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Abstract: One of the most difficult production geometry tasks arising in the machining process of the
elements of a drive pair is to avoid undercuts. It is a serious technological challenge to determine the
production of the elements of worm gear drives avoiding the phenomenon undercut, especially in the
case of a pair consisting of a curved profile worm and its mating wheel. The technology of forming
the tooth surface requires a separate examination in each case, running the simulation procedure of
the tool geometry and the movement conditions when forming different teeth. This article proposes
a new concept for determining and then avoiding the positions of undercutting by examining the
patented worm with a circular arc profile in axial section, due to its extremely advantageous aspect
in terms of production technology. The cutting edge of the hob, formed from the substitutional
worm, moves on the tooth surface of the worm, and produces the tooth surface of the conjugate
wheel. The gear tooth surface has been determined based on the main law of gearing with the lines
consisting of the contact points of the conjugated surfaces. The conditions for the disappearance of
the common normal or the relative velocity fitting to the common tangent plane of the contacting
points are defined in this paper.

Keywords: worm gear drive; machining; undercutting; mathematical conditions

1. Introduction

Gear theory belongs to the scientific fields of constructive geometry, manufacturing,
design, measurement technology and computer methods. All these disciplines are necessary
for modern developments [1–3], some of which have affected our research work at the
Worm Gear Science School [4,5], which was founded at the University of Miskolc. Gear
tooth theory has evolved into an independent discipline following much theoretical and
practical research [6–8]. Works about examining the necessary and sufficient conditions
for the existence of an envelope have also influenced our research (e.g., [9,10]). With the
development of gear technology and the use of computers both in gearing theory and gear
manufacturing, researchers have modified it to a modern theory of gearing and extended
its methodology [10] and industrial applications [11–13]. Many researchers dealing with
this topic have had a significant impact on our work [13,14]. Our studies have also been
influenced by writings focused on the study of undercuts in involute shafts and bevel
gears [15,16]. For the present work, tool profile distortion analysis in the case of the
machining of worm gear drive pairs with a circle arc profile in the axial section has been
completed using the methods of the constructive geometry [17–19]. Studies supported by
valuable simulation procedures have been performed for the contact analysis of the drive
pair elements, which were also useful in the research leading to the present paper [20,21].
Particularly noteworthy is the research on the industrial implementation of the production
of cylindrical worms, supported by theory, for the purpose of this paper [22,23].

In this article, an undercutting analysis in relative motion is presented, which can
occur even if there is no singular point on the generating surface. At singular points the
surface normal vectors become indeterminate, so undercutting can occur. The analysis
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has been performed in a constructive geometric model created for the development of
the production geometry of the elements of a conical and cylindrical worm gear pair (see
Figure 1). The rotating coordinate system K1F(x1F, y1F, z1F) has been fixed to the worm
or hob, while the rotating coordinate system K2F(x2F, y2F, z2F) has been fixed to the gear
or grinding wheel, the coordinate system K1(x1, y1, z1) has been connected to the linear
moving table, the stationary coordinate system K2(x2, y2, z2) has been connected to the
grinding wheel or gear, and the stationary coordinate system K0(x0, y0, z0) has been fixed
to the frame.
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Figure 1. The frames defined for the analysis of the production geometry of the surface Σ1 of the
worm and the Σ2 of the wheel, based on [18].

The geometrical parameters used, such as a for the distances of axes, c for the tool
offset, α for the tilting angle of the tool to the helical surface in a characteristic section, γ12

for the angle between worm and wheel or tool axes, which is equal to helix lead angle γ on
the worm’s reference surface in case of manufacturing with a grinding wheel, pa for the
axial screw parameter, pr for the radial spiral parameter, and zax for axial displacement of
the helicoid surface to the manufacturing position, are indicated in Figure 1. The motion
geometrical parameters used, such as ϕ1 for the rotation angle of the helical surface, ϕ2 for
the rotation angle of the gear or the tool surface, ω1 for the angular velocity of the helical
surfaces and ω2 for the angular velocity of the gear or the tool, have been specified as
shown in Figure 1. In the case of the reported constructive geometric model, the geometric
parameters must be set according to the task. In the case of worm gear drive meshing
analysis, the shaft angle γ12 is −90◦, taking into account the orientation of the axes. Our
further analyses relate to the examination of rigid bodies. In this discussion, the worm
gear hob created from the worm is labeled Σ1 and the derived gear tooth surface Σ2 to
differentiate between generator and generated surfaces.

For the analysis, the vector parametric form of the regulator helical surface Σ1 in the
coordinate system K1F will be suitable:

r1F = r1F(η, ϑ) (1)
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where η is the internal distance parameter and ϑ is the internal angle parameter. The
regulator surface Σ1 is free from singularities if the normal vectors exist, so the following
condition is fulfilled:

∂r1F
∂η
× ∂r1F

∂ϑ
= n1F 6= 0 (2)

The transformation matrix between the coordinate system K1F and the coordinate
system K2F can be determined based on Figure 1

M2F,1F = M2F,2 ·M2,K ·MK,0 ·M0,1 ·M1,1F (3)

M1F,2F = M1F,1 ·M1,0 ·M0,K ·MK,2 ·M2,2F (4)

The transformation matrices M1,1F and M1F,1 based on Figure 1 are as follows

M1,1F =


cos ϕ1 − sin ϕ1 0 0
sin ϕ1 cos ϕ1 0 0

0 0 1 −zax
0 0 0 1

 M1F,1 =


cos ϕ1 sin ϕ1 0 0
− sin ϕ1 cos ϕ1 0 0

0 0 1 zax
0 0 0 1

 (5)

The transformation matrices M0,1 and M1,0 based on Figure 1 are as follows

M0,1 =


1 0 0 0
0 1 0 0
0 0 1 ϕ1 · pa
0 0 0 1

 M1,0 =


1 0 0 0
0 1 0 0
0 0 1 −ϕ1 · pa
0 0 0 1

 (6)

The transformation matrices MK,0 and M0,K based on Figure 1 are as follows

MK,0 =


cosγ12 0 sinγ12 −c · cosγ12

0 1 0 a− ϕ1 · pr
−sinγ12 0 cosγ12 c · sinγ12

0 0 0 1

 M0,K =


cosγ12 0 −sinγ12 c

0 1 0 −a + ϕ1 · pr
sinγ12 0 cosγ12 0

0 0 0 1

 (7)

The transformation matrices M2,K and MK,2 based on Figure 1 are as follows

M2,K =


1 0 0 0
0 cosα sinα 0
0 −sinα cosα 0
0 0 0 1

 MK,2 =


1 0 0 0
0 cosα −sinα 0
0 sinα cosα 0
0 0 0 1

 (8)

The transformation matrices M2F,2 and M2,2F based on Figure 1 are as follows

M2F,2 =


cos ϕ2 − sin ϕ2 0 0
sin ϕ2 cos ϕ2 0 0

0 0 1 0
0 0 0 1

 M2,2F =


cos ϕ2 sin ϕ2 0 0
− sin ϕ2 cos ϕ2 0 0

0 0 1 0
0 0 0 1

 (9)

The matrix of the transformation from the frame K2F to the frame K1F is as follows
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M1F,2F =

−cosα · sin ϕ1 · sin ϕ2
+sinα · sinγ12 · cos ϕ1 · sin ϕ2
+cosγ12 · cos ϕ1 · cos ϕ2

+cosγ12 · cos ϕ1 · sin ϕ2
+cosα · sin ϕ1 · cos ϕ2
−sinα · sin ϕ1 · cos ϕ2

−sinα0 · sin ϕ1
−cosα · sinγ12

· cos ϕ1

−a · sin ϕ1
+c · cos ϕ1
+pr · ϕ1 · sin ϕ1

−sinα · sinγ12 · sin ϕ1 · sin ϕ2
−cosα · cos ϕ1 · sin ϕ2
−cosγ12 · sin ϕ1 · cos ϕ2

−cosγ12 · sin ϕ1 · sin ϕ2
+sinα · sinγ12 · sin ϕ1 · cos ϕ2
+cosα · cos ϕ1 · cos ϕ2

+cosα · sinγ12

· sin ϕ1
−sinα · cos ϕ1

−a · cos ϕ1
−c · sin ϕ1
+pr · ϕ1 · sin ϕ1

−sinα · cosγ12 · sin ϕ2
+sinγ12 · cos ϕ2

+sinγ12 · sin ϕ2
+sinγ12 · cos ϕ2

cosα · cosγ12 pa · ϕ1 + zax

0 0 0 1



(10)

The matrix of the transformation from the frame K1F to the frame K2F is as follows

M2F,1F =

−cosα · sin ϕ1
· sin ϕ2
+sinα · sinγ12

· cos ϕ1 · sin ϕ2
+cosγ12 · cos ϕ1
· cos ϕ2

−sinα · sinγ12

· sin ϕ1 · sin ϕ2
−cosα · cos ϕ1
· sin ϕ2
−cosγ12 · sin ϕ1
· cos ϕ2

−sinα0 · cosγ12

· sin ϕ2
+sinγ12 · cos ϕ2

−

 a · cosα
+c · sinα · sinγ12

−zax · sinα · cosγ12

 · sin ϕ2

−
(

pa · sinα · cosγ12

−pr · cosα

)
· ϕ1 · sin ϕ1

−
(

c · cosγ12

+zax · sinγ12

)
· cos ϕ2

+pa · sinγ12 · ϕ1 · cos ϕ2

+cosγ12 · cos ϕ1
· sin ϕ2
+cosα · sin ϕ1
· cos ϕ2
−sinα · sinγ12

· cos ϕ1 · cos ϕ2

−cosγ12 · sin ϕ1
· sin ϕ2
+sinα · sinγ12

· sin ϕ1 · cos ϕ2
+cosα · cos ϕ1
· cos ϕ2

+sinγ12 · sin ϕ2
−sinα · cosγ12

· cos ϕ2

−
(

c · cosγ12

+zax · sinγ12

)
· sin ϕ2

+pa · sinγ12 · ϕ1 · sin ϕ2

+

 a · sosα
+c · sinα · sinγ12

−zax · sinα · cosγ12

 · cos ϕ2

+

(
pa · sinα · cosγ12

−pr · cosα

)
· ϕ1 · cos ϕ2

−sinα · sin ϕ1
−cosα · sinγ12

· cos ϕ1

+cosα · sinγ12

· sin ϕ1
−sinα · cos ϕ1

+cosα · cosγ12
+

(
pa · cosα · cosγ12

+pr · sinα

)
· ϕ1

a · sinα+ c · cosα · sinγ12

−zax · cosα · cosγ12

0 0 0 1



(11)

The v2F
(12) relative velocity vector between surface Σ1 and surface Σ2 can be deter-

mined using the transformation matrix M2F,1F from the frame K1F(x1F, y1F, z1F) of the worm
to the frame K2F(x2F, y2F, z2F) of the mating gear, in the form

v(12)
2F =

dM2F,1F

dt
· r1F (12)

Using the transformation matrix M1F,2F from the frame K2F(x2F, y2F, z2F) of the mating
gear to the frame K1F(x1F, y1F, z1F) of the worm, the relative velocity vector v1F

(12) can be
calculated according to the following formula

v(12)
1F = M1F,2F ·

dM2F,1F

dt
· r1F (13)
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where the “kinematic transformer” matrix is based on [18]:

P1a = M1F,2F ·
dM2F,1F

dt
(14)

where the P1a is as follows

P1a =

0
−1− i · cosα
·cosγ12

i · cosα · sinγ12

· sin ϕ1
−i · sinα · cos ϕ1

−

 i · c · cosα · cosγ12

+a0 + pr
+i · zax · cosα · sinγ12

 · sin ϕ1

+

(
i · pa · cosα · sinγ12

+pr

)
· ϕ1 · sin ϕ1

−
(

i · a0 · cosα · cosγ12

−c− i · zax · sinα

)
· cos ϕ1

−i ·

 pa · sinα

−pr · cosα
·cosγ12

 · ϕ1 · cos ϕ1

1 + i · cosα · cosγ12 0
i · sinα · sin ϕ1
+i · cosα · sinγ12

· cos ϕ1

(
i · a0 · cosα · cosγ12

−c− i · zax · sinα

)
· sin ϕ1

+i ·

 pa · sinα

−pr · cosα
·cosγ12

 · ϕ1 · sin ϕ1

−

 i · c · cosα · cosγ12

+a0 + pr
+i · zax · cosα · sinγ12

 · cos ϕ1

+

(
i · pa · cosα · sinγ12

+pr

)
· ϕ1 · cos ϕ1

−i · cosα · sinγ12

· sin ϕ1
+i · sinα · cos ϕ1

−i · sinα · sin ϕ1
−i · cosα · sinγ12

· cos ϕ1

0

−
(

pa+

i · pr · cosα · sinγ12

)
· ϕ1

−i · a0 · cosα · sinγ12

−i · c · sinα+ pa + zax

0 0 0 0



(15)

The equation of meshing can be written in the following form

n1F · v1F = f (η, ϑ, ϕ1) = 0 (16)

The tooth surface Σ2 can be produced as the enveloping surface of the instantaneous
contact lines in such a way that any contact point C of the contact lines l described in K1F
can be converted into the frame K2F using the transformation matrix M2F,1F between them,
which can be written

f (η, ϑ, ϕ1) = 0
r1F = r1F(η, ϑ)

r2F = M2F,1F · r1F

 (17)

The geometric location of those points of the lϕ1 contact curves occurring for any ϕ1
parameter should be determined on the generator surface Σ1, which results in singular
points on the generated gear tooth surface Σ2.

2. Singularity Avoidance Method

Different points of the tooth surfaces created by the tool surfaces can be distinguished
from the perspective of differential geometry.
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Definition 1. By elementary surface we mean a shape that can be produced as the endpoints of the
position vectors of a two-parameter vector function r = r(η, ϑ) interpreted on a simply connected
region of the plane (η, ϑ), where

(a) the mapping defined by r = r(η, ϑ) is topological
(b) r = r(η, ϑ) is continuously differentiable
(c) vectors ∂r/∂η and ∂r/∂ϑ are not parallel at any point.

Those surface productions that fulfil the conditions (a)–(c) are called regular productions.

Definition 2. A point that does not meet the definition of a regular point is called a singular point.

To avoid undercutting it is necessary to determine the geometrical location of the
points on the regulator surface Σ1 that create the singular points on the regulated surface
Σ2, where the velocity vector or the normal vector of the surface become indeterminate,
resulting in undercutting.

Undercutting during relative motion can also occur even if there is no singular point
on the regulator surface Σ1, but the generated surface Σ2 may contain not only regular
points but also singular points.

In order to carry out the matrix algebraic analysis, it is necessary to make some
definitions regarding the projections falling on the coordinate planes.

Definition 3. Let the value of the determinant of matrix

Mxy =


∂x1F
∂η

∂x1F
∂ϑ −v(12)

1Fx
∂y1F
∂η

∂y1F
∂ϑ −v(12)

1Fy
∂ f
∂η

∂ f
∂ϑ − ∂ f

∂ϕ1
· ∂ϕ1

∂t

 (18)

be ∆xy in the mathematical kinematical model.

Definition 4. Let the value of the determinant of matrix

Myz =


∂y1F
∂η

∂y1F
∂ϑ −v(12)

1Fy
∂z1F
∂η

∂z1F
∂ϑ −v(12)

1Fz
∂ f
∂η

∂ f
∂ϑ − ∂ f

∂ϕ1
· ∂ϕ1

∂t

 (19)

be ∆yz in the mathematical kinematical model.

Definition 5. Let the value of the determinant of matrix

Mzx =


∂z1F
∂η

∂z1F
∂ϑ −v(12)

1Fz
∂x1F
∂η

∂x1F
∂ϑ −v(12)

1Fx
∂ f
∂η

∂ f
∂ϑ − ∂ f

∂ϕ1
· ∂ϕ1

∂t

 (20)

be ∆zx in the mathematical kinematical model.

Definition 6. Let the value of the determinant of matrix

Mηϑ =


∂x1F
∂η

∂x1F
∂ϑ −v(12)

1Fx
∂y1F
∂η

∂y1F
∂ϑ −v(12)

1Fy
∂z1F
∂η

∂z1F
∂ϑ −v(12)

1Fz

 (21)

be ∆ηϑ in the mathematical kinematical model.
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The contact point C is located on both the generator surface Σ1 and the generated
surface Σ2 at the same time. To determine the relative velocity, the contact point C should
be examined simultaneously as point C(1) fitted to the generator surface Σ1 and as point C(2)

fitted as to the generated surface Σ2. The relative velocity v(12) of the contact point C can be
represented as the velocity of point C(1) with respect to point C(2) by the following equation

v(12) = v(1) − v(2) (22)

where v(i) are the velocity vectors of the coincident points C(i) of surface Σi, and i is the
index of the frame in which the velocity is written.

If a regular point of Σ1 generates a singular point on the meshed surface Σ2, then using
the equality of the absolute velocity vectors of the contact points Ci the following equation
must be fulfilled:

v(2) = v(1) + v(12) = 0 (23)

where v(i) (i = 1, 2) are the velocity vectors of the contacting points on the portant surfaces
in the common tangent plane.

The differentiation of function f (η, ϑ, ϕ1) = 0 according to the time parameter t
from Equation (6) helps to filter the points on Σ1, which generates singular points on Σ2
as follows:

d
dt
[ f (η, ϑ, ϕ1)] = 0 (24)

Theorem 1. In order for the surface Σ1 with regular points to create singular points on the surface
Σ2 enveloped by it, the sufficient condition is the fulfilment of the next equation

F(η, ϑ, ϕ1) = ∆2
xy + ∆2

yz + ∆2
zx = 0 (25)

Proof of Theorem 1. Equations (23) and (24) in the frame K1F of the mathematical kinemat-
ical model result in the forms

∂r1F
∂η
· ∂η

∂t
+

∂r1F
∂ϑ
· ∂ϑ

∂t
= −v(12)

1F (26)

∂ f
∂η
· ∂η

∂t
+

∂ f
∂ϑ
· ∂ϑ

∂t
= − ∂ f

∂ϕ1
· ∂ϕ1

∂t
(27)

contributing to the elimination of points on the surface Σ1, that generate singular points.
�

From Equations (26) and (27) prescribing dϕ1/dt = 1rad/1 sec, an overdetermined
system of four linear equations arises with two unknowns, which are dη/dt and dϑ/dt.
This system leads to the matrix G4×3 with rank r = 2 and a certain solution for the unknowns

G4×3 =


∂x1F
∂η

∂x1F
∂ϑ −v(12)

1Fx
∂y1F
∂η

∂y1F
∂ϑ −v(12)

1Fy
∂z1F
∂η

∂z1F
∂ϑ −v(12)

1Fz
∂ f
∂η

∂ f
∂ϑ − ∂ f

∂ϕ1
· ∂ϕ1

∂t

 (28)

The G4×3 yields on the coordinate planes in our kinematical model to the determinants
of the matrices Mxy, Myz, Mzx and Mηϑ, which respectively take the value ∆1 = 0, ∆2 = 0,
∆3 = 0 and ∆4 = 0.

The ∆4 = 0 yields to the equation of meshing [9], and it is fulfilled for the contact
points of surfaces Σ1 and Σ2, which are taken into account during the tests. Thus only the



Machines 2023, 11, 56 8 of 13

equalities ∆1 = 0, ∆2 = 0 and ∆3 = 0 need to apply to determine the singularity conditions
of the surface, which procedure yields to the sufficient condition F(η, ϑ, ϕ1) = 0.

The simultaneous fulfilment of equations

r1F = r1F(η, ϑ) f (η, ϑ, ϕ1) = 0 F(η, ϑ, ϕ1) = 0 (29)

determines the points on the surface Σ1 that form singular points on the surface Σ2.
The presented procedure is a suggested way to determine the singularities on the

created surface and thus to avoid its undercutting during production.
Through G4×3 it is possible to study different types of helicoid drives.

3. Application

In the following, the analysis will have been applied to a cylindrical worm with circular
arc profile in the axial section and its connected gear.

The gear is machined with a hob derived from the worm, designed using a complicated
mathematical process [10,18]. The solid model of the simultaneous coupling wheel, worm
and hob is shown in Figure 2.
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The geometrical parameters of the worm profile, such as the radius of the circle arc
ρax, the distance between the worm axis and the center of the profile circle K are shown in
Figure 3.
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Based on Figure 1, the manufacturing geometry of cylindrical worm drives with
parameters α = 0, c = 0, pr = 0 and γ = −90◦ can be examined using the kinematic model.
The coordinates of the helical surface with circular arc profile curve in axial section can be
written in the next form

x1F = −η · sin ϑ
y1F = η · cos ϑ

z1F = p · ϑ−
√

ρ2
ax − (K− η)2

r1F (30)

The normal vectors of this worm surface can be described as follows

n1Fx = −η · sin ϑ · K−η√
ρ2

ax−(K−η)2 + p · cos ϑ

n1Fy = η · cos ϑ · K−η√
ρ2

ax−(K−η)2 + p · sin ϑ

n1Fz = η

n1F (31)

Based on (4) the coordinates of the relative velocity vector v(12)
1F are calculated in

the form

v(12)
1Fx = −η · cos ϑ · (1 + i21 · cos γ)+

i21 · sin γ · sin ϕ1 ·
(

p · ϑ−
√

ρ2
ax − (K − η)2 + c + p · ϕ1

)
− i21 · a · cos γ · cos ϕ1

v(12)
1Fy = −η · sin ϑ · (1 + i21 · cos γ)+

i21 · sin γ · cos ϕ1 ·
(

p · ϑ−
√

ρ2
ax − (K − η)2 + c + p · ϕ1

)
− i21 · a · cos γ · sin ϕ1

v(12)
1Fx = −η · i21 · sin γ · cos (ϑ + ϕ1)− i21 · a · sin γ + p


v(12)

1F (32)

With the method outlined, the elements of G4×3 can be calculated with a clear mathe-
matical process [25]. The elements of the determinants of Equation (26) derived from r1F
can be found in the following formulas

∂x1F/∂η = − sin ϑ
∂y1F/∂η = cos ϑ

∂z1F/∂η = −(K− η)/
√

ρ2
ax − (K− η)2

and
∂x1F/∂ϑ = −η · cos ϑ
∂y1F/∂ϑ = −η · sin ϑ

∂z1F/∂ϑ = p

 (33)

The element ∂ f /∂η of the matrix G4×3 is presented in the equation

∂ f
∂η = (K−2·η)·ρ2

ax−(K−η)3√
(ρ2

ax−(K−η)2)
3 · [sin γ · cos(ϑ + ϕ1) · zax + a · cos γ · sin(ϑ + ϕ1)]

−pa · cos γ− 2 · η · sin γ · cos(ϑ + ϕ1)− a · sin γ
(34)

And the element ∂ f /∂ϑ of the matrix G4×3 is presented in the following equation

∂ f
∂ϑ = η · (K−η)√

(ρ2
ax−(K−η)2)

3 · [sin γ · sin(ϑ + ϕ1) · zax + a · cos γ · cos(ϑ + ϕ1)]+

pa · sin γ · cos(ϑ + ϕ1) · zax + pa · a · cos γ · sin(ϑ + ϕ1) + η2 · sin γ · sin(ϑ + ϕ1)
(35)

Similarly to the previous calculations, the element ∂ f /∂ϕ1 of the matrix G4×3 is
as follows

∂ f
∂ϕ1

= η · (K−η)√
(ρ2

ax−(K−η)2)
3 · [− sin γ · sin(ϑ + ϕ1) · zax + a · cos γ · cos(ϑ + ϕ1)]+

pa · sin γ · cos(ϑ + ϕ1) · zax + pa · a · cos γ · sin(ϑ + ϕ1) + η2 · sin γ · sin(ϑ + ϕ1)
(36)

The parameters indicated in the input part of the table are the geometrical parameters
of the worm gear drive, and the information on the movement and surface parameters. The
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output part of the table contains the coordinates of the meshing knotes KA and KB, as well
as the value of the meshing opening angles βA and βB.

The equations represented by matrix G4×3 allow our computer program to determine
the points of curve L on surface Σ1, which generate singular points on the Σ2. The qualifi-
cation of procedure is shown in the case of a particular cylindrical worm gear drive with
circle arc profile in worm axial section [11,18].

In case of the worm gear drive with geometrical and precision parameters z1 = 3,
m = 12.5, γ0 = 21◦2′15′ ′, ρax = 50, Sa1 = 10 to set addendum to the reference line on

tooth, Sn1 = 13
+0.0
−0.125

size of worm tooth chord, a = 280, d01 = 97.5, H = 117.809722,

δax = 24◦31′10′′, z2 = 35, Fr1 = ±0.017, fp1 = ±0.016, fγ = ±0.018, ff = 0.08 [11], the contact
points are presented in projection on the coordinate plane [x1F, y1F] in Figure 4.
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Figure 4. The projection of the contact points of the contact lines in the plane [x2F, y2F] with the
marked knots KA and KB, and their equal coordinates YA and YB indicated by highlighting.

The geometric location of the nodes KA and KB occurring for each value of ϕ1 are the
lines LA and LB. The position of LA and LB curves is illustrated in Figure 5.
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Figure 5. Contact lines with the LA and LB curves on the worm surface Σ1.

For the cylindrical arched worm, LA and LB curves can be found having points to
cause the singularity on the gear tooth surface. To avoid undercutting on the gear surface
Σ2, it is sufficient to delimit the worm surface Σ1 during design by eliminating the LA and
LB curves.

The patented worm and the connected gear have been manufactured with the given
parameters, as it can be seen in Figure 6.
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4. Discussion

The different drives, which were mostly investigated by simulation methods in excel-
lent papers [12,14,15,20,21], can now be determined using a targeted calculation procedure.
Until now, the matrix algebra solution was performed separately for each type of gear pair
in its own frame, but this paper presents a step towards generalization. In the model devel-
oped for production geometry developments used here, an experiment in the direction of
generalization using the methods of matrix algebra was presented, as opposed to the tests
carried out separately for each type of gear pair until now.

The worm with a circular profile in the axial section was patented due to its outstand-
ing advantages from the point of view of production technology. Undercutting has not
yet appeared in the literature dealing with the manufacturing geometrical problems of a
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cylindrical worm with a circular profile in the axial section and the related gear [4,11,17–19],
whose deficiencies in this field has been fulfilled by this study. The processing of the worm
wheel connected to this worm was examined in this paper with the aim of determining
the possible locations of undercutting occurring during production. The cutting edge of
the worm gear hob made from a worm with strict manufacturing geometrical conditions
forms the tooth surface of the gear. According to the tests carried out by means of matrix
algebra procedures, as a result of a computer program run with specified data, the points
of the characteristic curves of the worm that make up the nodes can create singular points
on the tooth surface of the gear. In order to avoid undercutting, it is advisable to exclude
knot lines when determining the limits of the worm during designing.

5. Conclusions

This paper dealt with the problematics of avoiding undercutting in the general mathe-
matical kinematic model. The undercut can be mapped in the case of a helical drive with
a circular profile in the axial section by taking into account the mutual influence of the
relationships of the interacting mathematical parameters. If these interacting parameters
are performed in one model with one procedure, it is desirable to perform them in the case
of other worm drives as well.
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