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Abstract: Safety during physical human–robot interaction is the most basic requirement for robots.
Collision detection without additional sensors is an economically feasible way to ensure it. In contrast,
current collision detection approaches have an unavoidable trade-off between sensitivity to collisions,
signal smoothness, and immunity to measurement noise. In this paper, we present a novel sliding
mode momentum observer (NSOMO) for detecting collisions between robots and humans, including
dynamic and quasistatic collisions. The collision detection method starts with a dynamic model of the
robot and derives a generalized momentum-based state equation. Then a new reaching law is devised,
based on which NSOMO is constructed by fusing momentum, achieving higher bandwidth and
noise immunity of observation. Finally, a time-varying dynamic threshold (TVDT) model is designed
to distinguish between collision signals and the estimated lumped disturbance. Its coefficients are
obtained through offline data recognition. The TVDT with NSOMO enables fast and reliable collision
detection and allows collision position assessment. Simulation experiments and hardware tests of the
7-DOF collaborative robot are implemented to illustrate this proposed method’s effectiveness.

Keywords: collision detection; human–robot interaction; reaching law; sliding mode momentum observer

1. Introduction

In recent years, robot manipulators have been increasingly used in industrial manu-
facturing and aerospace applications. In these complex applied environments, humans can
work with manipulators to accomplish tasks [1]. During working, the collision between
robots and human is inevitable. It may be a dynamic collision or static extrusion. Potential
harm to humans from robot manipulators is in summary in [2]. On the other hand, many
researchers have developed motion planning algorithms to avoid collisions in advance [3,4].
Therefore, the safety technology of physical human–robot interaction (pHRI) has become a
key technology in robotics. It is crucial to detect the location and size of collision timely
and accurately, making it a promising practical application to promote safe pHRI.

Thanks to the development of mechatronics technology, robot manipulators currently
used in industry are equipped with collision detection for safe pHRI [5]. They are divided
into requiring external sensors and using only propriety sensors (encoders, actuating mo-
tors). External sensors, e.g., electronic skin [6], six-dimensional force/torque sensors, and
inertial devices, assist in judgment [7]. Its precision depends primarily on external sensors’
measurement accuracy. However, it dramatically increases the structural complexity and
manufacturing cost of robot systems. Techniques using only proprioceptive sensors are
then explored, actuator current changes at joints is a basic way to determine whether a
collision occurs [8]. However, the underlying current signal is usually full of noise and
subject to high external interference, so it is not entirely accurate. Later influenced by the
idea of state observers in classical control theory, collision state observer is constructed by a
system’s control output and the available system’s output state [9]. Various disturbance
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observers are derivative of state observers, primarily for observing disturbances (collisions
can also be seen as an external disturbance) [10]. It is widely used in control, and a detailed
review of disturbance observers is given in [11].

Based on the analysis above, it is evident that constructing a suitable state observer
is the key to utilizing only propriety sensor techniques. In constructing state observer
techniques, there are model-based and model-free approaches [12]. As its name implies,
model-free methods do not require model-specific information. A large amount of usable
data drives them to achieve state observations [13]. This data-driven idea has extensive
applications in industrial monitoring [14,15] and fault diagnosis [16,17]. Artificial intelli-
gence techniques as a typical data-driven technology are developing rapidly. Detection
algorithms via neural networks (NN) [18], support vector machines (SVM) [19], or fuzzy
systems [20] have also become an important development direction for model-free methods.
Such intelligent methods are cost-effective compared to external sensors. Nevertheless, the
low model information means extensive experimental data must be collected [21]. In addi-
tion, the trained model’s generality is worth verifying, and it will impose a computational
burden on the controller, so it may not be suitable for other robot systems.

However, model-based methods can avoid the drawbacks of model-free methods.
In model-based approaches, in order to build appropriate state observers for collision
detection, early studies have tried using energy observer [22], joint velocity observer [23],
momentum feedback disturbance observer [24], and even directly using robot manipulator
model parameters to calculate external collision torque [25]. Although such ways require
only model information, they are also susceptible to model errors. Moreover, they need to
calculate joint acceleration signals, which are often noisy due to sensor data differentiation.
Until a generalized momentum observer (GM) is proposed in [26], it allows easy imple-
mentation and promotion without solving acceleration signals and inertia matrix inversion.
The GM is widespread in fields such as robot collision detection or fault diagnosis [27].
The GM is essentially a first-order filter of external torque [28]. Although the noise in the
external torque signal can be filtered out, it also tends to ignore the fast and abrupt external
torque signal. In order to improve the rapidity of GM, an additional high-pass filter and
proportional differentiation loop are added to optimize the detection rate further [29]. Simi-
lar linear filtering improvement methods available in [30], which are insufficient to cope
with nonlinear torque variations. Another critical factor affecting detection sensitivity is the
collision threshold. The conventional collision threshold is a fixed value, which will reduce
accuracy if it is too high and cause collision misclassification if it is too low [31]. Thus,
the time-varying collision threshold is later explored to distinguish collision signals from
noisy signals like an internal disturbance in real time [32]. The usual practice is to build
a time-varying threshold model by modeling each joint with internal torque. As a result,
finding an accurate and easy-to-use threshold model has become a technical challenge.

Although the GM method still has unsatisfactory aspects, there is no doubt that
momentum has become the best state for collision detection. Consequently, integrating GM
with other techniques has become a new trend. Model parameter identification and GM can
be fused to obtain system model information [33] or raise detection speed using adaptive
model techniques [34]. Another scholar constructs a collision network by combining GM
and deep neural network (DNN) to perform collision detection [35]. Such methods are
certainly novel, but they still require a lot of model training and computation. In order to
alter the drawbacks of GM with fixed gain, it is natural to consider integrating momentum
into the Kalman filter. The GM is extended to the Kalman filter technique in [36] to
estimate momentum and external collision torque. It has high noise immunity, but the
accuracy of its estimation depends heavily on model accuracy. Second-order and higher-
order observers have the merits of fast-tracking, and their combination with GM is a new
attempt. The extended state observer (ESO) is designed to be fused with GM to improve
the bandwidth of collision detection [12]. A higher-order finite-time observer is merged
with the GM to achieve fast time-varying external force estimation [37]. However, it brings
a corresponding complexity to algorithms and the problem of balancing fast response and
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noise suppression. The super-twisting algorithm (ST), a typical high-order sliding mode
technique, is first coupled with GM to form a sliding mode momentum observer (SOMO)
to estimate external torque and joint angular acceleration simultaneously [38]. However,
the chattering phenomenon still exists in practice, and increasing order also brings certain
hysteresis. Sliding mode techniques originate from variable structure control not only
limited to ST algorithms. The nature of the sliding mode technique lies in reaching law
design. Moral reaching law can enhance the system’s comprehensive performance [39].

Given discussion and analysis in previous work mentioned above, along with being
inspired by GM and SOMO ideas, we further explored the potential of sliding mode and
GM technique. Therefore, this paper designs a novel sliding mode momentum observer
(NSOMO) coupled with the time-varying dynamic threshold (TVDT) for collision detection
without external sensors to improve detection sensitivity and accuracy. Figure 1 illustrates
the benefits of this proposed collision detection solution. The TVDT in Figure 1 also refers
to the time-varying dynamic threshold. In addition, the main contributions of this paper’s
work are:

1. In order to achieve the required bandwidth and noise immunity for collision detection,
a new reaching law (NRL) is designed. The NSOMO is also proposed, exhibiting
a slight external torque detection delay, a high external torque estimation accuracy
and a small jitter phenomenon. Furthermore, NSOMO can be applied to any robot
manipulator, providing a new idea for collision detection technology.

2. To further increase detection sensitivity, a TVDT model was constructed by parameter
identification of the joint disturbance torque model using offline data. This model can
distinguish collision signals from estimated lumped disturbance. It also offers a way
to identify collision location based on collision signal.

3. Complete stability analysis and reaching time calculation were provided for NRL. For
NSOMO, a comprehensive stability proof and a stable region were analyzed. It gives
theoretical support for generalizing this approach to other robot systems.
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Figure 1. Schematic comparision of GM and SOMO with the proposed solution.

For actual validation, we used an excellent collaborative robotics research platform—
Franka emika [40]. The offline data were first processed using the least-squares method
to obtain DVDT model parameters. Then a practical model validation test was done to
ensure the effectiveness. External torque detection test and human–machine interaction
crash experiment were then executed. Note that quasistatic squeezing is also considered
in the external torque detection test, while GM, SOMO, and NSOMO are compared with
the platform’s torque sensor. The results indicate that this collision detection solution can
respond faster to collisions, ensuring a safe pHRI.

The rest of this paper is organized as follows. In Section 2, the dynamic model
and preparation of robot are described. Section 3 provides a design process for GM,
SOMO and NSOMO. The theoretical analysis is then given. Section 4 presents an overall
collision detection strategy, including the TVDT model and collision position assessment
and response. In Section 5, a simulation test to verify the proposed collision detection
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method. Section 6 conducts a practical experimental validation to illustrate a collision
detection solution’s general performance. Finally, Section 7 is the conclusion of this paper.

2. Preliminaries
2.1. Model of Robot Dynamics

To build a novel observer-based collision detection algorithm, we could take the n-link
robot as a rigid body at first, then construct its dynamic model as:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + τext (1)

where q, q̇, q̈ ∈ Rn represent the joint angle, angular velocity, and angular acceleration
of the manipulator, respectively; M(q) ∈ Rn×n is the symmetric positive definite inertia
matrix; C(q, q̇) ∈ Rn×n is the Coriolis matrix, which signifies the effect of Coriolis force and
centrifugal force on joints. G(q, q̇) ∈ Rn×1 indicates the gravity matrix; τ ∈ Rn×1 is the ac-
tuator output torque vector on each joint of the manipulator. τext ∈ Rn×1 denotes the actual
external disturbance torque vector generated by the collision between the manipulator and
physical environment.

The actuator also has its dynamic model, mixed with other frictional torque distur-
bances, making it more complex. For simplicity, we consider only the rigid-body dynamic
model in Equation (3). Meanwhile, to make the model more accurate, we must compensate
for other unmodelled disturbance torque models.

These disturbance torque models can be analyzed based on the frequency and cat-
egorized as joint speed related or others. The joint damping torque, friction torque, and
dynamic model error torque, whose model equations are illustrated in Equation (2), have
signal frequencies determined by the change in joint velocity [41]. The frequency of sensor
measurement noise and other environment noise disturbances will be far higher than the
joint speed change rate.

τv = Bq̇

τf = Tk sign(q̇)

τm = ∆M(q)
d
dt

q̇ +
1
2

q̇T ∂∆M
∂q

q̇− ∆g(q)

(2)

where τv ∈ Rn×1, τf ∈ Rn×1, τm ∈ Rn×1 are the joint damping torque, joint friction torque,
and dynamic model error torque, respectively. B, Tk are the damping and dynamic friction
torque coefficients, respectively. q̇ indicates the joint angular velocity. ∆M(q) is the mass
error of model. ∆g(q) represents the effect of mass error on gravity. sign(·) stands for
symbolic functions. d

dt , ∂
∂q denote the derivative to time and partial differentiation to joint

velocity, respectively.
Therefore, the Equation (3) can be reformulated as:

M0(q)q̈ + C0(q, q̇)q̇ + G0(q) + ρ = τ + τext (3)

with
ρ = ∆M(q)

d
dt

q̇ +
1
2

q̇T ∂∆M
∂q

q̇ + Bq̇− ∆g(q) + Tk sign(q̇) + εn + εb (4)

where M0 ∈ Rn×n, C0 ∈ Rn×n, G0 ∈ Rn×1 are modeling known terms, ρ ∈ Rn×1 represents
the total internal disturbance torque. εn ∈ Rn×1 denotes the sensor measurement noise, and
εb ∈ Rn×1 means other noise. Thus the more accurately the total internal disturbance torque
ρ is calculated, the more accurately the external collision torque τext will be estimated.

In addition, the robot model in Equation (3) has the following properties and assump-
tions, that will be employed in later analysis:
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Property 1. The matrix M(q)− 2C(q, q̇) is skew-symmetric and thus yields:

Ṁ(q) = C(q, q̇) + CT (5)

where CT is the transpose of C.

Assumption 1. τext is bounded, and |τext| < ∆. where ∆ > 0 is the boundary value.

2.2. Basic Sliding Mode Theory Knowledge

Completed research on sliding mode theory is available in [42]. This section briefly
introduces its basic theory and significant benefits and drawbacks. To better understand
sliding mode control techniques, we establish the following second-order nonlinear system:

ẍ = f (x, ẋ) + b(x, ẋ) · u (6)

where both f and b are nonlinear functions concerning x, ẋ, the b is invertible. Let xd be
the standard trajectory while e = x− xd be the tracking error. Then the first step in sliding
mode control is to design an appropriate sliding surface S. The universal design is:

S = λe + ė (7)

The next stage is designing the control law to make phase trajectories beyond the slide
surface reach the slide surface in finite time, that is, the reaching phase. After reaching
the slide surface, the system slides along the slide surface and gradually stabilizes to the
equilibrium point, namely the slide phase. Figure 2 describes the system motion states
for these two phases. In the reaching phase, the error vector (e, ė) is absorbed into the
slide surface S = 0. In the slide phase, the error vector “slides” on the slide surface until
it converges to the equilibrium point (0, 0), the convergence rate is directly related to the
value of λ.

e

e

0S e e= + =

( (0), (0))e e

Reaching phase

Slide phase

Figure 2. Sliding mode mechanism in phase plane.

To achieve the above demands, the control law should be designed to satisfy the
following conditions, also known as reaching conditions:

S · Ṡ < 0, ∀t (8)

In order to satisfy condition in Equation (8), in the conventional sliding mode method,
S is designed as:

Ṡ = −k · sign(S), ∀t, k > 0 (9)

The arrival time tr shown in Equation (21) can be obtained by integrating Equation (8)
with respect to time. This corresponds to the time required for the error vector (e, ė) to
reach S.
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tr =
|S(0)|

k
(10)

Equation (9) design, which contains a sign function, leads to chattering during the
sliding process. Moreover, the extent of chattering is directly determined by k. Thus, a
dilemma arises: increasing k yields faster convergence and tracking performance, while
directly enlarging the level of chatter.

Equation (9), also named the reaching law approach, was proposed by Professor
Weibing Gao based on the sliding mode control process [43]. The main idea is to develop a
reaching equation for sliding mode surfaces so that the overall dynamic response of the
system can be improved by adjusting the reaching law. For example, Equation (9) can also
be modified to the following exponential reaching law [43]:

Ṡ = −ε · sign(S)− ks, ∀t, k > 0, ε > 0 (11)

By adjusting the parameters E and k, the convergence speed of the system can be
accelerated while attenuating the chattering phenomenon. Therefore, additional methods
of reaching laws have been proposed, such as power exponential reaching laws [43],
exponential reaching laws [44], novel adaptive reaching laws [39].

3. Novel Sliding Mode Momentum Observer Design

An generalized momentum-based observer to detect external torques has been pro-
posed in [45]. The approach is widely applied because it avoids the inverse operation
of M(q) and acceleration solving. A primary second-order sliding mode momentum ob-
server is also presented in [38], and conclusions are given. This section first analyzes the
principles of these two observers. Meanwhile, to consider these two observers’ advan-
tages and improve overall observation performance, we propose a novel sliding mode
momentum observer utilizing the reaching law approach. Further analysis of the properties
was conducted.

3.1. Observer Design

General momentum p and its derivative in time are given by{
p = M(q)q̇
ṗ = Ṁ(q)q̇ + M(q)q̈

(12)

Then incorporating Equation (3) and Property 1, the first-order momentum p dynamic
equation can be derived as

ṗ = τ + CT(q, q̇)q̇− G(q) + τext − ρ (13)

Then the generalized momentum method is organized as

˙̂p = τ − ρ + CT(q, q̇)q̇− G(q̇) + K(p− p̂)

r = K(p− p̂)
(14)

where r ∈ Rn×1 is the defined residual variable, p̂ ∈ Rn×1 is the momentum estimate,
and K ∈ Rn×1 > 0 is the vector gain. The main idea of this structure is to estimate
external collision torque based on the proportional multiplier of momentum deviation. It is
essentially a linear first-order low-pass filter, which can improve estimation convergence
speed and ensure stability by increasing the gain K. However, a high gain will reduce
the estimated noise immunity while failing to cope with the nonlinear variation. A good
compromise between speed and accuracy is hard to achieve.

Subsequently, second-order momentum observer approaches such as extended state
observer [12] and sliding mode momentum observer are researched. The extended state ob-
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server method for estimating external collision torque is prone to a “peak phenomenon” [32].
The basic structure of the sliding mode momentum observer [38] is

˙̂p = τ − ρ + CT(q, q̇)q̇− G(q) + T| p̃|
1
2 sign( p̃) + σ

σ̇ = Q sign( p̃)
(15)

where p̃ = p− p̂ is the momentum deviation, Q, T ∈ Rn×n are positive definite symmetric
matrix, the algorithm can realize the estimation of τext, namely σ ≈ τext. The second-order
sliding mode technique ensures that the observer converges in finite time. However, raising
order also introduces a certain lag that affects rapidity. The symbolic function is bound to
bring specific chattering problems.

We find it challenging to estimate external torque quickly and accurately. Adopting the
reaching law based on the generalized momentum observer is triable towards the purpose.
Design a new convergence law that improves fastness and can apply to nonlinear cases. The
power rate reaching law (PRRL) is a well-used method to achieve smooth entry into sliding
modes and eliminate chattering. Nevertheless, the convergence speed is languid when far
from the sliding mode surface [43]. In this way, inspired by the work of [46], the double
power rate reaching law (DPRRL) provides better global fast convergence performance.
Designing a DPRRL initially as

Ṡ = −k1 · |S|1−β sgn(S)− k2|S|1+β sgn(S) (16)

where k1 > 0, k2 > 0 are the reaching law coefficients, 0 < β < 1,sgn() is the Symbolic
function. When system states are closer to sliding mode surfaces, the rate of convergence is
mainly determined by −k1 · |S|1−β sgn(S); when they are farther away, it is mainly deter-
mined by −k2 · |S|1+β sgn(S), which converges faster than exponential convergence. Com-
pared to [46], the DPRRL in this paper also has a fast convergence rate with second-order
sliding mode properties [47]. Therefore, it can guarantee the fast chatter-free convergence
to the sliding mode surface. In addition, the DPRRL in Equation (16) has the advantage of
fewer parameters with simple convergence time calculation.

This way, the convergence speed can be adjusted by simply tuning β. If increasing β
to ensure reaching speed when far from the slide surface, the value of 1− β will be lower
at the cost of signal chattering when approaching slide mode surfaces. For smaller values
of β, a chatter will be reduced, yet convergence will be slower when far from slide surface.
Additionally, the value of 1− β increases, affecting system robustness [44]. Hence the
compromise between rapidity and smoothness of DPRRL is crucial to regulate.

The chattering is treated as a result of excessive control near slide surfaces [48]. If it is
possible to adaptively adjust the gain of reaching law to realize variable speed reaching
law, it can prevent excessively action and eliminate chattering production. With this idea,
a scaling function is devised such that the gain varies with the magnitude of the error.
Incorporating the designed DPRRL in Equation (16), a new reaching law (NRL) can be
obtained in the form of

Ṡ = − k
µ + (1− µ)e−α|S| ·

[
|S|1−β sgn(S) + k2|S|1+β sgn(S)

]
(17)

where 0 < µ < 1, α > 0, k > 0. Here, the overall gain Ki of the controller is adaptively
changing according to the value of the switching function |S|. The variation rule is: when
S→ ∞, the function e−α|S| → 0, and the overall gain Ki = k/µ; when S→ 0, the function
e−α|S| → 1, and the overall gain Ki = k. Thus overall gain varies within the interval
[k, k/µ]. The lower the value of µ, the wider the range of interval variation. It ensures fast
convergence when away from the slide surface and reduces the chance of excessive control
near the slide surface, thus weakening the system chatter.

Therefore, combining the NRL in Equation (17) and dynamic equation of momentum
p in Equation (13), we can obtain a novel sliding mode momentum observer (NSOMO) as
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 ˙̂p = τ − ρ + CT(q, q̇)q̇− G(q̇) + k
µ+(1−µ)e−α| p̃| ·

[
| p̃|1−β sgn( p̃) + | p̃|1+β sgn( p̃)

]
r = k

µ+(1−µ)e−α| p̃| ·
[
| p̃|1−β sgn( p̃) + | p̃|1+β sgn( p̃)

] (18)

With this observer, not only observation of momentum p can be accomplished, but
also estimating the external collision torque by using the residual r. The residuals in
NSOMO are inherently nonlinear functions in terms of momentum deviations. Compared
with the generalized momentum method (the simplest linear estimation method), it is an
extension of the application to nonlinear conditions. The primary purpose of this nonlinear
function is to solve coordination of rapidity and smoothness in estimation. Especially for
nonlinear changes such as abrupt variations in external disturbances, the NSOMO has
superior observation capability.

Remark 1. Note that the NSOMO develops excellent performance of the DPRRL and the general-
ized momentum observation method. In contrast to DPRRL, the scaling function in NSOMO can
be treated as a dynamic gain to modulate the observation rate. In this respect, the NSOMO achieves
fine transient performance and mitigates chattering phenomena, harmonizing the conflict between
rapidity and smoothness. Benefiting from a simple computational feature of the generalized momen-
tum method, the NSOMO also avoids the inverse operation of M(q) and acceleration solutions.
Moreover, the NSOMO has a robust nonlinear attribute, which can ensure fast convergence and
small estimation error even under nonlinear variation of external collision torque.

3.2. Analysis of the Observer
3.2.1. Existence and Accessibility Proof of NRL

Theorem 1. For the NRL in Equation (17), the system state S can reach the equilibrium point
S = 0 under its action.

Proof of Theorem 1. According to Equation (17) we can derive the relationship equation

SṠ = − k
µ + (1− µ)e−α|S| ·

[
|S|2−β sgn(S) + |S|2+β sgn(S)

]
≤ 0 (19)

Only when S = 0, there is SṠ = 0.
According to the existence and accessibility condition of continuous system sliding

mode reaching law [49], if SṠ ≤ 0 is satisfied, then the designed sliding mode reaching law
is existent and accessible, that is, the system state S can reach the equilibrium point S = 0
under the action of the reaching law.

3.2.2. NRL Steady-State Chatter Analysis

For traditional exponential reaching laws [50], the expressions are

Ṡα = −kαS− εα sgn(S) (20)

where kα > 0, εα > 0. When s = 0+, Equation (20) can be written as Ṡα = −εα, namely,
near steady state, the system state in positive direction converging to steady state moves
at a rate of ṡα = −εα. Similarly, the system state converges to steady state at the rate of
ṡα = εα in negative direction. Therefore, system does not stabilize at the equilibrium point,
but rather jitter with amplitude εα at the equilibrium point.

For NRL, Equation (17) can be written as Ṡ = 0 for both s = 0+ and s = 0−, which
means that system does not produce chattering when approaching steady state.

3.2.3. NRL Reaching Time Analysis

Theorem 2. Let initial state of S is S0. For NRL in Equation (17), the slide surface S and first-
order derivatives Ṡ converge to zero in finite time with reaching time less than [T1 + T2], where
T1 = µπ

2kβ , T2 = 1−µ
2k .
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Proof of Theorem 2. From the NRL in Equation (17) we get

dt =

[
µ + (1− µ)e−α|S|

]
dS

−k|S|1−β sgn(S)− k|S|1+β sgn(S)
(21)

The reaching time of Equation (21) is

t =
∫ |S0|

0
[µ+(1−µ)e−α|S|]dS

k|S|1−β+k|S|1+β =
∫ |S0|

0
µ

k|S|1−β+k|S|1+β dS +
∫ |S0|

0
(1−µ)e−α|S|

k|S|1−β+k|S|1+β dS

=
∫ |S0|

0
µ|S|β−1

k+k|S|2β dS +
∫ |S0|

0
(1−µ)e−α|S| |S|β−1

k+k|S|2β dS
(22)

Let t1 =
∫ |S0|

0
µ|S|β−1

k+k|S|2β dS, t2 =
∫ |S0|

0
(1−µ)e−α|S| |S|β−1

k+k|S|2β dS, respectively, as for t1, we can let

v = Sβ. Then, we have

t1 =
∫ |S0|

0

µ|S|β−1

k + k|S|2β
dS =

∫ |S0|

0

µ

k + k|S|2β
dSβ =

1
β

∫ |S0|β

0

µ

k + kv2 dv =
µ

kβ
arctan

(
|S0|β

)
(23)

According to inverse tangential function arctan(·) ∈ (−π/2, π/2), we get

t1 <
µπ

2kβ
(24)

For t2, we have

t2 =
∫ |S0|

0
(1−µ)e−α|s| |Sβ−1

k+k|S|2β dS ≤
∫ |S0|

0
(1−µ)e−α||| |S|β−1

2k|S|β dS =
∫ |S0|

0
(1−µ)e−α|s|

2k|S| dS (25)

The author has used Euler’s gamma function for the proof of reaching time in [45,51],
while it has been shown in [51] that

∫ |Si(0)|

0
e−αi |Si |pi |Si|−γdSi ≈ α

γ/pi
i

Γ
(

γ−1
pi

)
piα

1/pi
i

(26)

where Γ is the gamm function, and substituting Equation (26) into Equation (25), we get

t2 ≤
∫ |S0|

0

(1− µ)e−α|S|

2k|S| dS =
1− µ

2k
(27)

Therefore, the reaching time t of overall system satisfies

t = t1 + t2 <
µπ

2kβ
+

1− µ

2k
(28)

3.2.4. Analysis of NSOMO Disturbance Stability Bounds

Theorem 3. When external collision torque satisfies Assumption 1, the use of NSOMO in Equation (18)
can ensure that system momentum observation and external torque estimation are finite-time stable;
moreover, the momentum observation error is able to converge to the following neighborhood:

| p̃| ≤ min

((
µ∆
k

) 1
1−β

,
(

µ∆
k

) 1
1+β

)
(29)

Proof of Theorem 3. Based on NSOMO in Equation (18) and momentum model in
Equation (13), an observation error equation can be obtained as

˙̃p = τext −
k

µ + (1− µ)e−α| p̃| ·
[
| p̃|1−β sgn( p̃) + | p̃|1+β sgn( p̃)

]
(30)
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Define the Lyapunov function as:

V =
1
2

p̃2 (31)

Then the derivative of it is

V̇ = p̃
(

τext − k
µ+(1−µ)e−α| p̃| ·

[
| p̃|1−β sgn( p̃) + | p̃|1+β sgn( p̃)

])
≤ − k

µ+(1−µ)e−α|[~p| · | p̃|2−β − k
µ+(1−µ)e−α||~p| | | p̃|

2+β + |τext || p̃|
(32)

Further, the equation above can be written in the following two forms

V̇ ≤ − k
µ + (1− µ)e−α| p̃| | p̃|

2+β − | p̃|
(

k
µ + (1− µ)e−α| p̃| · | p̃|

1−β − |τext|
)

(33)

V̇ ≤ − k
µ + (1− µ)e−α| p̃| · | p̃|

2−β − | p̃|
(

k
µ + (1− µ)e−α| p̃| | p̃|

1+β − |τext|
)

(34)

Since the external collision torque satisfies |τext| < ∆, if the slide surface, namely the
momentum deviation p̃, satisfies the following relation

| p̃| >

∆
[
µ + (1− µ)e−α| p̃|

]
k


1

1−β

>

(
µ∆
k

) 1
1−β

(35)

Then the following inequality holds

k
µ + (1− µ)e−α| p̃| · | p̃|

1−β − |τext| > 0 (36)

Substituting Equation (36) into Equation (33) yields

V̇ ≤ − k
µ + (1− µ)e−α| p̃| | p̃|

2+β = −2
2+β

2
k

µ + (1− µ)e−α| p̃|V
2+β

2 (37)

It can be seen that system observation error can reach the following region

| p̃| ≤
(

µ∆
k

) 1
1−β

(38)

Similarly, if slide surface satisfies following relative equation

| p̃| >

∆
[
µ + (1− µ)e−α| p̃|

]
k


1

1+β

>

(
µ∆
k

) 1
1+β

(39)

Then k
µ+(1−µ)e−α| p̃| · | p̃|1+β − |τext| > 0, substitute into Equation (34) to get

V̇ ≤ − k
µ + (1− µ)e−α| p̃| | p̃|

2−β = −2
2−β

2
k

µ + (1− µ)e−α| p̃|V
2−β

2 (40)

It is known that system observation error can arrive in the following area

| p̃| ≤
(

µ∆
k

) 1
1+β

(41)
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Combining Equation (38) with Equation (41), it is obtained that the system can be
guaranteed to be finite-time stable using the NSOMO, and observation errors can converge
to the following neighborhood:

| p̃| ≤ min

((
µ∆
k

) 1
1−β

,
(

µ∆
k

) 1
1+β

)
(42)

Remark 2. Compared to [52], the present NRL has a more straightforward reaching time calcula-
tion, fewer parameters, and a guaranteed fast global convergence. In contrast to [38], this paper is
the first to give a proof calculation of disturbance stability bound for the NSOMO, with a smaller
stability region relative to that in [53]. It is completely guaranteed that momentum observation and
external torque estimation are finite-time stables.

4. Collision Detection Approach

Some researchers focus on using additional sensors such as IMU inertial sensors to
improve dynamic modeling accuracy [34] or more precise dynamic modeling methods [54]
to eliminate the detrimental effects of modeling errors on collision detection. The others
explore TVDT. In this section, we further explore the potential of TVDT to improve robot
sensitivity for detection in case of modeling errors.

4.1. Time-Varying Dynamic Threshold (TVDT)

Under Assumption 1, based on Equation (4), the total disturbance torque ρ can be
considered a black box. When no external collision occurs, the bound of ρ satisfies

|ρ| ≤ δi = b0|q̈i|+ b1|q̇i|2 + b2|qi|+ b3e−γq̇2
i + b4 sgn(|q̇i|) + vi (43)

δi(1 ≤ i ≤ n) is a model of TVDT, which can be expressed as a sum of polynomials consist-
ing of position qi, angular velocity q̇i, angular acceleration q̈i, and unknown parameters.
e−γq̇2

i can be used to compensate for the uncertainty when a robot changes its motion
direction. 0 < γ < 1 is a positive scalar that determines the slope of spikes. sgn|q̇i| is to
compensate for joint friction torque. In addition, the parameter vi > 0 is designed to assure
a certain margin for robust detection.

In order to facilitate the calculation of model identification for TVDT, the model of
TVDT can be written as

δ̂ = W(q, q̇, q̈)Θ̂ + v (44)

where W(q, q̇, q̈) =
[
|q̈| |q̇|2 |q| e−γq̇2

sgn(|q̇|)
]
, Θ̂ =

[
b0 b1 b2 b3 b4

]T de-
note regression matrix and coefficient matrix respectively. We can then determine the
coefficient matrix Θ̂ by collecting the robot’s position, velocity, acceleration and joint
torque values under different trajectories without external collisions. It can be identified by
the expression:

Θ̂ =
(

WT ·W
)

WT · δ̂ (45)

It is worth noting that this experimental platform uses the Franka emika collaborative
robot platform (described in detail in Section 6), which integrates joint torque sensors and
has access to filtered joint position, velocity, and acceleration. Therefore, for TVDT model
identification, we only need to collect plenty of offline data to identify a precise model. So
it is relatively simple to implement. Subsequently, to determine parameter vi1 and vi2, the
upper bound δUi and lower bound δLi of the model can be defined as{

δUi = W(q, q̇, q̈)Θ̂i + vi1
δLi = W(q, q̇, q̈)Θ̂i − vi2

(46)
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Construct an envelope region of the TVDT model through the upper and lower values.
This region should contain all values of joint torque sensors without external impact.
In this way, it prevents misjudgment due to peaked signals caused by its interference.
The parameter vi, selected based on this requirement, ensures accuracy and robustness
in detection.

The TVDT essentially calculates the total sum of noncollision disturbing torque caused
by a series of factors such as system model error, friction between joint actuators, etc. When
an external collision occurs, the lumped disturbance estimated by the observer contains
both the collision torque and the noncollision disturbance torque. In this way, the collision
torque can be detected separately by using TVDT for real-time compensation.

Remark 3. In contrast to speed-based varying thresholds [55] and time-varying thresholds [56],
the TVDT proposed in this paper can enhance the detection sensitivity of robots in the presence of
measurement noise. Compared with time-varying thresholds in [32], the TVDT model acquired in
this paper by identifying extensive offline data is repeatedly valid without needing reidentification
under different trajectory tasks. Therefore, the present TVDT keeps collision detection immune to its
modeling error and measurement noise, raising detection sensitivity and reducing false alarm rates.

4.2. Collision Detection, Identification and Reaction

The external collision torque is estimated based on residuals using NSOMO in Equation (18).
When no collision occurs, this residual only contains inner disturbance torque, that is

|ri| = |ρi| ≤ δi (47)

TVDT can handle model uncertainty and improve detection sensitivity. When a
collision occurs, the residual also includes external torque. As a result, the residual value
rises sharply and can be expressed as

|ri| > δi (48)

Then the TVDT distinguishes external collision torque from internal disturbance
torque. The indicator value for collision detection can be defined as

εi =

{
1 if |ri| > |δ|i
0 if |ri| ≤ |δ|i

, i = (1, 2, · · · , n) (49)

Further identification of robotic joints where collisions occur can be valuable for
robot safety strategies. Following Equation (49), we acquire collision detection indicators
[ε1, ε2, . . . , εn]

T for all joints. Then when a collision occurs at the i(1 ≤ i ≤ n) joint in the
robot kinetic chain, there is {

ε1, . . . , εi 6= 0
εi+1, . . . , εn = 0

(50)

The 1 ∼ ith joint is affected by collision torque during the contact time interval. In
most cases, the calculation of the Cartesian external forces from τext is directly derived
from robot kinematics, which is partially referable to details in [57]. This project mainly
concentrates on sliding mode technology for external torque estimation to improve collision
detection sensitivity.

Figure 3 depicts a schematic of the collision detection process. Before a final operation,
the robot manipulator utilizes its sensors via extensive trajectory experiments to obtain
rich information on torque values and joint angles to determine TVDT. Subsequently,
robot manipulators are put into use with NSOMO combined with TVDT for safe and
reliable collision detection. Identify and locate collisions once they occur to execute a safety
response strategy. In this paper, we adopt a zero-gravity torque response to assure safety
during collisions. Details can be found in [28]. The main work here focuses on collision
detection and identification.
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Figure 3. Collision detection procedure schematic block diagram.

5. Simulation Validation

To rapidly verify the correctness of the proposed collision detection method, a 2-DOF
horizontal robot structure (see Figure 4) is used for simulation without considering the
model’s error disturbance currently. Then the 2-DOF robot dynamic model is

0x

0y

0z

1r

1cr

2cr

2r

1m g

2m g

1q

2q

Figure 4. Two-degree-of-freedom manipulator structure.[
M11 M12
M21 M22

][
q̈1
q̈2

]
+

[
−C0q̇2 −C0(q̇1 + q̇2)
C0q̇1 0

][
q̇1
q̇2

]
+

[
g1
g2

]
=

[
τ1 + τext ,1
τ2 + τext ,2

]
(51)

with 
M11 = m1r2

c1 + m2
(
r2

1 + r2
c2 + 2r1rc2 cos q2

)
M12 = M21 = m2

(
r2

c2 + r1rc2 cos q2
)

M22 = m2r2
c2, C0 = m2r1rc2 sin q2

g1 = (m1rc1 + m2r1)g cos q1 + m2grc2 cos(q1 + q2)
g2 = m2grc2 cos(q1 + q2)

(52)

and g is gravitational acceleration. The parameter values are m1 = m2 = 0.55 kg,
rc1 = rc2 = 0.18 m and r1 = r2 = 0.36 m, respectively. In this simulation, the reference
signal is set to qd1 = qd2 = sin(t) and external collision torque is set to τext,1 = 5 sin(t),
τext,2 = 5 sgn(sin(t)).

We use the classical PD control strategy based on gravity compensation for robot
control, which fulfills the robot manipulator’s trajectory control requirements. Three mo-
mentum residual-based observers, GM, SOMO, and NSOMO, are utilized to estimate
external torques and compare them. Meanwhile, a uniformly distributed noise is artificially
added to observer feedback signals (including position, velocity, and torque), with a bound-
ary 6.0× 10−4. The simulation environment uses MATLAB /Simulink for all simulations,
with a sampling frequency of 1 kHz. The simulation computer is configured with a 3.5 GHz
octacore processor and 32 GB of RAM.

To properly test the performance of three observers, it is necessary to know how
observer parameters are tuned separately. For GM, the gain K is the only parameter that
needs to be adjusted, and K should be increased to achieve estimation accuracy as far as
possible. However, increasing gain K amplifies noise to affect dynamic stability. While
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SOMO has two parameters T, Q, it is known from [38] that Q is equivalent to integration
and directly determines how fast estimates change. The other parameter, T, is equal to
scale; a significant amount will result in overshoot spikes, and low enough will reduce
convergence. An experience is to start with the initial value of T = 1.6

√
Q and adjust it to

find suitable parameters [38].
For NSOMO, the parameters k and µ mainly determine the variation range of overall

gain. For a certain k, the smaller µ is, the larger the overall gain range is. The parameter α
primarily affects the rate of overall gain change. The parameter β mainly affects conver-
gence speed, and its value is supposed to balance convergence speed and smoothness. If β
is too large, the system will tend to produce jitter vibration when it approaches the slide
mode surface. If β is too small, the convergence speed will reduce.

Based on the parameter analysis of observers, the parameter tables of three observers
can be obtained (as shown in Table 1). Additionally, we evaluate estimation performance in

terms of the integration of the absolute value of estimation error (IAE), IAE:=
∫ t f

0 |e1(t)|dt,
where t f is the total running time.

Table 1. Parameters of three observers.

Approach Parameters

GM K = 7.5
SOMO T = 10, Q = 20

NSOMO µ = 0.6, α = 10, β = 0.4, k = 15

Figure 5 presents the estimation of external collision torque with its estimation error at
the same noise disturbance condition. It is apparent to see that SOMO and NSOMO are
significantly faster than GM in terms of response speed. Instead, using NSOMO to estimate
external torque under the same bandwidth input will provide improved smoothness and
eliminate chattering relative to SOMO. In addition, NSOMO exhibits a quicker response
and convergence speed for sudden collision disturbance. Moreover, the jitter phenomenon
of NSOMO in τ̂ext2 is significantly reduced compared with SOMO. It indicates that the
new reaching laws of NSOMO can effectively maintain global fast convergence without
chattering. Table 2 contains the results of comparing the three observers for particular
response performance. As can be seen, NSOMO exhibits minimum estimation error overall,
and its response is much faster than other observers. Consequently, NSOMO, in general,
delivers excellent estimation performance.

Figure 5. Comparison of external collision torque estimates for three observers. (a,b) Exterior torque
estimation comparison for respective joints. (c,d) External torque estimation error comparison of the
respective joints. These three observers are all based on same observer bandwidth and trajectory inputs.
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Table 2. Comparison of three observers’ specific response performance and IAE.

Approach J1 IAE J2 IAE J1 Delay J1 Raising Time J2 Regulation Time

GM 8.49 Nm 8.67 Nm 0.15 s 1.5 s 0.70 s
SOMO 0.60 Nm 16.01 Nm 0.01 s 1.33 s 0.24 s

NSOMO 1.05 Nm 1.06 Nm 0.02 s 1.35 s 0.10 s

6. Experimental Validation
6.1. Experimental Setup

Our experiments’ hardware platform and software framework are shown in Figure 6.
The hardware platform comprises a 7-DOF robot manipulator, a real-time control panel,
and a computer with a Linux system. The real-time control box connects to a computer
via network cable and can also drive robot manipulators, facilitating real-time program
deployment to the hardware. Thus, we can execute and verify the scripted program
algorithms in real-time by computer.

In addition, the Franka emika robot has advanced servo performance. It uses a 14-bit
resolution position encoder to detect the joint position and a 13-bit resolution torque sensor
to check joint torque. Sensor data on all joints and controller commands can be transmitted
via standard Ethernet protocols with sampling speeds up to 1 kHz. The robot manipulator
has a repeatability of ±0.1 mm in position, and path deviation is negligible even at rates of
up to 2 m/s, meeting the requirements for fixed-point control.

The software platform has a dedicated libfranka code library that supports the Robot
Operation System (ROS). It can quickly communicate and control the robot body through
the Franka Control Interface (FCI), as shown in Figure 6. Users can call libfranka to write
their applications in Linux real-time system environment, besides acquiring real-time mea-
surement data of the robot manipulator. The Libfranka itself contains position controllers
and joint controllers. C code can be compiled in the Linux environment and used to control
robot manipulators in real-time via FCI. In this way, it is possible to complete real-time
implementation of designed algorithms, making verifying collision detection solution
effectiveness easy.

Robot engine

Real time control

Work computer Franka emika

Ethernet

End-effector

• High Resolution 

Position Sensors

• High-precision 

torque sensor

• Brushless DC 

Motor

Franka platform Framework

Franka-ros

libfranka

Franka control 

interface(FCI)

Ethernet

Software

• Joint measurements

• Torque measurements

• model library information

• Torque control commands

• position commands

• Speed commands

Speed: 1Khz

Figure 6. Franka emika Collaborative Robotics Platform Framework.

Furthermore, the GM, SOMO, and NSOMO require robot model parameters. It
is convenient here that the Franka Emika Robots platform itself provides a rich model
library that can be called directly for model information. On the other hand, the observer
parameters in hardware programs are fine-tuned based on Table 1 to achieve the optimal
experimental results. To reduce measuring noise, we use a zero-phase low-pass Butterworth
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filter for subsequent data of identification experiments and comparative estimations, which
can be directly implemented by the MATLAB function “filtfilt”. All three observers were
tested simultaneously for comparison and fully met comparability requirements.

6.2. Collision Threshold Model Identification Experiment

We first need to determine TVDT’s dynamic model parameters to improve collision
detection accuracy. In our study, to improve the correctness of the experimental validation,
we will select representative joints according to reality as the benchmark for testing collision
detection algorithms.

Before conducting model parameter identification calculation, we need to obtain
specific offline data. Two motion modes are designed here for identification experiments:
one is a static mode, where the robot manipulator remains stationary at a point in space
(Figure 7a). The other is a dynamic mode in which the robot end performs circular motion
around a point in the Y–Z plane (Figure 7b). In dynamic mode, the robot end joint as
well as joint velocity make sinusoidal changes with amplitudes of 1.02 rad and 0.4 rad/s,
respectively (shown in Figure 8).

By the two modes of identification experiments, we can obtain plenty of identification
data so that dynamic parameters can be fitted and solved according to Equation (44). An
identifiable TVDT was constructed and compared with torque sensor measurements in
dynamic mode. The results in Figure 9 show that identification models of joint 1 and joint 4
have relatively minor errors, with good dynamic parameter accuracy.

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5 Joint 6

Joint 7

Static mode

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5 Joint 6

Joint 7

Dynamic mode

X

Z
Y

(a) (b)

Figure 7. Two motion modes in the TVDT model identification experiment. (a) Stationary mode;
(b) Dynamic mode.
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Figure 8. The angular and angular velocity motion of end joints. (a) angular changes; (b) angular
velocity changes.
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Figure 9. Identification and measurement of the actuator torques in the experiment. (a) Joint 1.
(b) Joint 4.

6.3. External Torque Detection Experiment

Benefiting from the presence of TVDT, the observer can distinguish external torque
from total estimated torque, used to detect the collision occurrence. The following ex-
periments were conducted to validate further the practical performance of the proposed
collision detection solution.

6.3.1. Dynamic External Torque Detection Experiment

Dynamic impact is an important tactic that has been widely used in the past to study
robot collision detection [28]. Due to the nonrigid nature of the human body parts, collision
site deformation extend the contact time. It also makes it possible to quickly estimate
collision torque, potentially preventing further injury to the person. So first, we need to
do dynamic external torque detection experiments to judge the rapidity of the proposed
observer method.

The dynamic external torque detection experiment includes two significant scenarios:
(A) a suddenly fast impact; (B) an end-sine torque test. These two scenarios can cover most
of the emergencies encountered in robotics. In scenario A, when executing its trajectory
motion, the robot collides rapidly with a handheld cushion of different materials (see
Figure 10a). In scenario B, a bottle of water is tied to the robot end using an elastic string,
designed to simulate a sine wave external disturbance torque input [38], as shown in
Figure 10b. Each test run lasts 30s, and data is collected on a computer in real time at 500hz
during the process. The safety mechanism of the robot manipulator itself is closed—there
will be no reaction after a collision. The torque sensor measurements are for verification
purposes only.

Joint 1 Joint 2

Joint 3

Joint 4

Joint 5 Joint 6

Joint 7

Collision

Collision

water

Elastic 
string 

(A) Suddenly fast impact (B) An end-sine torque test

X

Y

(a) (b)

Z

Figure 10. Dynamic external torque detection experiment: (a) Suddenly fast impact; (b) An end-sine
torque test.
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For convenient experiments, the trajectories designed in both scenarios are circular mo-
tions of the robot end in the y–z plane. In running, the maximum angular velocities of robot
joint 2 and joint 4 are 0.18 rad/s and 0.7 rad/s, respectively, as shown in Figure 11. It also
indicates that the joint 2 contact velocity amplitude increases to 0.78 rad/s and 0.5 rad/s for
the two fast collisions, respectively. The GM, SOMO, and NSOMO simultaneously estimate
the total perturbation of robot manipulators during runtime. The TVDT model identified
for each joint has been written into the program, real-time estimation of disturbance torque
inside the joints. In the dynamic collision, joint 2 receives a higher impact from a crash.
With this taking joint 2 as an example, its TVDT specific model being constructed as{

δUi = W(q, q̇, q̈)Θ̂i + 0.8
δLi = W(q, q̇, q̈)Θ̂i − 3

(i = 2) (53)

with Θ̂2 = [0 14.65 − 15.59 34.74 2.17].
Figure 12 shows the first and second dynamic collision data for joint 2, respectively.

The lumped disturbance estimations generated by the GM, SOMO, and NSOMO methods
are also compared with joint torque sensor measurements. We can see that GM, SOMO
and NSOMO all estimate joint torque with noise immunity to input signals. In addition,
only NSOMO can reach the crash torque peak measured by torque sensors, while GM and
SOMO have smaller crash torque peaks estimated. The robot manipulator collides with
cushion, corresponding to the abrupt signal input. Both observer estimations and sensor
measurements change suddenly. The NSOMO estimations and sensor measurements
vary faster than GM and SOMO. So we can conclude that NSOMO has a relatively better
response speed under the same conditions. It is also consistent with the theoretical analysis
in Section 3. It is worth noting that under this configuration, the joint 2 collision signal can
be distinguished by the TVDT. Meanwhile, the TVDT can contain the internal disturbance
torque of the joint when no collision occurs. Thus it is possible to generate collision detection
indicators from the estimated signals based on Equation (49). In this way, we can further
decide on collision locations based on the identification strategy in Section 6.2.
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Figure 11. The angular velocities of joint 2, joint 3, joint 4 and joint 6 during trajectory running, where
two dynamic collision time points are marked with red dashed lines.

Figure 13 illustrates the comparison results for scenario B simulating external sinu-
soidal torque input, selected for joint 2 and joint 3. A comparison of lumped interference
estimates generated by the GM, SOMO, and NSOMO methods with joint torque sensor
measurements, respectively. All three observers can estimate joint torque values with sine
external torque signal input. In contrast to the GM, the SOMO and NSOMO approaches can
track sinusoidal external torque signals more rapidly. In the same case, the GM observer
takes a longer time to reach the torque estimation peak, which also causes a more consid-
erable delay in the observation. Moreover, the peak size is smaller than the SOMO and
NSOMO estimated peaks. Although the difference between SOMO and NSOMO is slightly
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smaller, the rise speed of NSOMO is still faster than that of SOMO. The peak torque reached
is more prominent. Thus the error with torque sensor measurement is more diminutive.

Figure 12. Comparison of dynamic collision torque estimations for Joint 2: GM, SOMO, NSOMO and
torque sensor; (a) first collision; (b) second collision.
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Figure 13. Comparison results of three observers and torque sensors in scenario B. (a) Joint 2;
(b) Joint 3.

6.3.2. Quasi-Static External Torque Detection Experiment

Collision with a robot manipulator may also be a quasistatic squeeze, such as pinching
or squeezing, which is also very dangerous [2]. It is hazardous that such slowly varying
collision signals cannot be immediately detected by filtered observers [12]. Therefore, in
this respect, it is necessary to conduct further quasistatic squeeze experiments to verify the
reliability of the proposed detection method.

In this experiment, the manipulator maintains fixed-point control and then slowly
squeezes the robot end joint with an inflated balloon and palm. Squeezing to a certain
degree and then relaxing, as shown in Figure 14. The manipulator keeps fixed-point control
during the whole process, so the balloon and human hands are safe.

Figure 15 shows the joint 3 data for balloon squeeze and squeeze by hand, respectively.
Joint 3 experiences a higher torque during squeezing. Thus estimations generated by the
GM, SOMO, and NSOMO approaches at joint 3 are compared with joint torque sensor
measurements. We can see that all three observers realize the estimation of external
squeezing torque. Relative to dynamic detection experiments, the observed response rates
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of the three observers in this experiment do not differ significantly. It is because squeezing
is equivalent to a slowly varying signal and doesn’t require a high bandwidth of observer
for tracking.

X

Y
Z

X

Y
Z

(a) (b)

Collision

Balloon Squeeze Squeeze by hand

Collision

Figure 14. Quasi-static detection experiments: (a) Balloon squeezing; (b) Squeezing by hand.
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Figure 15. Comparison of the three observers with torque sensors in joint 3. (a) Balloon squeeze;
(b) Squeeze by hand.

However, SOMO and NSOMO are still more responsive than GM overall. Moreover,
it can be seen from Figure 15a that NSOMO is weaker than SOMO in chattering, especially
when observer reaches steady valuation. The chattering amplitude of SOMO is more
significant than that of NSOMO. It also illustrates that the new reaching law designed in
this paper can effectively weaken the jittering phenomenon, consistent with theoretical
analysis in Section 3. Overall, when the robot manipulator encounters slowly varying
collisions such as static squeeze, NSOMO can still exhibit sufficient rapidity with the ability
to attenuate estimated signal jitter. In addition, TVDT can still distinguish the squeeze
collision’s signal, as seen in Figure 15.

The NSOMO approach mainly demonstrates its superior collision detection capability
in the above two external torque detection experiments. Table 3 summarizes the relevant
performance parameters obtained from these two experimental data, including delay times
and error root mean square (RMS) values for three observers. We can see that although
all three observers can estimate collision torque, there is a delay and error compared to
actual torque sensor values due to the delay in sensor signals and model error. Benefiting
from the combination of NRL and momentum observers, among these three observers,
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NSOMO can quickly provide accurate collision torque estimates with minimal error. It can
also adapt to various collision types ( such as dynamic impact in Figure 10 and quasistatic
crush in Figure 14) and attain an almost torque-sensor-like effect. In summary, this paper’s
proposed robot collision detection solution achieves torque detection without external
sensors, while it has actually been implemented on robots.

Table 3. Comparison of collision detection delays and RMS with different observers.

Approach Suddenly Fast Impact End-Sine Torque Test Balloon Squeeze Squeeze by Hand

Joint 2 Joint 2 Joint 3 Joint 3
Delay (s) RMS (N·m) Delay (s) RMS (N·m) Delay (s) RMS (N·m) Delay (s) RMS (N·m)

GM 0.10 3.858 0.22 .680 0.98 0.295 0.35 0.677
SOMO 0.03 5.501 0.18 0.177 0.52 0.257 0.28 0.570

NSOMO 0.01 3.537 0.14 0.167 0.51 0.245 0.20 0.554

6.4. Human–Robot Interaction Collision Detection Experiment

To achieve a safer PHRI, it is also necessary to conduct experiments testing accidental
collisions between robots and different parts of the human body. As described in [2], the
collision force is proportional to an object’s stiffness in contact, while the human body is
not rigid. So it is imperative to detect and evaluate the collision with different human
body parts.

In this experiment, a collision test was applied to the robot manipulator end joint to
illustrate the effectiveness of the proposed collision detection technique. The end joints
have a maximum motion and power radius and are most prone to collisions. We assign the
repetitive trajectories mentioned in Section 6.2 to robot manipulators. NESMO estimates
lumped disturbances for collision detection. Instead of a fixed threshold initially equipped
with the platform, the TVDT threshold is substituted in this experiment accordingly. Under
such conditions, the experimenter collided with the robot ends several times in the robot
manipulator’s workspace. The collision sites included the upper arm, lower arm, back, and
chest, as shown in Figure 16. In the whole process, the human body is relaxed as much as
possible, and the robot will stop moving once external torque is detected to exceed TVDT.

Collision with upper arm Collision with lower arm Collision with back Collision with chest

Figure 16. Human–computer interaction crash test with different body parts.

The maximum impact torque values for joint 2 and joint 6 during the collision with
different body parts are depicted in Figure 17. When converted to impact forces, these
values are significantly lower than the biomechanical limits specified in ISO/TS 15066 [58]
for the upper arm, lower arm, back, and chest. Once contact is missed, the estimated impact
torque value defaults to zero. Combined with the results in Table 3, we can see that the
collision detection solution proposed in this paper can reduce the impact force and ensure
relatively fast collision detection.
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Figure 17. The estimated impact torque. (a) Upper arm. (b) Lower arm. (c) Back. (d) Chest.

7. Conclusions

This paper presents a novel sliding-mode momentum observer for collaborative robot
collision detection in sensorless conditions. Beginning with an analysis of traditional GM
and SOMO, NSOMO is designed by constructing an NRL and fusing momentum observer
iteratively. Combined with TVDT, it can effectively detect collisions and improve collision
detection sensitivity and accuracy to ensure safe PHRI.

The application of NSOMO with TVDT provides a feasible and effective way for
collision detection in robot systems. In contrast to the GM and SOMO methods, NSOMO
enables high bandwidth and noise immunity required for detection in natural systems. It
also exhibits lower delay and faster response rates. NRL is designed to increase convergence
speed while reducing jitter. It also allows NSOMO to cope with external nonlinear abrupt
collisions. Coupled with TVDT, this collision detection solution can distinguish the collision
signal from the total estimated lumped interference. It enables high sensitivity of collision
detection and resistance to internal noise misjudgment effects compared to fixed collision
thresholds. The collision detection solution is sufficient for common situations, including
dynamic and quasistatic collisions. In the future, we will explore collision detection
algorithms and work on linking them with force control. We will realize precision control
applications of sensorless robot manipulators under low-cost conditions.
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