
Citation: Saeed, R.A.; Tomasi, G.;

Carabin, G.; Vidoni, R.;

von Ellenrieder, K.D.

Conceptualization and

Implementation of a Reconfigurable

Unmanned Ground Vehicle for

Emulated Agricultural Tasks.

Machines 2022, 10, 817. https://

doi.org/10.3390/machines10090817

Academic Editors: Marco Ceccarelli,

Giuseppe Carbone and Alessandro

Gasparetto

Received: 30 July 2022

Accepted: 13 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Conceptualization and Implementation of a Reconfigurable
Unmanned Ground Vehicle for Emulated Agricultural Tasks
Raza A. Saeed 1,*, Giacomo Tomasi 1, Giovanni Carabin 1 , Renato Vidoni 1,2,* and Karl D. von Ellenrieder 1

1 Field Robotics South Tyrol (FiRST) Lab, Libera Università di Bolzano, 39100 Bolzano, Italy
2 Competence Center for Plant Health, Libera Università di Bolzano, 39100 Bolzano, Italy
* Correspondence: raza.saeed@unibz.it (R.A.S.); renato.vidoni@unibz.it (R.V.)

Abstract: Small-to-medium sized systems able to perform multiple operations are a promising option
for use in agricultural robotics. With this in mind, we present the conceptualization and implementa-
tion of a versatile and modular unmanned ground vehicle prototype, which is designed on top of a
commercial wheeled mobile platform, in order to test and assess new devices, and motion planning
and control algorithms for different Precision Agriculture applications. Considering monitoring,
harvesting and spraying as target applications, the developed system utilizes different hardware
modules, which are added on top of a mobile platform. Software modularity is realized using the
Robot Operating System (ROS). Self- and ambient-awareness, including obstacle detection, are
implemented at different levels. A novel extended Boundary Node Method is used for path planning
and a modified Lookahead-based Line of Sight guidance algorithm is used for path following. A first
experimental assessment of the system’s capabilities in an emulated orchard scenario is presented
here. The results demonstrate good path-planning and path-following capabilities, including cases in
which unknown obstacles are present.

Keywords: UGVs; reconfigurable robots; mechatronic design; field robotics; path and trajectory planning

1. Introduction

In modern agriculture, concepts like precision agriculture, proximal monitoring,
and sustainable agriculture are currently important, if not fundamental, for answering the
need for increased food production, fighting climate change, and alleviating labor shortages.
Indeed, digitalization is impacting agriculture through technologies and advanced data
processing techniques for, e.g., land assessment, soil–crop suitability, weather information,
crop growth, biomass and productivity, and precision farming [1,2]. It is anticipated that
precision agriculture (PA), also known as precision farming or smart farming [3], will
increase production with fewer resources by permitting farmers to continuously moni-
tor and manage crops [4]. Therefore, there is a demand for quantitatively establish the
effectiveness of PA in common agricultural applications by testing baseline automated
platforms with integrated sensors, controls, information technologies, and algorithms. In
this regard, agricultural robotics represents an important part of agri-digitalization [5].
Existing solutions mostly include specialized, task-based, agricultural robots, i.e., robots
that can perform a particular task for a specific set of field conditions, but are not suitable
for other tasks. Recent literature reports different robotic and mobile robotic applications in
agriculture for, e.g., seeding [6], spraying [7], mowing [8], weeding [9,10], pruning [11,12],
monitoring and inspection [13–15], and harvesting [16]. The existing literature has been
reviewed and summarized by [17,18]. Thus, when considering the complexity of agricul-
tural environments resulting from disparate operating conditions, e.g., farm size, orchard
topology, and crops, growers must use different machines for different crops and pro-
duction methods. This is not cost-effective, especially for small farms. To address this
issue, some researchers and companies have developed multipurpose robotic platforms

Machines 2022, 10, 817. https://doi.org/10.3390/machines10090817 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10090817
https://doi.org/10.3390/machines10090817
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-9226-5361
https://orcid.org/0000-0002-7429-0974
https://orcid.org/0000-0001-7094-4582
https://doi.org/10.3390/machines10090817
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10090817?type=check_update&version=2


Machines 2022, 10, 817 2 of 20

that can be used for different production methods [19–22]. Indeed, reconfigurability and
modularization can represent a possible solution when incorporated into the design of
field robots [23–29]. A reconfigurable robot is thus composed of many modules with dif-
ferent functions which can be quickly reconfigured to operate under new circumstances,
perform different tasks, or recover from damage [28,29]. In keeping with the philosophy
that the whole can be greater than the sum of its parts, individual modules generally have
limited sensing, perception, control, computing, and motion capabilities. However, when
assembled, the modules should act as a single robotic system. Typically, some sort of uni-
form docking interface is used between each module to permit the transfer of mechanical
power, electrical power, and communication. The complete robot is usually composed of
a primary unit, or main platform, and additional specialized modules, such as grippers,
wheels, cameras, payload, and energy storage and generation units. Valuable examples
of contemporary prototypes and commercial solutions following such an approach are
Thorvald [25], MARS [30], GARotics [31], SAGA [32], GRAPE [33], and CATCH [34]. Based
on the referenced literature, developing a fully autonomous system like these is still an
open research challenge, in particular when the costs and complexity of reconfiguration are
considered. By trying to make these platforms useful in numerous tasks such as seeding,
spraying, weeding, harvesting, and monitoring, various challenges must be addressed,
e.g., harvesting speed, disease detection, path-following/tracking accuracy, field navigation,
obstacle avoidance, protection from accidents while operating, human–robot collaboration
and multiple-robot collaboration to complete even more complex tasks. Thus, the effective
combination of all the involved technologies and the implementation of a complex and
extendable infrastructure to support every task of modern cultivation are the results to
be targeted.

Therefore, the availability of a modular and reconfigurable platform from the hard-
ware and software point of view in a research lab unlocks the opportunity to also emulate
different situations and test different solutions from a basic and applied research standpoint
in order to advance the overall state of the art. Indeed, sensors, actuators, and other equip-
ment are needed to experimentally reproduce the main features of different applications
(e.g., generating external and interacting forces, creating weight shifts that affect trajectory
tracking, localizing the ground vehicle, and permitting safe remote human interaction). The
successful integration and implementation of this hardware for applications in precision
agriculture requires the development of new algorithms and technical solutions.

In this approach in mind, a reconfigurable system for lab and field activities is con-
ceived in this work starting from hardware already available at the FiRST-Field Robotics
South-Tirol Lab of the Free University of Bozen–Bolzano (Italy, see [35]). Regarding the
three main configurations and cases related to precision agriculture tasks to be addressed
or emulated in the future, i.e., monitoring, harvesting, and spraying, the following consid-
erations and design guidelines have been adopted. Specific functions are enabled using
different Hardware (HW) and Software (SW) modules in order that their combination
can enhance the functionality of the entire robot, as well as ensure robustness in case of
failure, e.g. redundant sensors. Given an orchard scenario, the robot has to be controlled
to safely reach goal points, as well as navigate within the rows and the orchard passages;
a map-based reliable path planning algorithm that minimizes the distance travelled to
reach the goal points must be implemented. Given the fact that the Unmanned Ground
Vehicle (UGV) has to maintain a safe distance from obstacles, e.g., trees, the edges of the
orchard, fixed and dynamic obstacles, safety-margins and boundary zones must be imple-
mented to allow safe motion of the robot. The UGV system state should be described by
its position and orientation (pose) with respect to the environment. Due to the steering
mechanism, e.g. skid steering, and environmental characteristics, the wheels are often
subjected to slipping and uneven ground that frequently generate disturbances. Since
linear and angular speed commands, that can be used separately or combined, are used
to actuate the wheels a path-tracking algorithm supported by a proper sensory feedback
must be developed and implemented. A combination of feedback navigation sensors is



Machines 2022, 10, 817 3 of 20

needed for motion control, as well for both self- and ambient-awareness. To act on the
environment, manipulation capabilities are to be allowed through at least a 6 degree of
freedom manipulator. Finally, good payload capabilities and sufficient clearance between
devices must be ensured to accommodate additional modules, or to reconfigure modules
for different working scenarios. Overall, the HW must permit the emulation of sensors,
actuators, and other equipment needed to experimentally reproduce the main features of
the three test scenarios/applications. At the same time the SW must support the real-time
implementation of: (i) a complete navigation system that can be customized to address the
different emulated agricultural scenarios and (ii) a reliable path-following controller.

The main contributions of this work include:

1. the functional mechatronic design of a reconfigurable mobile robot to be build on top
of an available mobile platform;

2. the implementation and prototyping of the modular mechanical and electronic sys-
tems based on the design concepts;

3. software modules exploiting ROS that can perform automatic tasks combining path
planning, obstacle detection, and path-following;

4. the implementation of customized path-planning as well as path-following algorithms
based on recent literature results;

5. preliminary tests of the mobile robot performance in an emulated agricultural scenario.

The rest of the paper is organized as follows: Section 2 describes the proposed func-
tional design concept of hardware and software modules. Section 3 presents the imple-
mentation and experimental testing results. Finally, the main conclusions drawn from this
study are provided in Section 4.

2. Functional Design Concept and System Configuration

The main platform on which the modular system has been conceived and outfitted
for PA is the Husky Unmanned Ground Vehicle (UGV) from Clearpath Robotics, already
available at our premises. It presents a skid steering mechanism, which relies on wheel
slippage. This simple and robust driving mechanism allows high mobility and assures
large traction for manoeuvring on rough surfaces relying on few actuators [36]. On top of
it, the proposed functional design concept of hardware and software modules is presented
in Figure 1 together with the main flow of information between them. The blocks with
the solid line are considered to be standard/required modules. The blocks with a dashed
line represent modules that might be added and connected to the main robotic platform,
depending on the tasks to be performed. This is conceptualized through the opportunity
to add self- and ambient-awareness sensors, a robotic manipulator installed in different
locations, a second control box and power unit to extend the robot capabilities, and an
adjustable frame to support devices in different ways. As is common in field robotics, the
electronic and software architecture of the system are configured so that the high-level control
tasks (e.g., path planning, trajectory planning, and task planning and other computationally
intensive processes, such as image processing for LiDAR and stereo vision) are separated
from low-level control tasks, such as trajectory tracking control, path following control, and
state estimation. By doing so the overall control of the mobile platform is more efficient
and somewhat modular.

The following subsections introduce and describe the hardware and software modules.



Machines 2022, 10, 817 4 of 20

Figure 1. Functional architecture of the reconfigurable mobile platform. The main SW modules
are depicted in orange. Arrows represent the main flow of information and the communication
between modules.

2.1. HW Configuration

A mobile robotic base represents the ground-layer of the system, and the overall
modular platform has been conceived and realized on top. The base is a Husky unmanned
ground vehicle (UGV) from Clearpath Robotics. The robot is a four-wheeled skid-steering
platform, and it is fully supported by Robot Operating System (ROS) [36]. The robot’s main
external dimensions are 990 mm in length, 670 mm in width, and 390 mm in height. Its
weight is 50 kg, it has a payload of 75 kg, and it can reach a maximum speed of 1 m per
second. Two kinds of sensors were integrated with the robot to provide information about
the robot’s state in terms of the body’s angular orientation and odometry: onboard wheel
encoders with a resolution of 78,000 ticks/m and a CH Robotics UM6 nine-DoF inertial
measurement unit (IMU). The latter provides Euler angles with a resolution of 0.01 degree
at 500 Hz rate. Several different vehicle configurations were explored to ensure:

1. the vision-based systems have good fields-of-view for detecting and then avoiding
obstacles, in particular in front of the vehicle, i.e., recognize obstacles to be avoided at
a minimum of 2 m in front of the vehicle;

2. the robotic manipulator has sufficient clearance over the entire range of its motion,
i.e., keep the same footprint, and there would be minimal electronic signal noise from
the UHF and WiFi transmitters;

3. the positioning systems are appropriately placed to receive satellite and UHF signals,
i.e., not occluded or disturbed by other devices.

For the vision-based systems, we adopted a Velodyne VLP-16 LiDAR (range = 100 m,
360 × 30 deg field-of-view, and +/− 15 degree variation) and am Intel Realsense D455
RGB-D camera (range = 0.4 to 6 m, 1280 × 720 resolution, and 86 × 57 degree depth
field-of-view).

We decided to mount these devices on a single platform so that they can be rotated
together to shift their vertical fields of view. This makes the data more accessible and reliable
for both systems by minimizing the amount of re-calibration necessary when repositioning
them. Concerning the manipulator, a Universal Robots UR5e manipulator [37] has been
considered. As shown in the system layout, it is placed in the front part of the vehicle to
ensure adequate clearance. In addition, a pyramid-like structure has been designed for the
front of the Husky. The form of this structure permits the base of the robotic manipulator to
be mounted in different orientations, which allows us to test our system’s ability to re-tune
itself when it is reconfigured automatically. A detailed design configuration for the concept
is shown in Figure 2. The designed robot frame (Figure 2) provides the mounting points
for all HW modules. We have decided to use the onboard computer provided with the
Husky UGV for the low-level control processes and use a second computer in a newly



Machines 2022, 10, 817 5 of 20

designed control box (high-level control box) to support electronics. The battery onboard
the Husky UGV can provide electrical power to additional sensors that may be required,
e.g., LiDAR, stereo camera, and RTK-GPS (outdoor), or ArduSimple simpleRTK2B [38]
or iPS (indoor) positioning system, e.g., Pozyx [39]. Fieldwork can severely limit the ability
to collect data, as no main power is typically available for recharging. The battery in the
second control box is included to increase the time the robot can be operated without
needing to stop to recharge. The system can either be run for long periods when attached
to the main power line for debugging in the lab or run automatically for several hours
in the field. In addition to the batteries, additional connectors, cables, a Ethernet bridge,
a USB hub, and RS232 serial interfaces (designed through a set of Arduino Teensy micro-
controllers) are used to integrate the high-level computer and different sensors, as well as
to interface with the low-level computer in the Husky and the UR5 robotic manipulator.
Lastly, an emergency stop push button has been added to ensure that the system can be
rapidly disabled during field testing in case of unexpected behavior of the vehicle control
system. Block diagrams of the overall electronics configuration and the high-level control
box can be seen in Figure 3. In general, the heavy components (i.e., the UR5e manipulator,
the UR5e manipulator control box, and the high-level control box with internal batteries)
are distributed uniformly across the vehicle. Moreover, the center of gravity is placed as
low as possible to maintain the stability of the ground vehicle on sloped terrain.

Once finalized, the mechanical and electronic systems used for our experiments were
prototyped, as shown later in the experimental setup (see Section 3).

Figure 2. The design concept of the reconfigurable unmanned ground vehicle (UGV).

B
O

X

HUSKY

Ethernet to Lidar

Ethernet to UR

Ethernet to Husky

Ethernet spare

Ethernet spare

USB to Ardusimple

USB to Pozyx

USB to Camera 1

USB to Camera 2

USB spare

USB spare

USB spare

RS232 spare

RS232 spare

RS232 spare

Power to Lidar

Power to UR

Power spare

Power spare

Jetson's antenna 1

Jestson's antenna 2

LIDAR

INTERFACE


BOX
Ethernet Power in

TOP STRUCTURE

H
us

ky
 a

nt
en

na
 1

Je
ts

on
's

 a
nt

en
na

2

Je
ts

on
's

 a
nt

en
na

1

A
rd

us
im

pl
e

an
te

nn
a

Li
da

r s
en

so
r

Po
zy

x 
se

ns
or

C
am

er
a 

1

C
am

er
a 

2

ARDUSIMPLE
USB

Et
he

rn
et

An
te

nn
a

An
te

nn
a

UR ARM

UR 

CONTROL


BOX

INVERTER
Power in
Power out

Ethernet Power in


H
us

ky
 a

nt
en

na
 2

Figure 3. Cont.



Machines 2022, 10, 817 6 of 20

Ethernet to Lidar

Ethernet to UR

Ethernet to Husky

Ethernet spare

Ethernet spare

USB to Pozyx

USB to Camera 1

USB to Camera 2

USB spare

USB spare

USB spare

RS232 spare

RS232 spare

RS232 spare

Power to Lidar

Power to UR

Power spare

Power spare

Jetson TX2

Ethernet
HUB

USB3 HUB

RS232 HUB

X SENS 630

X SENS 670

DC/DC
converter

Battery

   Jetson's antenna 1

   Jestson's antenna 2

USB port

Ethernet port

An
te

nn
a 

2

An
te

nn
a 

1

Po
w

er

USB to Ardusimple

Figure 3. Configuration of the electronics and of the high-level control box.

2.2. SW Configuration

In this work, a complete automatic navigation system with a multimodal sensor
setup is conceived and implemented. The system consists of different software modules,
including guidance, planning, perception, and main modules. Essential requirements for
fully automatic operation of the robot in outdoor environments are mapping, a collision-
free path-planning algorithm, path-following control, and detection and localization of
obstacles. Each software module provides specific functions. i.e., the Guidance module
was designed to control the mobile robot’s motion, the Planning module was developed to
generate the shortest collision-free path, and the Perception module was created to detect and
localize objects. We use ROS as the central framework to implement a proposed automatic
navigation system, and we developed ROS packages to implement each software module.
Coordination between software modules is illustrated in Figures 1 and 4. In the following
subsections, each coordinated system module, as well as the main block and developed
algorithms, are explained in more detail.

Figure 4. The ROS nodes scheme shows the system architecture in the first stage.



Machines 2022, 10, 817 7 of 20

2.2.1. Main Module

The software modules are coordinated with each other through the Main module,
the central module of the system. It receives user inputs, outputs commands, and calls
upon other modules to perform a specific task. The main user input is the list of goals that
the robot should visit. The goal points are expressed with respect to a pre-defined map
of the environment that comes from previous knowledge of the environment. It can be
made available as a grid-map of the orchard or, in future, thanks to the post-processing of
a geo-referenced raster obtained through a previous survey with, e.g., a mapping drone.
The grid-map of the environment is divided into a number of small square grid cells of the
same size. Each grid cell can either correspond to a navigable area or to a space occupied
by obstacles, e.g., trees.

The objective is to plan an optimal or sub-optimal route and then visit the goal points
while avoiding obstacles, if needed. The Main module communicates with the Planning
module to generate a path and with the Perception module to avoid obstacles. Given an initial
pose g0 and a sequence of goal points (goalpoints = g1, g2,. . . ,gn), the Planning module is then
in charge of computing the shortest collision-free path connecting goal-to-goal points. Then,
the Main module provides the reference waypoints to the Guidance module, which creates
velocity commands to actuate the robot.

More in detail, as illustrated in Figure 4, the Main module receives a collision-free
point-to-point path of waypoints between each pair of goal points from the Planning
module, i.e., the Main module subscribes to the topic /waypoints. Moreover, the Main module
has information both on the map and on the proprioceptive sensor-related data, i.e., it
subscribes to the topics /map and /pose, which are computed according to the connected
sensors, for localizing the robot on the map. It then sends the generated waypoints to the
Guidance module to create a velocity command for the controller to move the robot towards
the target point. The Perception module detects any unexpected obstacle, i.e., not present
in the available map, that may appear along the path. For each newly detected object
along the path, the Perception module evaluates whether it is occluding (blocking) the robot’s
path or not. If the object blocks the path, it is considered an obstacle, and the SW cancels
the planned path and waypoints. When this happens, the Main module receives an alert
(through the / f eedback()) and sends a request (/req) to the Planning module to generate
a new route considering the initial map updated with the obstacles, the robot’s current
location as the initial pose, and the remaining goal points as locations to be visited. All the
Store blocks represent the data-storage to handle different variables in different situations
when needed, such as during the experimental tests.

2.2.2. Perception Module

The main purpose of the Perception module is to enable the robot to safely navigate
through the environment while avoiding collisions with other objects. The Perception module
can use the information either from a stereo RGB-D camera or LiDAR sensors to detect
and localize objects around the robot that may eventually become obstacles. Both sensors
provide point cloud data that must be filtered and processed to give an understanding of
the surrounding environment. Since the two devices sense the environment differently,
the provided point clouds have different properties. The LiDAR has a 360◦ view, whereas
the camera is constrained to its horizontal field of view; the 3D LiDAR returns points in
grayscale, while the camera can add red–green–blue (RGB) color information to the points.
Therefore, to permit modularity and fast reconfiguration, two different packages for the
two sensors have been developed. They share the same structure and class architecture.

The Perception module architecture is shown in Figure 5. There are two main nodes,
called the Detector_node and BoundingBox_node, that are used to identify, localize, and
estimate the size of possible obstacles. The Detector_node takes a point cloud as input and
generates an array of point-cloud clusters as outputs. A filtered point cloud is used for
debugging and visualization the scenario in Rviz, the 3D ROS visualizer. The Bounding-
Box_node takes as input the array of point-cloud clusters generated by the Detector_node and



Machines 2022, 10, 817 8 of 20

finds an axis-aligned bounding box for each cluster. The overall module can be decomposed
into three main steps: pre-processing, clustering, and bounding-box definition.

Figure 5. Perception module architecture.

The pre-processing step consists of a series of algorithms to prepare the data for the
clustering step. Figure 6 presents an example of the perception module steps. Particu-
larly, the point cloud is downsampled to reduce the computational load by using a voxel
grid and pass-through filters (see Figure 6a) that mainly merge and approximate sets of
points and cut the data to consider a reduced xyz-range of points. After downsampling
the data, the Detector_node performs ground-removal using a plane-model segmentation
algorithm [40] with a distance threshold parameter of 0.01 m. In the next step, since the
ground is not perfect and the sensor is noisy, sometimes it happens that some points survive
the segmentation step; an outlier-removal function is run to remove isolated points that
remain after ground removal. Then, a DBSCAN algorithm [41] (see Figure 6b) is used to
group all points belonging to the same object. A single point cloud is generated and added
to an array for each object detected. The last step of the Perception module framework takes
the array of clusters and finds an axis-aligned bounding box for each array element. When
the system starts, the map frame is fixed in a known position in the environment and is
used as the fixed-reference frame. We use this frame to generate axis-aligned bounding
boxes for all the detected obstacles. When point cloud data is received from the sensor, it is
filtered and the resulting point cloud is transformed with respect to the map frame. At that
point, a bounding-box node generator to find the bounding boxes of the obstacles with
coordinates expressed in the map frame (fixed frame) is run. The bounding box obtained is
described with three coordinates representing the position of its center and three values
representing the dimensions along coordinate axes. The final output of the perception
module is published and accessible in the /BoundingBoxArray topic (/bbox in Figure 4).

Figure 6. Perception module steps: (a) raw PointCloud, (b) pass-through, (c) plane removal, (d) outlier
removal and clustering, and (e) bounding-box generation.



Machines 2022, 10, 817 9 of 20

2.2.3. Dynamic Map Implementation and Management

The definition and exploitation of the environmental map is fundamental for the
implemented framework both for defining the goal points as well as for searching and
finding the suitable path to be traveled. Suppose dynamic environments like the ones
targeted in this research activity are considered. In that case, the map should be updated,
and the path can be replanned if needed. The requirements for the map module can be
defined as two sub-tasks.

The first one generates a dynamic map updated in real-time. The second sub-task
checks if the computed path is still safely achievable (with no collisions) after the map
is updated with the detected obstacle(s). The package developed to accomplish these
tasks is called nav_map and consists of two nodes named MapGenerator_node and Colli-
sionCheck_node. MapGenerator_node creates a first map of the known environment from a
file as soon as the node starts setting its fixed frame in a know location, then it subscribes
to the /BoundingBoxArray topic and updates the map every time a new message is received.
Whenever a new message is received, it updates the map by removing or adding objects.
The map is an OccupancyGrid map in which each cell can have three different values,
respectively, it the cell represents a free area, obstacle area, or safety area. Besides the map,
MapGenerator_node publishes an additional topic containing the coordinates of the cells
containing an obstacle area. This information is used by CollisionCheck_node to check if
the objects detected around the robot have to be considered as possible collision obstacles.
CollisionCheck_node subscribes to the path topic /path and compares the obstacle’s cell coor-
dinates and the path’s cell coordinates. If there is at least one overlap, CollisionCheck_node
will trigger a collision message as true. This strategy was implemented to avoid that the
robot considers as obstacles objects that are not in its path and so, avoiding planning a new
path when the previously computed path is still valid and collision-free. An example is
shown in Figure 7.

(a) (b) (c)

Figure 7. Example of a known map provided in (a) csv, (b) OccupancyGrid free map, and (c) updated
map with detected obstacles.

2.2.4. Planning Module

In the targeted applications, several given goal points that the robot needs to visit are
fixed a priori, e.g., proximal monitoring of specific locations/plants. The Planning module
based on ROS is created to connect these goal points with the shortest collision-free path
in the robot’s working environment. This module gets a request from the Main module
to generate a path between two goal points (/req/). The request is composed of the first
goal point (current position of the robot) and the second goal point. The developed path-
planning method, which we discuss in the following paragraph, is implemented to generate
a collision-free path between every pair of sequenced goal points. For this purpose, a path
planner ROS node is created to compute a continuous obstacle-free path, where the path is



Machines 2022, 10, 817 10 of 20

assumed to go through a set of successive waypoints (xk, yk) for k = 1, . . . , N; see Figure 4.
This node gets the starting and end points (from /req) as well as info from the map and the
localization sensors and strategies adopted. Based on these data, the planner can generate
waypoints representing a collision-free path between goal points. The Planning module is
then in charge of sending the waypoints to the Guidance module. The path planner ROS
node is in charge of checking for the shortest path and waypoints from the robot’s current
position to the goal position within the created map.

The path planner node uses an extended version of the authors’ developed path planning
methods, called boundary-node method (SW) and path enhancement method (PEM) [42–44].
The path-planning method calculates the shortest path considering obstacle avoidance to
reach the destination point safely with the minimum distance traveled. The shortest path
is generated in a two-step procedure. First, the SW Method generates the initial feasible
path (IFP) between goal points. The IFP is generated from a sequence of waypoints w
that the robot has to travel as it moves toward the destination point without colliding
with obstacles.

An example of path planning and obstacle avoidance for a mobile robot in a static
environment using SW is illustrated in Figure 8a. Based on the extended SW, the robot
is simulated by a nine-node quadrilateral element. If the nodes are denoted by a vector
p(q), (q = 1 . . . 9), the robot’s location is represented by the centroid node p(5), and nodes
p(1 → 4) with p(6 → 9) represent the eight boundary nodes that help the robot move
forward and avoid obstacles. The contour line represents the potential function utilized
to direct the robot toward the goal point. It has the lowest potential value at the final
destination point, and increases as the robot moves away. As shown in Figure 8a, the line
color represents the potential value, i.e., red corresponds to the lowest potential value,
and dark gray corresponds to the highest potential value. The sequence of the red circles
represents the best solution to IFP. The simulated robot can only move in eight possible
directions. In each iteration, the current location of the robot and boundary nodes move in
one particular direction. Additionally, this method uses an optimization technique based
on the lowest potential value to let the robot find the path and yield fast convergence.
The node with the lowest potential value is chosen as the best position among all boundary
nodes, and the robot updates its position to the best position.

(a) (b)
Figure 8. Example of path planning for a mobile robot [44]: (a) The obtained solution to IFP by using
SW, where the sequence of the red circles represents the IFP. (b) The shortest path found by using
PEM, where the solid red line represents the shortest path.

The obtained IFP between goal points is not an optimal path in terms of total path
length. Therefore, in the second step, the PEM is used to construct an optimal or near-
optimal path from IFP by reducing the number of waypoints and the overall path length.
Figure 8b illustrates the computed shortest path from waypoints. Waypoints defining the
path are marked with red circles, while the red dashed line represents the shortest path.
A more-detailed description of how the environment is created can be found in [43]. If the
path provided by the path planner fails, or any unexpected obstacle is detected along the
path, the path planner is contacted to compute a new path to the destination. This is the
case when unexpected obstacles are detected in the working environment along the path.



Machines 2022, 10, 817 11 of 20

In this case, the path-planning method computes a new path for the robot to avoid collision
with static and dynamic obstacles. Once the path is found, the Planning module forwards
the waypoints to the Guidance module.

2.2.5. Guidance Module

This module aims to control the robot to follow the path, that consists of a series of
waypoints joined by line segments. As reported in [45,46], the path-following method is
one of the typical control methods for autonomous vehicles. This method allows a robot
to follow a predefined path independent of time, and thus without any restriction on the
time-propagation along the path. An accurate path-following method is an essential aspect
of the automatic navigation of robots in farm environments.

This study employs and adapts a line-of-sight (LOS) guidance algorithm for path-
following to drive the robot to follow a predefined path, which is based on a lookahead-
based LOS guidance algorithm. The main advantages of lookahead LOS guidance are the
simplicity and ease of implementation [46]. Furthermore, the lookahead method is used
to compute control inputs in real-time, which is advantageous when the given path is not
smooth or when the path is specified using waypoints [47]. The method assumes that
the robot moves at a constant desired forward speed, and uses the relative pose (position
and heading angle) between the robot and the nearest path segment being followed to
generate the desired heading angle. Since the lookahead-based steering method only
generates the desired speed and heading angle rather than the control inputs, it is known
as a guidance law [48]. The lookahead approach utilizes motion information about the
position, orientation, velocity, and acceleration.

In the following paragraph, we describe the robot motion model with only three
degrees of freedom (DOF). The robot’s motion is assumed to be constrained to the hori-
zontal plane, and a plane view of the robot is shown in Figure 9. The three DOF kinematic
equations of the robot are reduced to [48]

η̇ = R(ψ)v, (1)

where ψ is the heading angle of the vehicle. We used the global reference frame G{x, y} and
the body-coordinate frame B{xb, yb} to describe the robot’s motion, location, and orientation.
As shown in Figure 9, the x axis of the global coordinate system G{x, y} points toward the
North, the y axis points toward the East, and the z axis indicates downward. The body-fixed
frame B{xb, yb} moves with the robot, the x axis points toward the head of the robot, the y
axis points toward the right, the z axis indicates downward normal to the x–y surface,
and U denotes the corresponding speed. The angle β represents the slide-slip angle, and
the angle ψ represents the orientation angle of the mobile robot measured from the positive
N axis of the body-fixed system. The point n denotes the center of the robot, which is
a Cartesian coordinate about a global coordinate frame denoted by (xb, yb). R(ψ) is the
transformation matrix from B{xb, yb} to G{x, y}, which is given by

R(ψ) :=

 cos ψ − sin ψ 0
sin ψ cos ψ 0
0 0 1

 ∈ SO(3), (2)

and

η :=

 xn
yn
ψ

 ∈ R2 × S, and v :=

 u
v
r

 ∈ R3 (3)

are the position and orientation (pose) vector and velocity vector (in body-fixed coordi-
nates), respectively (see Figure 9). Here, the symbol Rn is the Euclidean space of dimension
n, S is an Euler angle defined on the interval [−π, π], and SO(3) is the Special Orthogonal
Group of order 3 [48]. Thus, η has three components representing two linear displacements
and one angular rotation. The variables appearing in (3) include position xn, yn, orientation



Machines 2022, 10, 817 12 of 20

angle ψ, surge speed u, sway speed v, and yaw rate r. In this study, we developed a speed
controller using the kinematic model only. The force-controller we used was the native one
of the Husky robot developed by the company. The development of a lower-level controller
based on a dynamic model is left for future work and improvements.

Figure 9. Three-DOF maneuvering coordinate system definitions.

The overall path to be followed consists of a set of n straight-line segments connected
by n + 1 waypoints. The automatic controller is constructed to steer the vehicle along
a time-independent path, for example the path between waypoints pk (xk, yk) and pk+1
(xk+1, yk+1). When the position of the robot is within a circle of acceptance with radius R
around waypoint pk+1, so that

(xn − xk+1)
2 + (yn − yk+1)

2 ≤ R2
k+1, (4)

a switching mechanism is used to select the next waypoint pk+2. The waypoints are fed
sequentially to have a smooth path without stop-and-go behavior.

Line-of-Sight (LOS) guidance law:

Figures 9 and 10 show the geometry of the LOS guidance problem and main variables.
As shown in the figures, the position of the robot in global coordinates can be written as
p = [xn yn]T ∈ R2, and the corresponding speed is defined as

U :=
√

ẋ2
n + ẏ2

n :=
√

u2 + v2 ∈ R+. (5)

For an arbitrary waypoint on the path, the direction of the velocity vector with respect
to the north axis is calculated by

χ = tan−1
(

ẏn

ẋn

)
∈ S := [−π, π]. (6)

As the robot starts following the path to move towards the goal point, it firstly rotates
towards the first goal direction, and then the robot accurately passes through all waypoints
between each pair of goal points. However, based on the path planner, the angle between
waypoints is always less than 90 degrees [43]. Consider a straight-line path defined by two
consecutive waypoints at positions pk = [xk, yk]

T ∈ R2 and pk+1 = [xk+1, yk+1]
T ∈ R2,

respectively. The path makes an angle of

αk = tan−1
(

yk+1 − yk
xk+1 − xk

)
∈ S (7)

with respect to the north axis of the NED frame.



Machines 2022, 10, 817 13 of 20

Figure 10. Line-of-sight path-following definitions.

The coordinates of the robot in the path-fixed reference frame are

ε =

[
s

e

]
= RT

α (αk)(p− pk) (8)

where RT
α is the transformation matrix from the inertial to the path-fixed frame given by

RT
α (αk) :=

[
cos αk sin αk
− sin αk cos αk

]
, (9)

s is the along-track distance, and e is the cross-track error (see Figure 10). The cross-track
error is defined as the orthogonal distance to the path tangential reference frame. From (8)
and (9), the cross track error can be computed by

e = −(xn − xk) sin αk + (yn − yk) cos αk. (10)

Its time derivative, which will be used later, is consequently given by

ė = −ẋn sin αk + ẏn cos αk. (11)

From (1) and (2),
ẋn = u cos ψ− v sin ψ

ẏn = u sin ψ + v cos ψ
(12)

so that
ė = −(u cos ψ− v sin ψ) sin αk + (u sin ψ + v cos ψ) cos αk. (13)

The control objectives are formulated to drive the cross-track error to zero by steering
the robot and controlling its forward speed. With the lookahead-based steering method,
a fixed parameter, known as the lookahead distance ∆, which corresponds to a distance
along the path ahead of point s, is used to define the LOS vector. The robot is steered so
that its velocity vector is parallel to the LOS vector (Figure 10). The resulting velocity vector
will have a component perpendicular to the path, driving the robot towards the path until
the LOS vector is parallel to the path so that e→ 0. Then, the Guidance module calculates
the linear and angular velocities, which are sent to the Husky controller and afterward to
wheel motors to let the robot move automatically between goal points. The Guidance module



Machines 2022, 10, 817 14 of 20

sends the linear and angular velocity inputs to move the Husky robot automatically inside
the working environment.

3. Prototyping and Preliminary Experimental Tests

The conceived and designed layout has been implemented, and first navigation tests
have been performed. The ground robot platform is mechanically designed to handle
suitable sensors. Thus, the mechanical and electronic systems used for our experiments
were prototyped and integrated on top of the main platform. The final configuration of
the mobile robot for the first experimental tests is shown in Figure 11a,b. The second
control box arrangement is reported in Figure 11c. The main ambient awareness sensors
installed on the robot are a 3D LiDAR Velodyne VPL16 and an Intel Realsense D455 camera.
The robot is equipped with a mini-ITX computer (see [36]), while the second control box
embedded computer is a Jetson TX2 platform. The preliminary test targeted an emulated
orchard and a safe navigation along a collision-free path given multiple goal points.

(a) (b) (c)

Figure 11. Mechanical and electronic configuration of the experimental platform (UR5 manipulator
not shown): (a) front view, (b) back view, and (c) second control box.

3.1. Emulated Scenario and Test Inputs

For the initial evaluation of the implemented framework, a lab-emulated orchard
was created in which parallel rows of tree were considered fixed obstacles on the map.
The experimental emulated scenario is shown in Figure 12a, and the Gazebo digital twin is
shown in Figure 12b.

The length and width of the environment are fixed to 13.2 m and 6.6 m, respectively.
For simulating an orchard, the spacing between rows is set to 2.2 m (see [49]). The length of
each row (static obstacles) is fixed at 2.2 m long. The robot’s working space is decomposed
into rectangular grid cells, and each grid cell represents 10 cm in the robot’s working
environment. The goal tolerance was set to 0.1 m, and the heading tolerance was set to
0.1 rad. The UGV chosen localization system was based on a filtered odometry approach;
the Intel RealSense D455 RGB-D camera or the Velodyne VLP-16 3D LiDAR were used
(in different tests) for obstacle detection, and the extended BNM was adopted for path
planning. The vision system was set to operate in front of the robot, setting a view size
of 5 × 6 × 1.5 m (xyz coordinates), and the obstacles were boxes of different dimension.
The bounding boxes were generated with an offset of 0.2 m to ensure an additional safety.
For path-tracking, the lookahead distance was set to 1 m for the LOS-guidance method,
and the heading error was set to 0.05 rad.



Machines 2022, 10, 817 15 of 20

(a) (b)

Figure 12. Robot working environment: (a) the real environment; (b) the simulated environment
using Gazebo.

Given the input data to define the goal points and the working environment, the map
generator node creates a map. Afterward, the map data are processed with the goal points
through the path planner to compute a collision-free path between each pair of goal points.

The planned path between each two goal points formed by a discrete sequence of
poses, i.e., waypoints, is fed into the Guidance module. At the same time, the output of the
Guidance module is mapped to the wheel motors by a simulated low-level controller running
onboard.

3.2. Experimental Tests and Discussion

As per the envisioned tasks, the mobile robot was sent to the proper orchard locations
to perform predefined tasks. Then, we experimentally tested the system to evaluate the
automatic navigation performance in a generated given-map environment. In the first test
configuration, we evaluated the automatic navigation performance of the robot under static
environmental conditions. Then, in the second test configuration, we evaluated the robot’s
navigation performance in a dynamic environment, i.e., with an unexpected obstacle along
the path. During the experimental tests, we verified that the proposed framework generates
an appropriate path, and the robot avoids static and dynamic obstacles without collisions.

Figures 13 and 14 show the planned path for a mobile robot using BNM in two testing
scenarios as well as the performance of the navigation strategy in both testing scenarios.
In the first test configuration (see Figure 13, the robot starts moving from initial position g0
(0, 0) to visit three fixed goal points (g1, g2, and g3) added to the pre-built map. The goal
points were located at (−2.2, −2.2), (8.8, 2.2), and (4.5, −2.2). The red cells express the fixed
obstacles, blue dashed lines represent the planned path of the robot, yellow circles in the
figure define the goal points, and green cells represent the area related to the safety margin
introduced to allow the robot to safely navigate and steer. In this study, we adopted a safety
margin around obstacles to avoid the possibility of overlapping the paths traced by the
robot overlapping with obstacles. As it can be appreciated in Figure 13a, the robot might
move very close to the obstacle. Therefore, a certain safety margin for anti-collision has
to be assured. Considering the robot dimensions and footprint, it has been defined with a
constant-size of six grid cells. All fixed obstacles are given in parallel lines, and the goal
points are given between obstacles. The robot localization sensors are utilized to determine
where a mobile robot is located within the environment. In this test, a filtered-odometry,
i.e., encoders and IMU, approach has been adopted. The current coordinates of the robot
are compared with the predefined ranges of the fixed goal point, and if the robot is within
the range, the coordinates of the next destination point are considered.



Machines 2022, 10, 817 16 of 20

(a)

(b)
Figure 13. Simulated environment with fixed obstacles: (a) planned path using BNM; (b) path
executed by the robot.

(a)

(b)
Figure 14. Simulated environment with fixed and dynamic obstacles: (a) planned and replanned
path using BNM; (b) path executed by the robot.

In the second scenario, the experimental test was carried out with the addition of a
dynamic obstacle, as shown in Figure 14. The robot starts moving from the initial position
g0 (0, 0) to visit a fixed goal point (g1) located at (8.8, 0.0), and then the robot returns to the
initial point. Since the robot sensors detect a new obstacle that occludes the pre-planned



Machines 2022, 10, 817 17 of 20

path, the Planning module generates a new path from the current position to the destination
point (g1).

The plots show that the robot’s executed path is coherent with the planned one.
The mobile robot shows appropriate navigation accuracy and performs smooth motion
along the environment with an average error≤ 10 cm. The traveled path mostly depends on
the robot’s kinematics, the accuracy of the sensors, and the environment. High navigation
speeds lead to slightly higher errors. The proposed ROS package always directs the robot
to follow the planned path, and the robot moves close to the calculated path. The path starts
from the robot’s initial position, passes through the intermediate goal points, and then
returns to the initial point. A final path is assembled by connecting the paths between goal
points in an iterative way until the path is completed, and the length of the path is the sum
of the lengths of the goal-to-goal paths. From the first experimental scenario and reported
experimental results, the generated path length is 24.3684 m, close to the 24 m of the ideal
BNM-planned path, thus showing good performance. Screenshots of the experimental
tests at different locations are presented in Figure 15.

Figure 15. From (a) start to (j) end: sequence of screenshots of the simulated orchard environment
with obstacles (crop rows) showing the navigation test of the robot prototype in the physical environ-
ment, with the fixed obstacles represented by yellow lines, and the dynamic obstacle, not present in
the predefined map, represented by the box



Machines 2022, 10, 817 18 of 20

Despite the overall good experimental results, the system may fail in certain circum-
stances. The perception module, for example, may fail detecting objects that have a size
much smaller or much bigger than that of obstacles assumed during parameter tuning. This
is due to the fact that when defining a cluster, the algorithm uses a min and max threshold
value to constraint the number of points a cluster can contain. Additionally, because the
planning module works based on the grid cells, increasing the cell size will reduce the
system’s accuracy. In the same way, the guidance model may fail to control the robot if we
set a very small value for the acceptance radius. In this scenario, due to the noisy data from
the localization sensors, the robot may never reach the goal area, and thus it would not
switch to the next goal point.

4. Conclusions

Here, the conceptual design and experimental implementation of a modular mobile
robotic system for agricultural field tasks is presented. Based on the functional design con-
cept HW and SW modules are conceived, developed and integrated on a Husky unmanned
ground vehicle. In particular, the software modules are implemented using ROS, following
a high and low-level multi-layered approach, and allow the use of different sensors for
localization and obstacle detection. Localization is implemented using a filtered-odometry
method that can be integrated with indoor or outdoor positioning systems. Both an RGB-D
camera and a 3D LiDAR sensor are configured for use on the platform, and either can be
employed for obstacle avoidance. An extended Boundary Node Method, which has been
specifically adapted for this work, is used for path planning. A modified Lookahead-based
Line of Sight guidance algorithm is utilized for path following. Preliminary field tests in an
emulated orchard scenario demonstrate that the system can perform path-following with a
suitable accuracy, and obstacle detection, with path re-planning when needed. Planned
future work will include intensive experimental testing, detailed data analyses, as well as
performance assessments of the system’s capabilities of executing the three PA scenarios
(monitoring, harvesting, and spraying) in both emulated and real environments.

Author Contributions: Conceptualization and methodology, R.A.S., G.T., K.D.v.E. and R.V.; software,
validation, and formal analysis, R.A.S. and G.T.; resources, K.D.v.E. and R.V.; writing—original draft
preparation, R.A.S., G.T. and R.V.; writing—review and editing, all; supervision, G.C., K.D.v.E. and
R.V.; project administration and funding acquisition, K.D.v.E. and R.V. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported in part by the “Reconfigurable Collaborative Agri-Robots (RE-
COARO)” Südtirol/Alto Adige 4th Call (project #4122) and by the European Regional Development
Fund (ERDF), FiRST Lab Project #FESR1084.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to Matteo Malavasi, who designed and fabricated some
of the electronic systems of the robot, and Josef Zelger, who designed and fabricated the mechanical
superstructure.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mondejar, M.E.; Avtar, R.; Diaz, H.L.B.; Dubey, R.K.; Esteban, J.; Gómez-Morales, A.; Hallam, B.; Mbungu, N.T.; Okolo, C.C.;

Prasad, K.A.; et al. Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. Sci. Total
Environ. 2021, 794, 148539. [CrossRef] [PubMed]

2. Nasirahmadi, A.; Hensel, O. Toward the Next Generation of Digitalization in Agriculture Based on Digital Twin Paradigm.
Sensors 2022, 22, 498. [CrossRef]

3. Monteiro, A.; Santos, S.; Gonçalves, P. Precision agriculture for crop and livestock farming—Brief review. Animals 2021, 11, 2345.
[CrossRef]

http://doi.org/10.1016/j.scitotenv.2021.148539
http://www.ncbi.nlm.nih.gov/pubmed/34323742
http://dx.doi.org/10.3390/s22020498
http://dx.doi.org/10.3390/ani11082345


Machines 2022, 10, 817 19 of 20

4. Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision agriculture techniques and practices: From
considerations to applications. Sensors 2019, 19, 3796. [CrossRef] [PubMed]

5. Department, I.S. World Robotics 2021—Service Robots; VDMA Services GmbH: Frankfurt am Main, Germany, 2021.
6. Blender, T.; Buchner, T.; Fernandez, B.; Pichlmaier, B.; Schlegel, C. Managing a mobile agricultural robot swarm for a seeding

task. In Proceedings of the IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26
October 2016; pp. 6879–6886.

7. Oberti, R.; Marchi, M.; Tirelli, P.; Calcante, A.; Iriti, M.; Tona, E.; Hočevar, M.; Baur, J.; Pfaff, J.; Schütz, C.; et al. Selective spraying
of grapevines for disease control using a modular agricultural robot. Biosyst. Eng. 2016, 146, 203–215. [CrossRef]

8. Maini, P.; Gonultas, B.M.; Isler, V. Online coverage planning for an autonomous weed mowing robot with curvature constraints.
IEEE Robot. Autom. Lett. 2022, 7, 5445–5452. [CrossRef]

9. McAllister, W.; Osipychev, D.; Davis, A.; Chowdhary, G. Agbots: Weeding a field with a team of autonomous robots. Comput.
Electron. Agric. 2019, 163, 104827. [CrossRef]

10. Quan, L.; Jiang, W.; Li, H.; Li, H.; Wang, Q.; Chen, L. Intelligent intra-row robotic weeding system combining deep learning
technology with a targeted weeding mode. Biosyst. Eng. 2022, 216, 13–31. [CrossRef]

11. Tinoco, V.; Silva, M.F.; Santos, F.N.; Rocha, L.F.; Magalhães, S.; Santos, L.C. A review of pruning and harvesting manipula-
tors. In Proceedings of the 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC),
Santa Maria da Feira, Portugal, 28–29 April 2021; pp. 155–160.

12. Botterill, T.; Paulin, S.; Green, R.; Williams, S.; Lin, J.; Saxton, V.; Mills, S.; Chen, X.; Corbett-Davies, S. A Robot System for Pruning
Grape Vines. J. Field Robot. 2017, 34, 1100–1122. [CrossRef]

13. Kim, W.S.; Lee, D.H.; Kim, Y.J.; Kim, T.; Lee, W.S.; Choi, C.H. Stereo-vision-based crop height estimation for agricultural robots.
Comput. Electron. Agric. 2021, 181, 105937. [CrossRef]

14. Vidoni, R.; Gallo, R.; Ristorto, G.; Carabin, G.; Mazzetto, F.; Scalera, L.; Gasparetto, A. Byelab: An agricultural mobile robot
prototype for proximal sensing and precision farming. In Proceedings of the ASME International Mechanical Engineering
Congress and Exposition, Proceedings (IMECE), Tampa, FL, USA, 3–9 November 2017; Volume 4A. [CrossRef]

15. Quaglia, G.; Visconte, C.; Scimmi, L.; Melchiorre, M.; Cavallone, P.; Pastorelli, S. Design of a UGV powered by solar energy for
precision agriculture. Robotics 2020, 9, 13. [CrossRef]

16. Bac, C.W.; Van Henten, E.J.; Hemming, J.; Edan, Y. Harvesting robots for high-value crops: State-of-the-art review and challenges
ahead. J. Field Robot. 2014, 31, 888–911. [CrossRef]

17. Moysiadis, V.; Sarigiannidis, P.; Vitsas, V.; Khelifi, A. Smart farming in Europe. Comput. Sci. Rev. 2021, 39, 100345. [CrossRef]
18. Oliveira, L.; Moreira, A.; Silva, M. Advances in agriculture robotics: A state-of-the-art review and challenges ahead. Robotics

2021, 10, 52. [CrossRef]
19. Kumar, A.; Deepak, R.S.; Kusuma, D.S.; Sreekanth, D. Review on multipurpose agriculture robot. Int. J. Res. Appl. Sci. Eng.

Technol. 2020, 8, 1314–1318. [CrossRef]
20. Sowjanya, K.D.; Sindhu, R.; Parijatham, M.; Srikanth, K.; Bhargav, P. Multipurpose autonomous agricultural robot. In Proceedings

of the 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India,
20–22 April 2017; Volume 2, pp. 696–699.

21. Nandeesh, T.; M Kalpana, H. Smart Multipurpose Agricultural Robot. In Proceedings of the CONECCT 2021: 7th IEEE Interna-
tional Conference on Electronics, Computing and Communication Technologies, Bangalore, India, 9–11 July 2021. [CrossRef]

22. Tauze Zohora Saima, F.; Tamanna Tabassum, M.; Islam Talukder, T.; Hassan, F.; Sarkar, P.K.; Howlader, S. Advanced Solar
Powered Multipurpose Agricultural Robot. In Proceedings of the 2022 3rd International Conference for Emerging Technology,
INCET, Belgaum, India, 27–29 May 2022. [CrossRef]

23. Levin, M.; Degani, A. A conceptual framework and optimization for a task-based modular harvesting manipulator. Comput.
Electron. Agric. 2019, 166, 104987. [CrossRef]

24. Le, A.V.; Arunmozhi, M.; Veerajagadheswar, P.; Ku, P.C.; Minh, T.H.Q.; Sivanantham, V.; Mohan, R.E. Complete path planning for
a tetris-inspired self-reconfigurable robot by the genetic algorithm of the traveling salesman problem. Electronics 2018, 7, 344.
[CrossRef]

25. Grimstad, L.; From, P.J. Thorvald II-a modular and re-configurable agricultural robot. IFAC-PapersOnLine 2017, 50, 4588–4593.
[CrossRef]

26. Levin, M.; Degani, A. Design of a Task-Based Modular Re-Configurable Agricultural Robot. IFAC-PapersOnLine 2016, 49, 184–189.
[CrossRef]

27. Denis, D.; Thuilot, B.; Lenain, R. Online adaptive observer for rollover avoidance of reconfigurable agricultural vehicles. Comput.
Electron. Agric. 2016, 126, 32–43. [CrossRef]

28. Youchun, Z.; Gongyong, Z. Design of Multimodal Neural Network Control System for Mechanically Driven Reconfigurable
Robot. Comput. Intell. Neurosci. 2022, 2022, 2447263. [CrossRef] [PubMed]

29. Xu, R.; Li, C. A modular agricultural robotic system (MARS) for precision farming: Concept and implementation. J. Field Robot.
2022, 39, 387–409. [CrossRef]

30. Lytridis, C.; Kaburlasos, V.G.; Pachidis, T.; Manios, M.; Vrochidou, E.; Kalampokas, T.; Chatzistamatis, S. An Overview of
Cooperative Robotics in Agriculture. Agronomy 2021, 11, 1818. [CrossRef]

31. GARotics. Green Asparagus Harvesting Robotic System. Available online: http://echord.eu/garotics (accessed on 27 July 2022).

http://dx.doi.org/10.3390/s19173796
http://www.ncbi.nlm.nih.gov/pubmed/31480709
http://dx.doi.org/10.1016/j.biosystemseng.2015.12.004
http://dx.doi.org/10.1109/LRA.2022.3154006
http://dx.doi.org/10.1016/j.compag.2019.05.036
http://dx.doi.org/10.1016/j.biosystemseng.2022.01.019
http://dx.doi.org/10.1002/rob.21680
http://dx.doi.org/10.1016/j.compag.2020.105937
http://dx.doi.org/10.1115/IMECE201771216
http://dx.doi.org/10.3390/robotics9010013
http://dx.doi.org/10.1002/rob.21525
http://dx.doi.org/10.1016/j.cosrev.2020.100345
http://dx.doi.org/10.3390/robotics10020052
http://dx.doi.org/10.22214/ijraset.2020.5209
http://dx.doi.org/10.1109/CONECCT52877.2021.9622632
http://dx.doi.org/10.1109/INCET54531.2022.9824561
http://dx.doi.org/10.1016/j.compag.2019.104987
http://dx.doi.org/10.3390/electronics7120344
http://dx.doi.org/10.1016/j.ifacol.2017.08.1005
http://dx.doi.org/10.1016/j.ifacol.2016.10.034
http://dx.doi.org/10.1016/j.compag.2016.04.030
http://dx.doi.org/10.1155/2022/2447263
http://www.ncbi.nlm.nih.gov/pubmed/35665294
http://dx.doi.org/10.1002/rob.22056
http://dx.doi.org/10.3390/agronomy11091818
http://echord.eu/garotics


Machines 2022, 10, 817 20 of 20

32. Albani, D.; IJsselmuiden, J.; Haken, R.; Trianni, V. Monitoring and mapping with robot swarms for agricultural applications. In
Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce,
Italy, 29 August–1 September 2017; pp. 1–6.

33. Reisch, B.I.; Owens, C.L.; Cousins, P.S. Grape. In Fruit Breeding; Springer: Berlin/Heidelberg, Germany, 2012; pp. 225–262.
34. Fernandez, R.; Montes, H.; Surdilovic, J.; Surdilovic, D.; Gonzalez-De-Santos, P.; Armada, M. Automatic detection of field-grown

cucumbers for robotic harvesting. IEEE Access 2018, 6, 35512–35527. [CrossRef]
35. FiRST-Lab. Field Robotics South-Tyrol Lab. Available online: https://firstlab.projects.unibz.it/ (accessed on 24 July 2022).
36. Robotics, C. Husky Technical Specifications. Available online: https://www.clearpathrobotics.com/husky-unmanned-ground-

vehicle-robot/ (accessed on 24 July 2022).
37. Universal Robots. Available online: https://www.universal-robots.com/ (accessed on 31 August 2022).
38. ArduSimple. Available online: https://www.ardusimple.com/ (accessed on 31 August 2022).
39. Pozyx. Available online: https://www.pozyx.io/ (accessed on 31 August 2022).
40. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and

automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]
41. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.

In Proceedings of the KDD, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231.
42. Saeed, R.; Reforgiato Recupero, D.; Remagnino, P. The boundary node method for multi-robot multi-goal path planning problems.

Expert Syst. 2021, 38, e12691. [CrossRef]
43. Saeed, R.; Recupero, D.; Remagnino, P. A Boundary Node Method for path planning of mobile robots. Robot. Auton. Syst. 2020,

123, 103320. [CrossRef]
44. Saeed, R.; Recupero, D. Path planning of a mobile robot in grid space using boundary node method. In Proceedings of the

ICINCO 2019—16th International Conference on Informatics in Control, Automation and Robotics, Prague, Czech Republic,
29–31 July 2019; Volume 2, pp. 159–166. [CrossRef]

45. Lekkas, A.M.; Fossen, T.I. A time-varying lookahead distance guidance law for path following. IFAC Proc. Vol. 2012, 45, 398–403.
[CrossRef]

46. Wang, X.; Wu, G. Modified LOS path following strategy of a portable modular AUV based on lateral movement. J. Mar. Sci. Eng.
2020, 8, 683. [CrossRef]

47. Ahn, J.; Shin, S.; Kim, M.; Park, J. Accurate Path Tracking by Adjusting Look-Ahead Point in Pure Pursuit Method. Int. J. Automot.
Technol. 2021, 22, 119–129. [CrossRef]

48. von Ellenrieder, K.; Licht, S.; Belotti, R.; Henninger, H. Shared human–robot path following control of an unmanned ground
vehicle. Mechatronics 2022, 83, 102750. [CrossRef]

49. Du, F.; Deng, W.; Yang, M.; Wang, H.; Mao, R.; Shao, J.; Fan, J.; Chen, Y.; Fu, Y.; Li, C.; et al. Protecting grapevines from rainfall in
rainy conditions reduces disease severity and enhances profitability. Crop Prot. 2015, 67, 261–268. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2851376
https://firstlab.projects.unibz.it/
https://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://www.universal-robots.com/
https://www.ardusimple.com/
https://www.pozyx.io/
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1111/exsy.12691
http://dx.doi.org/10.1016/j.robot.2019.103320
http://dx.doi.org/10.5220/0007747301590166
http://dx.doi.org/10.3182/20120919-3-IT-2046.00068
http://dx.doi.org/10.3390/jmse8090683
http://dx.doi.org/10.1007/s12239-021-0013-7
http://dx.doi.org/10.1016/j.mechatronics.2022.102750
http://dx.doi.org/10.1016/j.cropro.2014.10.024

	Introduction
	Functional Design Concept and System Configuration
	HW Configuration
	SW Configuration
	Main Module
	Perception Module
	Dynamic Map Implementation and Management
	Planning Module
	Guidance Module


	Prototyping and Preliminary Experimental Tests
	Emulated Scenario and Test Inputs
	Experimental Tests and Discussion

	Conclusions
	References

