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Abstract: To fully disclose the machining potential of a newly developed five-axis hybrid kinematic
machining unit (HKMU), an equilibrium decision-making approach for cutting parameters is pro-
posed. With this proposition, a response surface method-based surrogate model is developed to
describe the mapping relationships between three design objectives and five cutting parameters. A
multi-objective optimization model is further established to find feasible Pareto solutions to cutting
parameters. Based on this, the technique for order preference by similarity to ideal solution (TOPSIS)
and engineering decision preferences are adopted to make the final decision of cutting parameters.
To illustrate the application of the proposed approach, a case study is carried out on face milling of
an exemplary HKMU. The equilibrium decisions of three customized machining schemes lead to the
machining duration, the cutting force, and the surface roughness reduction by 44%, 43%, and 9%,
respectively. This result supports that the proposed equilibrium decision-making approach is able to
find the best-compromised solutions for cutting parameters of the HKMU. It is expected that with
minor modifications, the proposed approach can be applied to other multi-axis machining devices
for finding accurate yet efficient cutting parameter solutions.

Keywords: equilibrium decision-making approach; multi-objective optimization; cutting parameters;
hybrid kinematic machining unit

1. Introduction

Hybrid kinematic machining units (HKMUs) with five-axis machining ability have
been proposed as a kind of supplement to traditional five-axis machine tools and multi-axis
articulated machining robots [1–4]. From a topological view, an HKMU is constructed as
a serial-parallel hybridized mechanism which may promote the merits and complement
the shortcomings of individual parallel and serial mechanisms [5–7]. Hence, HKMUs
have been regarded as a promising alternative solution for efficient five-axis machining
in many industrial fields [8–10]. Examples of commercially successful HKMUs include
the famous Tricept robot [11], the Eco-speed machining center [12], and the Exechon
machine tool [13]. Inspired bythese successful examples, the authors recently proposed a
novel five-axis HKMU by integrating a redundantly actuated parallel manipulator with
two translational sliding gantries [14]. Our previous studies indicate that thiskind of
HKMU has the conceptual advantages of compact structure, better dexterity, and a larger
workspace volume ratio [15,16]. Untilnow, the determination of cutting parameters for
the proposed HKMU was dependent on the user’s engineering experience. Therefore, it is
of great necessity to construct an appropriate decision-making approach to fully disclose
the machining potential and to find the best cutting parameters for the HKMU before it is
employed as a precision machining device.

Machines 2022, 10, 824. https://doi.org/10.3390/machines10090824 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10090824
https://doi.org/10.3390/machines10090824
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://doi.org/10.3390/machines10090824
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10090824?type=check_update&version=3


Machines 2022, 10, 824 2 of 20

There are three aspects involved in the issue of cutting parameter determination. The
first issue is how to determine design criteria to evaluate cutting performances quantita-
tively. The second issue is how to describe the relationships between design objectives and
cutting parameters. The third issue is how to implement multi-objective optimization for
designating final decisions.

As to the first aspect, there are plentiful design criteria. The most commonly used
are material removal rate, cutting force, surface roughness, machining accuracy, power
consumption, tool life, and service performances, which can be estimated either by explicit
formulations or experimental measurements [17–21]. When applying these criteria to
cutting performance evaluation, there are two main forms, i.e., single-objective approaches
and multi-objective approaches. To be specific, a single-objective approach focuses on
a certain design criterion in the machining process, such as surface roughness-oriented
optimization design [22]. However, this limited evaluation dimension does not reflect
cutting characteristics comprehensively. Thus, multi-objective approaches are proposed to
adopt more than one design criteria, which enable different, even contradictory, cutting
objectives to be taken into consideration simultaneously [23–26]. This eventually leads
to more comprehensive results meeting multiple requirements, including production ef-
ficiency, machining stability, and cutting quality. In view of this, it is preferable to adopt
multiple criteria, such as machining duration, cutting force, and surface roughness, to
comprehensively evaluate the cutting performances of an HKMU.

As for the second aspect, its primary task is to construct a mapping model to describe
the cutting performance relationship. According to the described manners, the mapping
models for handling cutting performances can be roughly divided into two categories, i.e.,
analytical models [27,28] and surrogate models [29,30]. To be specific, analytical models aim
to explicitly deconstruct the interaction/transmission mechanism between the force and
the energy in the cutting process. Constructing an efficient analytical model mostly relies
on appropriate assumptions and delicate procedures [31]. This may bring out difficulties in
mapping modeling and limit computational efficiency. Different from the analytical model,
surrogate models usually approximate the cutting performance mapping by combining the
response surface method (RSM) with design of experiments (DoE) [32]. Thus, a surrogate
model can be regarded as a kind of data-based model with concise expression, which can
be directly called in the iterative calculation of the mapping model. This characteristic may
reduce the difficulty of modeling and improve the computational efficiency of a cutting
performance model [33]. Hence, the surrogate model provides a promising solution for
describing the cutting processes of an HKMU.

As to the third aspect, there are mainly two kinds of methods available for multi-
objective optimization of cutting parameters. The first is the weighted sum method, which
uses a set of customized weights to transform a multi-objective problem into a traditional
single-objective problem [34–36]. Then, a linear programming approach can be adopted to
solve the transformed problem to obtain optimized solutions. However, the selection of
weights usually lacks a reasonable and quantitative basis. Additionally, the weighted sum
method may encounter difficulties and make optimized results less applicable when there
are non-convex or disconnected regions in the design space [37]. Different from the first
method, the second method treats a multi-objective problem as a nonlinear multivariate
programming problem [38]. By applying this type of method, all design objectives are
simultaneously optimized. Accordingly, not one best-optimized solution, but a cluster
of compromised solutions called the Pareto frontier, is obtained [39]. In view of this, the
analytic hierarchy process (AHP) [40], the technique for order preference by similarity
to ideal solution (TOPSIS) [41], and their variants [42,43] are adopted to determine the
best-compromised solution. Both approaches attempt to convert multidimensional objects
into a single sequence for decision convenience. To be specific, AHP uses the logical
grading system to compare various alternatives [42], while TOPSIS directly assesses the
relative closeness of Pareto solutions to the ideal optimum [43]. In addition, for a real-world
machining task, the decision maker’s preferences often need to be taken into account to
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meet customized requirements [44]. Therefore, combining the TOPSIS technique with
engineering decision preferences is necessary for final decisions on the cutting parameters
of an HKMU.

The present study aims to develop an equilibrium decision-making approach for
cutting parameters of HKMUs. For this purpose, an RSM-based surrogate model is built
for mapping the cutting performances of an HKMU. A multi-objective optimization model
is established for determining the Pareto solutions of cutting parameters. Based on this,
both the TOPSIS technique and engineering decision preferences are adopted to achieve an
equilibrium decision on the cutting parameters of an HKMU. With the proposed approach,
the final solution of cutting parameters of an HKMU is no longer merely left to engineers’
experience but results from both technological considerations and end users’ dimensions.
The rest of this paper is organized as follows. In Section 2, design objectives, the RSM-based
surrogate model, and the multi-objective optimization model are successively established
for developing the equilibrium decision-making approach for cutting parameters. In
Section 3, a novel HKMU with five-axis machining capacity is taken as an example to
illustrate the application of the proposed equilibrium decision-making approach. Finally,
some conclusions and remarks are presented in Section 4.

2. Equilibrium Decision-Making Approach

In general, the multiple design criteria in the cutting process, such as production
efficiency, machining stability, and cutting quality, are dependent on each other. In other
words, the improvement of one of them always leads to the worsening of another one.
Hence, the decision-making on cutting parameters of an HKMU is, in essence, a trade-off
problem between the design requirements of the cutting process. To deal with this issue, an
equilibrium decision-making approach is proposed.

As outlined in Figure 1, the main idea of the proposed approach is to transform the
trade-off problem into a multi-objective optimization with the objectives of machining
duration, cutting force, and surface roughness. To implement the multi-objective opti-
mization, an RSM-based surrogate model is adopted to describe the relationships between
design objectives and cutting parameters. Herein, the three design objectives of machining
duration, cutting force, and surface roughness are considered together. Five important
cutting parameters, such as spindle speed, tool diameter, depth of cut, width of cut, and
feed rate, are equally adopted in this decision-making process. Following this framework,
a flowchart of the equilibrium decision-making approach is presented in Figure 2.

As shown in Figure 2, there are four main steps.

(1) Firstly, the design objectives and cutting parameters of an HKMU are determined on
the basis of the design criteria of the specified initial machining task.

(2) Secondly, DoE is carried out to collect cutting responses. Based on this, the RSM
technique [32] is adopted to establish a surrogate model in an accurate yet efficient
manner. The surrogate model will be assessed in terms of regression accuracy, indicat-
ing whether it is acceptable for the following optimization.

(3) Then, the acceptable surrogate model, as well as design constraints and boundary
conditions, are employed in the multi-objective optimization design. By simultane-
ously optimizing the multiple objective functions, a cluster of solutions called the
Pareto frontier is obtained for cutting parameters.

(4) Finally, by combining the TOPSIS technique [41] and engineering decision preferences,
a set of decision-making procedures is proposed to designate the best-compromised
solution from the Pareto solutions.

As a result, the main advantage of this decision approach may lie in taking both
technological considerations and end users’ dimensions into the final solution of cutting
parameters of an HKMU.
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2.1. Objectives of Cutting Process

For clarity, the mathematical expression of the design objectives, such as machining
duration, cutting force, and surface roughness, is formulated as follows.

(1) Machining duration Te

For the sake of measurement convenience, the machining duration Te of a cutting
process is computed by the expression:

Te =
n

∑
i=1

Tsi (1)

where Tsi (i = 1, 2, . . . , n) denotes the average duration of the ith machining step; n is the
total number of machining steps in a machining duration.

(2) Cutting force Fc

To reflect the variation of the cutting force in the whole machining process more
comprehensively, the cutting force of a workpiece is estimated by average cutting forces
along three coordinate axes. Thus, the cutting force is defined as:

Fc =
1
Te

(
Td

√
F2

dx + F2
dy + F2

dz + Tu

√
F2

ux + F2
uy + F2

uz

)
(2)

where Td and Tu denote the machining durations of the down cutting and the up cutting,
respectively; Fdx, Fdy, and Fdz and Fux, Fuy, and Fuz represent the average cutting forces
along three coordinate axes in the process of down cutting and up cutting, respectively.

(3) Surface roughness Ra

In practice, the roughness measurements of a machined work piece are usually taken
from n sampling points for convenience. The average value of the n sampling points is
recorded as the final value of the roughness.

Ra =
1
n

n

∑
i=1

Rai (3)

where Rai denotes the roughness value of the i-th (i = 1, 2, . . . , n) sampling point on the
machined workpiece.

From the above-presented expressions, it can be found that a smaller value of [Te],
[Fc], and [Ra] means higher efficiency, stability, and quality in the cutting process of an
HKMU, respectively. However, it’s hard to analytically describe the mapping relationships
between these design objectives and corresponding cutting parameters [31]. Fortunately,
surrogate methods provide a solution to directly characterize such mapping relationships
with concise expression and acceptable efficiency [32].

2.2. RSM-Based Surrogate Model

The RSM technique is an efficient mathematical tool for building a surrogate model
for mapping cutting parameters. The establishment of the RSM-based surrogate model is
summarized in the following steps.

(1) According to the dimensions of objectives and variables, select an experimental
strategy that has as much information yet implementation convenience.

(2) With the help of commercial software such as Design Expert or Isight, collect and
manage the multiple responses to the design objectives of the cutting process.

(3) On the basis of the statistical features obtained from experimental data, estimate the
regression coefficients to fit the response surface of data.

For engineering practices, the commonly used response surface model can be mathe-
matically described as:
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y(x) = α0 +
p

∑
i=1

βixi +
p

∑
i=1

βiix2
i +

p

∑
i=1

p

∑
i<j

βijxixj +
p

∑
i=1

γix3
i +

p

∑
i=1

p

∑
i 6=j

γij(xi)
2xj +

p

∑
i=1

p

∑
i<j<k

γijkxixjxk (4)

where y(x) is the fitting function of the response surface model of a design objective;
x =

[
x1 x2 · · · xp

]T is the p-dimensional cutting parameters; α0, βi, βii, βij, γi, γii and
γijk denote the estimated regression coefficients, respectively.

Before determining an appropriate surrogate model for optimization design, the
regression accuracy of response surface models should be evaluated. To assess the model
accuracy, three metrics, namely R square (R2), relative average absolute error (RAAE), and
relative maximum absolute error (RMAE), are applied with additional r sampling points.
For clarity, three metrics for the response surface models (RSMs) are expressed as:

R2 = 1−

r
∑

i=1

(
yi − y′i

)2

r
∑

i=1
(yi − ŷ)2

(5)

R2 = 1−

r
∑

i=1

(
yi − y′i

)2

r
∑

i=1
(yi − ŷ)2

(6)

RAME =
max

(∣∣y1 − y′1
∣∣, |y2 − y′2|, · · · , |yr − y′r|

)√
1
r

r
∑

i=1
(yi − ŷ)2

(7)

where yi is the fitting value of the response surface model at the i-th (i = 1, 2, . . . , r) sampling
point; ŷ denotes the average value of yi at total r sampling points; y′i represents the exact
value experimentally measured at the i-th sampling point.

It can be seen from the above expressions that R2 and RAAE indicate the global
accuracy of a response surface model, while RMAE reflects the local accuracy. The larger R2

and the smaller RAAE and RMAE are, the higher the fitting accuracy of the corresponding
surrogate model is. Moreover, the RSM-based surrogate model can be directly called in
the iterative process of cutting performance optimization. As a result, the costly high-
order mathematical operations in conventional models will be replaced by simplified
arithmetic routines of a surrogate model, thus, improving the calculation efficiency of the
optimization procedure.

2.3. Multi-Objective Optimization Model

During the optimization process, some constraints should be included to narrow the
design space of cutting variables. Taking the aforementioned five cutting parameters into
account, the constraints of which can be considered as follows:

G(x) :



ns ≤ ns ≤ ns
dt ≤ dt ≤ dt
ap ≤ ap ≤ ap

ae ≤ ae ≤ ae
v f ≤ v f ≤ v f

(8)

where ns, dt, ap, ae, and vf denote spindle speed, tool diameter, depth of cut, width of
cut, and feed rate, respectively, ∗ and ∗ represent the lowest and the largest limitations
of a design variable, respectively. These design constraints can be determined through
specifications and experimental tests of an HKMU.
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After the design constraints, a multi-objective optimization model can be established
and described in the form of:

Find : ns dt ap ae v f ∈ G(x)
Min : Y(ns dt ap ae v f ) = {Te Fc Ra}
Subject to :
[Te]min ≤ Te ≤ [Te]max
[Fc]min ≤ Fc ≤ [Fc]max
[Ra]min ≤ Ra ≤ [Ra]max

(9)

where [∗]min and [∗]max represent the maximal and the minimal boundary conditions of an
optimization objective, respectively.

2.4. Decision-Making Procedures

By solving the multi-objective optimization model as described in Equation (9), a
cluster of feasible solutions named the Pareto frontier can be obtained for the cutting
parameters of an HKMU. To realize the equilibrium decision-making on Pareto solutions, a
set of decision-making procedures is summarized as follows.

(1) Determine the Pareto frontier of feasible solutions, in which none of the objectives
of a solution can be further improved without worsening other objectives. Taking a
minimization problem as an example, the Pareto frontier can be described as:

{
∀i ∈ [1, 2, . . . n], yij(Pnon) ≤ yij(Pdom)

}
∧
{
∃j ∈ [1, 2, . . . m], yij(Pnon) < yij(Pdom)

}
(10)

where n denotes the number of feasible solutions; m denotes the dimension of design
objectives; yij (*) represents the j-th dimensional design objective of the i-th solution;
Pnon and Pdom represent the design points that belong and do not belong to the Pareto
frontier, respectively. Thus, it exists that the responses of Pnon are dominant over that
of Pdom.

(2) Perform the dimensionless processing on the j-th dimensional objective yij (i = 1,2, . . .
Pn; j =1,2, . . . m) of Pareto points. Herein, the weighting factors are taken to weigh the
design objectives. Thus, the weighted dimensionless response zij can be expressed as:

zij =
yij · wj√

Pn
∑

i=1
y2

ij

(i = 1, 2, . . . Pn; j = 1, 2, . . . m) (11)

where Pn denotes the number of Pareto points; wj is the weighting factor of the j-th dimen-
sional design objective, which can be determined by the decision maker’s preferences.

(3) Define the ideal points of the Pareto frontier. For clarity, the coordinates of the ideal
points are discussed in two situations as follows.

(1) If the design objective is desired to be minimum, it leads to:

z+j =
Pn

min
i=1

zij; z−j =
Pnmax

i=1
zij (12)

(2) If the design objective is desired to be maximum, it leads to:

z+j =
Pnmax

i=1
zij; z−j =

Pn
min
i=1

zij (13)

where z+j and z−j represent the j-th (j =1,2, . . . m) dimensional coordinate of
the ‘positive ideal point’ and ‘negative ideal point’, respectively.
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(4) Calculate the Euclidean distances between the Pareto points and the ideal points.
Mathematically, the distances of a Pareto point to the ideal points can be estimated by:

d+i =

√√√√ m

∑
j=1

(
zij − z+j

)2
(14)

And:

d−i =

√√√√ m

∑
j=1

(
zij − z−j

)2
(15)

where d+i and d−i (i = 1,2, . . . Pn) denote the Euclidean distances from the i-th Pareto
point to the ‘positive ideal point’ and ‘negative ideal point’, respectively.

(5) Adopt a comprehensive index to assess the relative distances of Pareto points to
ideal points. According to the TOPSIS technique [43], the relative distance index is
formulated as the following:

cli =
d−i

d+i + d−i
(i = 1, 2, . . . Pn) (16)

where cli denotes the relative distance index of the i-th (i = 1,2, . . . Pn) Pareto point to
the ideal points, and it is in the range of (0, 1).

As can be seen from the above formulation, the relative distance index cli is dimen-
sionless. The index cli quantitatively indicates the relative closeness of the Pareto solutions
to the ideal optimum. From this point of view, a large value of the relative distance index cli
means a better solution with respect to the ideal optimum, or vice versa, a worse solution.
Thus, the set of Pareto solutions can be sorted according to the descending order of the
relative distance index. As a result, the Pareto solution with cli closest to 1 is selected as the
best-compromised solution on cutting parameters of an HKMU.

3. Illustrative Example

In this section, a five-axis HKMU presented in our previous study [14] is taken as an
example to illustrate the equilibrium decision-making approach proposed in Section 2. The
prototype of the exemplary HKMU is briefly described in the first place. An orthogonal
experiment is performed to measure the multiple cutting performances of the machining
device. Based on this, a multi-objective optimization is conducted to determine feasible
solutions and its Pareto frontier. After that, a correlation analysis is carried out to indicate
the coupling relationships between cutting parameters and design objectives. Finally, the
Pareto solutions are further sorted to designate the best-compromised machining solution
corresponding to each of the three customized machining schemes.

3.1. Prototype Description

Figure 3 demonstrates a fabricated prototype of the five-axis HKMU and correspond-
ing technical specifications.

As shown in Figure 3, the five-axis HKMU consists of a mechanical frame and a CNC
system. To be specific, the mechanical frame is a serial-parallel hybridized mechanism
integrating a parallel module and a serial module to the base frame. Among them, the
parallel module is designed as a redundantly actuated spindle head with a topology of
2UPR-2RPS. Herein, the ‘R’, ‘U’, and ‘S’ denote three types of passive joints such as revolute
joint, universal joint, and spherical joint, respectively; the ‘P’ represents a prismatic actuated
pair. Driven by servo motors installed on the rear end of the limbs, the platform can achieve
one translational and two rotational (1T2R) motions [14]. By deploying two orthogonal
sliding gantries, the serial module is designed as an auxiliary worktable to install the target
workpiece. Based on these arrangements, the spindle of the HKMU can perform five-axis
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machining tasks along the x, y, and z axes and about the y and u axes with respect to the
installed workpiece.
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Meanwhile, the CNC system is in charge of status monitoring, parameter control, and
human–machine information interaction. To improve multifunction and flexibility, the
present CNC system is developed as an open-architecture controlling system on the basis
of the C# program codes. The basic architecture of the controlling system is illustrated in
Figure 4.

As shown in Figure 4, there are five components employed in the controlling system,
a human–machine interface (HMI), a numerical control kernel (NCK), a programmable
logic control (PLC) unit, an I/O interface, and six sets of servo motors, motor drivers and
encoders. The HMI is developed to receive the user’s commands, display the operating
status and execute offline tasks of the HKMU. The NCK is integrated into a motion con-
troller, which is responsible for task management, trajectory control, dynamic tracking,
and kinematic calibration of the parallel as well as the serial modules. The PLC unit is
used to control the auxiliary devices, such as the spindle and the coolant/slurry tank. The
developed HMI, NCK, and PLC units communicate with each other through the integrated
I/O interface.

To verify the five-axis machining capacity of the exemplary HKMU, machining testing
is carried out on the fabricated prototype. The testing is to machine an S-shaped workpiece
from an aluminum alloy-6061 (Length ×Width × High: 50 × 50 × 30 mm). Five major
cutting parameters are involved, which are set as ns = 10,000 rpm, dt = 3 mm, ap = 0.4 mm,
ae = 0.5 mm, and vf = 3.5 mm·s−1. Following the parameter settings, the final machined
workpiece is obtained and shown in Figure 5.
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Figure 5. Five-axis machining of the S-shaped workpiece.

As shown in Figure 5, the machined workpiece matches well with the expected S shape,
in which the maximal relative error of height Hs is about 2.20% and the surface roughness
Ra is less than 1.14 µm. This result clearly indicates that the prototype can fulfill a desired
five-axis machining task of three translational and two rotational (3T2R)motion abilities
along/about corresponding axes. However, the above cutting parameters are designated
with engineering experience, limiting the machining quality and efficiency of the HKMU.
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To fully disclose the machining potential of the newly developed five-axis machining
device, the equilibrium decision-making approach proposed in Section 2 is employed to
implement appropriate decisions on the cutting parameters of the five-axis HKMU.

3.2. Design of Experiments

The experimental factors and their levels are presented in Table 1. Herein, the mea-
sures of experimental factors are carried out varying five cutting parameters such as spindle
speed ns, tool diameter dt, depth of cut ap, width of cut ae, and feed rate vf in four levels.
The experimental levels of the five cutting parameters are customized according to the
machining unit’s technical specifications and machining capacity. In the following exper-
iments, the aluminum alloys with dimensions of 70 mm × 70 mm × 10 mm are used as
the workpieces for face milling. Experimental data is measured and arranged by using
the L16(45) orthogonal factorial experiment design. The experimental combinations of the
cutting parameters and corresponding levels are listed in Table 2.

Table 1. Experimental factors and their levels.

Factors Levels

1 2 3 4
A: Spindle speed

ns/rpm 9000 11,000 13,000 15,000

B: Tool radius dt/mm 3 4 5 6
C: Depth of cut ap/mm 0.15 0.30 0.45 0.60
D: Width of cut ae/% 20 40 60 80

E: Feed rate vf/mm·s−1 2 4 6 8

Table 2. Orthogonal factorial experiment design: L16(45).

Exp. No. Spindle Speed
ns/rpm

Tool Radius
dt/mm

Depth of Cut
ap/mm

Width of Cut
ae/%

Feed Rate
vf/mm·s−1

1 9000 3 0.15 20 (0.6 mm) 2
2 9000 4 0.30 40 (1.6 mm) 4
3 9000 5 0.45 60 (3.0 mm) 6
4 9000 6 0.60 80 (4.8 mm) 8
5 11,000 3 0.30 60 (1.8 mm) 8
6 11,000 4 0.15 80 (3.2 mm) 6
7 11,000 5 0.60 20 (1.0 mm) 4
8 11,000 6 0.45 40 (2.4 mm) 2
9 13,000 3 0.45 80 (2.4 mm) 4
10 13,000 4 0.60 60 (2.4 mm) 2
11 13,000 5 0.15 40 (2.0 mm) 8
12 13,000 6 0.30 20 (1.2 mm) 6
13 15,000 3 0.60 40 (1.2 mm) 6
14 15,000 4 0.45 20 (0.8 mm) 8
15 15,000 5 0.30 80 (4.0 mm) 2
16 15,000 6 0.15 60 (3.6 mm) 4

To carry out the orthogonal experiments of face cutting of the exemplary HKMU, a
cutting test rig is established to measure the cutting responses such as machining duration
Te, cutting force Fc, and surface roughness Ra of the HKMU. The experimental setup for
cutting tests is illustrated in Figure 6.
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Figure 6. Experimental setup for cutting tests for the five-axis HKMU.

As illustrated in Figure 6, the cutting test rig mainly consists of a five-axis HKMU, a
self-developed CNC system, a dynamometer (Kistler 9272, Kistler Group, Sindelfingen,
German), a data acquisition system (Kistler 5167A41, Kistler Group, Sindelfingen, German),
and a surface roughness tester (MarSurf PS-10, Mahr, Gottingen, German). The dynamome-
ter is responsible for capturing the cutting signals from the testing workpiece and then
transmitting the signals intothe data acquisition system to calculate the cutting force. After
completing a cutting experiment, the machining duration can be obtained through the time
feedback of the CNC system. Correspondingly, the roughness measurements are taken
from five different sampling points using the surface roughness tester, the average of which
is finally recorded as the surface roughness of a machined workpiece.

For comparability, all workpieces are machined in the same working environment
except for the tested cutting parameters. In addition, there are neither significant vibrations
nor regenerative chatters during the cutting process of the prototype, indicating that the
experimental data is acceptable for further analysis. After experimental testing, the results
are presented in Table 3.

Table 3. Experimental results of the face milling of the HKMU.

Exp. No. Machining Duration
Te/s

Cutting Force
Fc/N

Surface Roughness
Ra/µm

1 14,856 3.278 0.172
2 1440 13.475 0.213
3 380 17.061 0.532
4 159 23.315 0.180
5 738 11.661 0.219
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Table 3. Cont.

Exp. No. Machining Duration
Te/s

Cutting Force
Fc/N

Surface Roughness
Ra/µm

6 1140 17.451 0.168
7 1020 8.204 0.149
8 1264 6.368 0.104
9 804 19.601 0.162
10 1071 17.285 0.231
11 1320 4.203 0.430
12 1128 4.312 0.126
13 684 22.585 0.160
14 888 12.410 0.298
15 1404 8.880 0.102
16 1428 3.958 0.118

3.3. Multi-Objectives Optimization

According to technical specifications and times of repeated cutting experiments, the
design constraints of cutting parameters and the boundary conditions of optimization
objectives can be determined for the HKMU. The constraints and conditions are shown in
Table 4.

Table 4. Design constraints and boundary conditions.

Value Minimum/
Upper Bound

Maximum/
Lower Bound Value Minimum/

Upper Bound
Maximum/

Lower Bound

ns/rpm 9000 15,000 dt/mm 3 6
ap/mm 0.15 0.60 ae/% 20 80

vf/mm·s−1 2 8 Te/s 159 14,856
Fc/N 0.12 24 Ra/µm 0.101 3.2

Based on the orthogonal experiment results in Table 3, the response surface models
of the optimization objectives can be respectively constructed with commercial software
of Design Expert®. To determine an appropriate surrogate model for the optimization
procedure, the regression accuracy of the linear, quadratic, cubic, and quartic response
surface models are assessed with the metrics of R2, RAAE, and RMAE. The assessment
results are shown in Table 5 for detail.

Table 5. Accuracy assessment for the response surface models.

Assessment metrics R2 RAAE RMAE

Machining duration
Te/s

Linear 0.6572 0.505119284 1.7662867
Quadratic 0.9636 0.086900217 0.5213963

Cubic 1 0.000170538 0.000244
Quartic 1 0.0000503 0.000108

Cutting force
Fc/N

Linear 0.8571 0.310067858 0.9704946
Quadratic 0.9939 0.035263284 0.2109161

Cubic 1 0.00011867 0.0013264
Quartic 1 0.000117809 0.0013162

Surface roughness
Ra/µm

Linear 0.2727 1.213001375 4.4719211
Quadratic 0.7879 0.23523771 1.3923391

Cubic 1 0.00308598 0.0188888
Quartic 1 0.003055539 0.0191743

As can be seen from Table 5, the cubic and quartic response surface models of the
optimization objectives have larger values of R2 and smaller values of RAAE and RMAE, all
of which imply better regression accuracy. However, the higher the order of the models, the
lower the computational efficiency for the optimization is. Hence, considering the accuracy
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and efficiency as well, the surrogate models of machining duration [Te], cutting force [Fc],
and surface roughness [Ra] are determined as the quartic, cubic, and cubic response surface
models, respectively. For clarity, the polynomials of the established models are presented
as Equations (17)–(19).

Te = 90, 399.674− 0.975ns − 14, 740.776dt − 217, 352ap − 143, 393ae − 3599.348v f + 4.884nsap + 0.651nsae
+32, 434.890dtap + 26, 149.613dtae + 550.170dtv f + 266, 240apae + 215.828apv f + 5716.381aev f
−56, 433.104dtapae − 0.0629nsdtaev f

(17)

Fc = −88.911 + 0.00537ns + 14.257dt + 207.944ap + 175.492ae − 3.95v f − 5.963e− 04nsdt − 2.746e− 03nsap
−5.576e− 03nsae − 36.883dtap − 18.39dtae + 0.493dtv f − 262.407apae + 2.637apv f − 0.892aev f + 51.5dtapae

(18)

Ra = 6.256− 0.000363ns − 0.8789dt − 16.413ap − 9.696ae + 0.263v f+6.969e− 06nsdt+5.896e− 04nsap
+9.64e− 05nsae + 2.34dtap + 2.23dtae+2.96e− 03dtv f + 23.972apae−0.143apv f − 0.188aev f−5.272dtapae

(19)

By substituting the above polynomials into the multi-objective optimization model, all
feasible solutions to cutting parameters can be solved. Based on this, the corresponding
Pareto frontier is screened out according to the criteria in Equation (10). The feasible
solutions and their Pareto frontier are illustrated in Figure 7.
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Figure 7. Feasible solutions and their Pareto frontier.

As illustrated in Figure 7, there are 12,463 sets of feasible solutions available for the
cutting parameters of the HKMU. By sorting the feasible solutions, the Pareto frontier is
determined to fulfill the optimization with multiple objectives, in which there are 142 sets of
Pareto solutions graphically located at #1 to #142 points. Clearly, the Pareto solutions fully
consider the coupling relationships of multiple objectives by optimizing simultaneously.
Moreover, the optimization objectives of Pareto solutions are concentrated in the ranges
of [Te] ∈ [159,3534] s, [Fc] ∈ [0.0021, 22.237] N, and [Ra] ∈ [0.101, 0.644] µm, where the
increase in a design objective cannot avoid a decrease in other objectives, that is, the
compromised solutions on cutting parameters of the HKMU. For clarity, the Pareto solutions
and corresponding cutting parameters are briefly listed in Table 6.
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Table 6. Pareto solutions and corresponding cutting parameters.

Point
No.

Pareto Solutions Cutting Parameters

Te/s Fc/N Ra/µm ns/rpm dt/mm ap/mm ae/% vf/mm·s−1

#1 1614 0.812 0.266 9000 6 0.55 20 3.00
#2 197 17.460 0.450 9000 6 0.55 65 6.50
. . . . . . . . . . . . . . . . . . . . . . . . . . .
#50 326 12.637 0.410 11,500 5 0.55 6 5.00
#51 974 10.169 0.103 11,500 5 0.60 35 3.00
. . . . . . . . . . . . . . . . . . . . . . . . . . .

#100 269 2.707 0.511 13,750 6 0.60 75 3.50
#101 407 18.099 0.106 14,000 3 0.50 45 6.50
. . . . . . . . . . . . . . . . . . . . . . . . . . .

#141 363 2.025 0.347 15,000 6 0.25 40 7.50
#142 753 1.715 0.358 15,000 6 0.25 45 7.00

3.4. Correlation Analysis

Before final decision-making on cutting parameters, it is necessary to clarify the
correlations between the cutting parameters and design objectives. Herein, the correlation
coefficient is formulated as:

rxy =

n
∑

i=1
(xi − x̂)(yi − ŷ)√

n
∑

i=1
(xi − x̂)2 n

∑
i=1

(yi − ŷ)2

(20)

where rxy denotes the correlation coefficient between the arrays x and y; x̂ and ŷ are the
averages of the arrays x and y, respectively.

The correlation coefficient is a statistic representing the closeness of two variables. To
be specific, the correlation coefficient rxy is in the range of [−1, 1]. A positive rxy indicates
there is a positive correlation between the two measurement variables. A negative rxy
indicates there is a negative correlation between the two measurement variables. Moreover,
the greater value of the correlation coefficient rxy, the stronger the correlation between the
two variables, or vice versa. If the correlation coefficient rxy is equal to 0, it implies that the
two variables are independent and uncorrelated with each other. For clarity, the correlation
coefficients between cutting parameters and design objectives are listed in Table 7.

Table 7. Correlation coefficients between cutting parameters and design objectives.

Correlation
Coefficients ns dt ap ae vf Te Fc Ra

ns 1 0 0 0 0 −0.307 −0.111 −0.230
dt 0 1 0 0 0 −0.329 −0.337 −0.063
ap 0 0 1 0 0 −0.404 0.611 −0.017
ae 0 0 0 1 0 −0.366 0.534 −0.049
vf 0 0 0 0 1 −0.396 0.268 0.461
Te −0.307 −0.329 −0.404 −0.366 −0.396 1 −0.414 −0.120
Fc −0.111 −0.337 0.611 0.534 0.268 −0.414 1 0.123
Ra −0.230 −0.063 −0.017 −0.049 0.461 −0.120 0.123 1

As can be observed from Table 7, the correlation coefficients between different cutting
parameters are equal to 0, indicating that the selected parameters are independent and
uncorrelated with each other; thus, the selection is reasonable. In addition, the degrees
of correlations vary with design objectives and cutting parameters. To be specific, [Te] is
negatively correlated with all five cutting parameters; [Fc] is negatively correlated with ns
and dt, while positively correlated with ap, ae, and vf; [Ra] is negatively correlated with ns, dt,
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ap and ae, while only positively correlated with vf. From these investigations, the following
suggestions can be put forward for cutting parameters. (1) Increasing any one of the five
cutting parameters is conducive to shortening the machining duration. (2) Increasing the
spindle speed and tool diameter while reducing the depth of cut, width of cut, and feed
rate may obtain a smaller cutting force. (3) Increasing spindle speed, tool diameter, depth
of cut, and width of cut while reducing feed rate is beneficial to improving the surface
roughness of machined workpieces.

Further observations of Table 7 show that [Te] is negatively correlated with [Fc] and
[Ra], while [Fc] is positively correlated with [Ra]. This reveals that machining duration
is in a contradictory relationship with surface roughness while cutting force and surface
roughness are in a collaborative relationship. The absolute value of the correlation coeffi-
cient between [Te] and [Fc] is 0.414, which is significantly greater than that between [Te]
and [Ra] and that between [Fc] and [Ra]. This clearly indicates that the contradictory rela-
tionship between machining duration and cutting force is the dominant relationship. The
above phenomenon also explains why the multiple cutting objectives cannot realize their
respective best results simultaneously but reach a trade-off between themselves. Therefore,
adopting the equilibrium decision-making approach we proposed would be very necessary
for describing this kind of difficult decision-making.

3.5. Equilibrium Decisions

Without loss of generality, three customized machining schemes with different engi-
neering decision preferences are presented in Table 8. Herein, the decision maker’s prefer-
ences are quantized by factor wj0 (j = 1, 2, 3) with the range of 0 to 1, in which the larger the
value is, the stronger the decision maker’s preferences are. Based on this, the weighting
factor wj can be calculated for design objectives of [Te], [Fc], and [Ra], respectively. Three
schemes are decreasing along the design objectives of [Te], [Fc], and [Fc, Ra], respectively.

Table 8. Three customized machining schemes with engineering decision preferences.

Schemes

Decision Maker’s Preferences Weighting
Factors Engineering

Decision
Preferencesw10

(Te)
w20
(Fc)

w30
(Ra) wj=wj0/

3
∑
j=1

wj0

P1 0.5 0.1 0.1 [0.714:0.143:0.143] [Te]
P2 0.1 0.5 0.1 [0.143:0.714:0.143] [Fc]
P3 0.1 0.5 0.5 [0.091:0.454:0.454] [Fc, Ra]

Taking the three customized machining schemes as an example, the Pareto solutions
are sorted to designate the best-compromised solution of the corresponding scheme. The
results are illustrated in Figure 8.

As shown in Figure 8, the larger and the darker a Pareto point, the greater its cor-
responding relative distance index cli and the closer it is to the ideal optimum of the
customized machining scheme. Further observations show that the relative distance in-
dexes of the three schemes are decreasing along the coordinate axes of [Te], [Fc], and [Fc,
Ra], respectively. Thus, the best-compromised solutions of the three customized machining
schemes are designated as #75, #130, and #136 Pareto points, as illustrated in Figure 8a–c,
respectively. Based on these results, the following considerations are recommended. (1) The
machining tasks strictly requiring production efficiency should employ the solution lo-
cating at #75 Pareto point, i.e., ns = 12,500 rpm, dt = 6 mm, ap = 0.60 mm, ae = 65% and
vf = 3.5 mm·s−1. (2) The machining tasks emphasizing the significance of machining stabil-
ity should employ the solution locating at #130 Pareto point, i.e., ns = 15,000 rpm, dt = 5 mm,
ap = 0.20 mm, ae = 60% and vf = 8.0 mm·s−1. (3) The machining tasks demanding both
machining stability and cutting quality should employ the solution locating at #136 Pareto
point, i.e., ns = 15,000 rpm, dt = 6 mm, ap = 0.20 mm, ae = 50% and vf = 5.5 mm·s−1.
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For the sake of decision-making convenience, the three customized machining schemes
are further compared with the scheme P0 without engineering decision preferences. The
comparison results are illustrated with a radar map in Figure 9.
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As illustrated in Figure 9, it can be seen that the final solutions of the three customized
machining schemes have lower values on [Te], [Fc], and [Fc, Ra] than that corresponding
to the scheme without engineering decision preferences, respectively. To be specific, the
customized machining schemes P1, P2, and P3 reduce machining duration, cutting force,
and surface roughness by 44%, 43%, and 9% compared to the scheme P0, respectively.
It is coincident with the engineering decision preferences as described in Table 8. This
phenomenon may also evidence that the proposed equilibrium decision-making approach
makes reasonable decisions on cutting parameters of the HKMU.

4. Conclusions and Outlook

The present study proposes an equilibrium decision-making approach for cutting
parameters. The application of the proposed approach is illustrated through an exemplary
five-axis HKMU. The main contributions of this work can be stated as follows.

(1) An equilibrium decision-making approach for cutting parameters of an HKMU is
proposed with both multi-objective technological considerations and end users’ engi-
neering decision preferences.

(2) A total of 142 sets of compromised Pareto solutions and corresponding cutting param-
eters are determined for the typical face milling of the exemplary five-axis HKMU.

(3) The correlation analysis reveals that machining duration is in a contradictory rela-
tionship with surface roughness while cutting force and surface roughness are in a
collaborative relationship.

(4) Three customized machining schemes with different engineering decision prefer-
ences are analyzed to respectively designate the best-compromised solution on
cutting parameters.

(5) Compared to the scheme without engineering decision preferences, the three schemes
reduce the machining duration, the cutting force, and the surface roughness by 44%,
43%, and 9%, respectively.

The proposed approach includes both the RSM technique and surrogate model in
mathematical, thus may provide an accurate yet efficient solution for cutting parameter
determinations of an HKMU. In addition, this method combines the TOPSIS technique with
engineering decision preferences, which enables the decision maker’s preferences to be
taken into account to meet some customized requirements. Readers should note that two
limitations of the proposed method are (1) the criteria weights for the customized machining
schemes are subjective determinations, not based on some quantitative basis. This issue
should be modified in our future study so that the method proposed can be more accurate.
(2) The variable configurations of the HKMU should be taken into the design of experiments
for this approach, and the related in-depth analysis will be presented elsewhere.

In the future, this proposed decision-making approach will be extended to other
multi-axis machining devices with minor modifications to the design of experiments.
The improvement of decision-making efficiency on cutting parameters, such as visually
integrating the proposed approach into the self-developed CNC system, will be carried out
in our next work.
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