how they work in real life after compiling
them in the Arduino IDE software, as pictured in Figure 9b.

(a) (b)

(c) (d)

Figure 8. Simulation of different rotation techniques. (a) Intrinsic rotation, where rotations were
performed around the body reference frame with parameters φ = 111◦, θ = 67◦, and ϕ = 60◦. (b) Ex-
trinsic rotation, where rotations were performed around the general reference frame with parameters
φ = 60◦, θ = 67◦, and ϕ = 111◦. (c) Classical rotation algorithm with three parameters given in angles.
(d) Rational rotation algorithm with three parameters given in rational form (half-turns).
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(a) Spherical wrist mechanism simulation. (b) Simulation in an Arduino board.

Figure 9. Simulation for the spherical wrist mechanism.

6.2. Hardware Implementation

As mentioned in the above section, software simulation was done using GeoGebra.
Hardware implementation was done with an Intel FPGA using the rational analog for Euler
angles (half-turn).

For hardware implementation, we used a 16-bit fixed-point architecture, where the
integer part has eight bits (one bit for the sign and seven bits for the half-turn) and the other
eight bits are for the fractional part of the half-turn. Table 1 shows the relation between
the number of bits of the integer part and the maximum angle rotation in degrees that can
be represented. Notice that we are describing the amount of rotation in “half-turn”, but in
Table 1, this amount is expressed in degrees for didactic reasons.

Table 1. Relation between bits for the integer part and half-turns in degrees.

Bits Maximum Value Half-Turn (Degrees)

2 1 ±90◦

3 3 ±143.13◦

4 7 ±163.74◦

5 15 ±172.37◦

6 31 ±176.30◦

7 63 ±178.18◦

8 127 ±179.1◦

The first column begins with two bits because the integer part always has one bit for
the sign. Table 2 shows the relation between the number of bits of the fractional part and
the minimum angle rotation in degrees that can be represented.

Table 2. Relation between bits for the fractional part and half-turns in degrees.

Bits Maximum Value Half-Turn (Degrees)

1 0.5 ±53.13◦

2 0.25 ±28.07◦

3 0.125 ±14.25◦

4 0.0625 ±7.15◦

5 0.3125 ±3.58◦

6 0.015625 ±1.79◦

7 0.0078125 ±0.9◦

8 0.00390625 ±0.45◦

The first step for computing the final orientation of the gimbal mechanism is to find the
rotation generated through a single axis. However, to easily calculate the final orientation
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of each rotation, we must compute the coefficients involved in each. Figure 10 depicts
how to compute the rational replacements for the transcendental functions sine and cosine
according to Equation (5). Notice that output A is the rational analog for the sine function
and output B is the rational analog for the cosine function.

A

B

t

<< ÷

÷

+

+

t

1

-1

2t

t2

t2+1

t2–1

Figure 10. FACTOR module for computing coefficients.

Because the gimbal mechanism uses the Euler angles in the z-y-z sequence, we can
compute the final orientation using the modules presented in Figure 11. The module
displayed in Figure 11a computes the rotation on the z-axis and the module shown in
Figure 11b computes the rotation on the y-axis. Notice that the module named “FACTOR” is
the module depicted in Figure 10.

X’

Y’

Z’

X

Y

t FACTOR

+

+

×

×

×

×

B

A

t

-1

Z

(a) Module for z-axis rotation.

X’

Y’

X

Y

Z

t FACTOR

+

+

×

×

×

×

B

A

t

-1
Z’

(b) Module for y-axis rotation.

Figure 11. Modules to compute rotations in a rational way.

Finally, using modules shown in Figure 11, we can compute the final orientation of
the gimbal mechanism as exhibited below in Figure 12.
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T1 T2 T3

X’‘’

Y’‘’

Z’‘’

X

Y

Z

ROT_Z ROT_Y ROT_Z

Figure 12. Orientation module for the gimbal mechanism.

In order to compare the classical and rational methods, we contrast how many opera-
tions are involved for each one, as shown in Tables 3 and 4. Although sin θ, cos θ, and square
root are transcendental functions, we treated them separately due to the complexity that
each one requires for its calculation in hardware.

Table 3. Number of operations for each rotation computation.

Operation Rational Method Classical Method

± 4 5
× 6 12
÷ 2 2

sin θ 0 1
cos θ 0 1√
· 0 1

Table 4. Total number of operations for orientation computing.

Operation Rational Method Classical Method

± 12 15
× 18 36
÷ 6 6

sin θ 0 3
cos θ 0 3√
· 0 3

7. Conclusions

Rational trigonometry provides an efficient alternative to represent rotations in 3D
space using quaternions. The implementations we made are more compact than those that
would result from implementing the calculation of the orientation using rotation matrices
and the CORDIC algorithm.

The use of rational trigonometry eases the computation of orientation, since there
are no transcendental functions involved. Using quaternions in the rational form leads
to an efficient and compact description of any robotic mechanism in real life. However,
the only drawback is that we cannot parameterize a joint range of 360◦, since the behavior
of the “half-turn” is asymptotic. Still, with a relatively low number of bits, we can describe
joint ranges greater than 350◦ (e.g., 7 bits = 358.18◦). Therefore, for practical applications,
the proposed model is very useful. It is essential to point out that an architecture with more
bits, e.g., 32 bits, would be required to improve the computation accuracy of the orientation.

The first model, called the “gimbal mechanism”, was simulated in GeoGebra software
and implemented on an Arduino microcontroller to prove its operation. The second model,
“wrist mechanism”, was also simulated in GeoGebra and implemented on an Arduino to
verify its operation. Only the first model was implemented in hardware to compare the
number of logic elements between classical and rational implementations. Both models are
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the continuation of research carried out by the authors [32], where some rational algorithms
were obtained for calculating the direct and inverse kinematic for robotic mechanisms,
showing that in a hardware implementation, these algorithms are more efficient.

Author Contributions: Methodology and investigation, R.M.; formal analysis and supervision, E.Z.;
funding acquisition, H.S.; visualization, writing—review and editing, F.A.; writing, L.A.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was economically supported by the Instituto Politécnico Nacional under projects:
20200630, 20200651, 20210316, 20210788, 20220226, and 20220002, and CONACYT under projects 65
(Fronteras de la Ciencia) and 6005 (FORDECYT-PRONACES).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: E.Z. and H.S. would like to acknowledge the support provided by CIC-IPN in
carrying out this research, and F.A. would like to thank the Centro de Investigaciones en Óptica A.C.
The first author thanks CONACYT for the scholarship granted towards pursuing his PhD studies.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In rational theory, there are some fundamental concepts; for instance, quadrance
measures the separation between two points. The quadrance Q(A1, A2) between the
points A1 ≡ [x1, y1, z1] and A2 ≡ [x2, y2, z2] is the number:

Q(A1, A2) = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 (A1)

where x1, x2, y1 and y2 are the coordinates of points A1 and A2, respectively, and they are
rational numbers or even real numbers. By making a relationship between classical and
rational trigonometry, the quadrance can be seen as the square of the Euclidean distance:

Q(A1, A2) = d(A1, A2)
2. (A2)

Since the quadrance is the rational analog for distance, it makes sense to wonder, what
is the rational analog for angle notion? The answer includes three rational replacements
for angle, which are spread, turn, and half-turn. We only focus on the turn and half-turn
in developing our experiments. Figure A1 compares these three rational measures for
rotations in the plane.

z=a+bi

z1

z2

u

u

Y

X

(a) Turn

X

Y

(1,h)

(1,u)

h

z

hu-1 1

-1

1

(b) Half-turn

X

Y

z

s-1 1

-1

1 w

(c) Spread

Figure A1. Rational analogs for angle.



Machines 2022, 10, 749 15 of 17

Let z = a + bi be a complex number and z̄ = a− bi be its complex conjugate, where
a = Re(z) and b = Im(z). We can define the quadrance of z by:

Q(z) = z · z̄ = a2 + b2. (A3)

The definitions of the rational replacements for angle are explained as follows:

Turn: The turn of any complex number z is defined as:

u(z) ≡ b
a

(A4)

In a more general case, to compute the turn between two different complex numbers
z1 = a1 + b1i and z2 = a2 + b2i as shown in Figure A1a, we need to apply:

u ≡ u(z1, z2) ≡
a1b2 − a2b1

a1a2 + b1b2
. (A5)

Half-turn: For any complex number z on the unit circle, except the point [−1, 0],
the half-turn is the intersection between the y-axis and the line through the points [−1, 0]
and z, as shown in Figure A1b. Therefore, the half-turn is defined by:

h(z) ≡ h. (A6)

In order to make an analogy between turns and half-turns, we will translate the orange
line from the point [−1, 0] to the origin, as presented in Figure A1b. Notice that the
separation between the points [1, h] and the x-axis is exactly half of the separation between
the points [1, u] and the x-axis. This is true for any complex number on the unit circle,
except the point [−1, 0], and this is the reason why these parameters are called turns and
half-turns.

Spread: The spread can be defined in several ways. According to Figure A1c, the spread
is determined by:

s(z) ≡ b2 (A7)

where z is a unit complex number and b = Im(z). However, in a more general way,
the spread can be specified for any complex number by the next expression:

s(w) ≡ b2

a2 . (A8)

Rotations on the Plane

For every z ∈ C, we may associate a rotation ϕz given by:

ϕz(w) =
z2w
Q(z)

=
z · z · w

z · z̄ =
zw
z̄

(A9)

and in the same way, for each rotation, we can assign a complex number.
As in a stereographic projection, we make a rational parameterization for a circle:

z2

Q(z)
=

1− h2

1 + h2 +
2h

1 + h2 i (A10)

Figure A2a represents the stereographic projection in the complex plane of the cir-
cumference, centered at the origin with a radius equal to 1 on the straight-line z = 1 + ti.
According to Equation (A7), h(z) is defined as the point [0, h], resulting from the intersec-
tion between the y-axis and the line that goes from the point [−1, 0] to the point z = a + bi.
On the other hand, u(z) can be described geometrically as the point of coordinates [1, u]
from the intersection between the line that goes from the center of the circumference to the
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point z = a + bi and the line z = 1 + ti. Finally, if we move the orange line, created when
defining h(z), to the origin of the coordinates, we observe that the intersection of this line
and the straight line z = 1 + ti occurs at the point (1, h). In summary, Figure A2a shows
the stereographic projection of the circle on the complex line z = 1 + ti, and Figure A2b
displays the values obtained with the rational parameterization of the circumference using
Equation (A10).

Additionally, as shown in Figure A2a, every point on the unit circle, except the point
[−1, 0], can be mapped over the line z = 1+ hi, and every point on the line can be associated
with only one point on the unit circle, where h is the parameter half-turn defined above.
The point [−1, 0] is the only one that does not have a projection on the line, since this point
can correspond to±∞, depending on the direction from which you approach the point. The
rational parameterization of the circle, according to Equation (A10), lets us describe almost
any point of a circle with radius one, centered on the point [0, 0], as presented in Figure A2b.
This parameterization will help us to develop the quaternions in a rational way.

X

Y

-1 1

(a)

-1 1

-1

1

X

Y

t=0

t=2

t=3

t=1

(b)

Figure A2. Rational parameterization of the unit circle. (a) Representation of the stereographic
projection for the unit circumference. (b) Some points on the unit circle according to the half-
turn parameter.

Example: Find the points on the unit circle when t = 0, 1, 2, 3, Figure A2b:

f or t = 0 −→ 1− 02

1 + 02 +
2 · 0

1 + 02 i = 1 + 0 · i = (1, 0),

f or t = 1 −→ 1− 12

1 + 12 +
2 · 1

1 + 12 i = 0 + i = (0, 1),

f or t = 2 −→ 1− 22

1 + 22 +
2 · 2

1 + 22 i = − 3
5 + 4

5 i = (− 3
5 , 4

5 ),

f or t = 3 −→ 1− 32

1 + 32 +
2 · 3

1 + 32 i = − 8
10 + 6

10 i = (− 4
5 , 3

5 ).
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