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Abstract: As the reliability, availability, maintainability, and safety of industrial equipment have
become crucial in the context of intelligent manufacturing, there are increasing expectations and
requirements for maintenance policies. Compared with traditional methods, data-driven Predictive
Maintenance (PdM), a superior approach to equipment and system maintenance, has been paid
considerable attention by scholars in this field due to its high applicability and accuracy with a
highly reliable quantization basis provided by big data. However, current data-driven methods
typically provide only point estimates of the state rather than quantification of uncertainty, impeding
effective maintenance decision-making. In addition, few studies have conducted further research
on maintenance decision-making based on state predictions to achieve the full functionality of
PdM. A PdM policy is proposed in this work to obtain the continuous probability distribution of
system states dynamically and make maintenance decisions. The policy utilizes the Long Short-
Term Memory (LSTM) network and Kernel Density Estimation with a Single Globally-optimized
Bandwidth (KDE-SGB) method to dynamic predicting of the continuous probability distribution of
the Remaining Useful Life (RUL). A comprehensive optimization target is introduced to establish
the maintenance decision-making approach acquiring recommended maintenance time. Finally, the
proposed policy is validated through a bearing case study, indicating that it allows for obtaining
the continuous probability distribution of RUL centralized over a range of ±10 sampling cycles. In
comparison to the other two policies, it could reduce the maintenance costs by 24.49~70.02%, raise
the availability by 0.46~1.90%, heighten the reliability by 0.00~27.50%, and promote more stable
performance with various maintenance cost and duration. The policy has offered a new approach
without priori hypotheses for RUL prediction and its uncertainty quantification and provided a
reference for constructing a complete PdM policy integrating RUL prediction with maintenance
decision-making.

Keywords: predictive maintenance policy; long short-term memory network; remaining useful life;
data-driven; kernel density estimation; continuous probability distribution

1. Introduction

With the rapid development of intelligent manufacturing and the acceleration of
production rhythm, the requirements for “RAMS” (Reliability, Availability, Maintainability,
and Safety) services are continuously upgrading. It is important to manage the health of
industrial equipment and components efficiently [1,2]. However, traditional maintenance
policies are incapable of responding promptly and accurately to the changes of system
states that meet the demand for “RAMS” services. Therefore, with the support of real-
time data acquisition and processing technologies, Predictive Health Management (PHM)
solutions represented by Predictive Maintenance (PdM) has gradually become a current
research hotspot under the industry 4.0 paradigm [3–5].

The PdM policy mainly involves two issues, which are state prediction and mainte-
nance decision-making. Among state prediction methods, compared to expensive and
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cumbersome physically based methods and empirically based methods with suboptimal
accuracy [6,7], data-driven methods are a simple and convenient way that do not need to
know the physical properties of the degradation mechanism and can get more accurate
prediction results by selecting appropriate parameters [8]. Therefore, data-driven state
prediction methods are more popular on the premise of enough reliability data [9–12]. The
other maintenance decision-making issue considered in PdM policies is usually determin-
ing a maintenance plan that can optimize system performance according to the system
state and certain indicators (cost, availability, reliability, etc.) [13–18], the core content of
which is the formulation of decision-making rules and the optimization of the maintenance
index or threshold value. As for the application of PdM, it is necessary to use the result
of state prediction as the input for maintenance decision-making to form a complete and
genuinely adequate PdM policy.

Data-driven prediction models have many advantages, but they lack of probabilistic
explanation of the results, making it difficult to quantify the uncertainty of the prediction [19].
However, the uncertainty of changes in the state of equipment or components makes
the state prediction methods used to characterize the uncertainty of expected results
more reliable. It is also tough to calculate probability indicators, such as availability
and reliability, by only using point estimates of degradation states to make maintenance
decisions. Currently, only a small amount of research has been conducted to predict
Remaining Useful Life (RUL) and quantify its uncertainty, which generally requires priori
hypotheses [20,21], and the accuracy of the prediction results depends on the level of
expert knowledge. In addition, there has been still few data-driven PdM approach that
considers both state prediction and maintenance decision-making. It is incongruous to
utilize RUL point estimation directly in maintenance decision-making that considering cost,
availability, reliability, etc., which may be one of the main restrictive factors. The literature
conducting maintenance decision-making research usually assumes that the degradation
model is known [1,18] while there is often a lack of sufficient expert knowledge to identify
the degradation model in advance actually, which leads to a significant limitation of the
maintenance decision-making model. The paper by Nguyen et al. [1] seems to be the only
study that considers RUL and its uncertainty prediction and maintenance decision-making
simultaneously, but the model used is relatively simple, and only the probability of RUL in
three different intervals can be obtained. The accuracy of the model needs to be improved.
Given the above situation, the two main motivations for this work are as follows:

• To fill the current research gap in RUL prediction and uncertainty quantification
in data-driven PdM, a new model to predict the dynamic continuous probability
distribution of RUL without priori hypotheses needs to be established, which can
improve the rationality and adaptability of RUL prediction results and support the
implementation of maintenance decision-making;

• To provide reference for establishing and applying a complete PdM policy that
integrates state prediction and maintenance decision-making, a multifactorial main-
tenance decision-making method needs to be constructed based on RUL prediction
and uncertainty quantification. A complete PdM policy with favorable performance
should be obtained and experimental verification should be conducted.

To address these issues, this paper combined the Long Short-Term Memory (LSTM)
network with the Kernel Density Estimation with a Single Globally-optimized Bandwidth
(KDE-SGB) method and established a new dynamic PdM (D-PdM) policy as a reference
solution to obtain the continuous probability distribution of RUL based on the data-driven
approach. A dataset of bearing verifies the feasibility of the proposed D-PdM policy. The
major contributions of this paper are as follows:

• For the prediction of RUL and the quantification of its uncertainty, a new RUL
prediction model is established, which uses a deep LSTM network to classify RUL.
Further, the KDE-SGB method is adapted to convert the classification result into a
continuous probability distribution. The distribution of RUL without priori hypotheses
is obtained and supports for subsequent maintenance decisions.
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• The maintenance decision-making method is furtherly established based on the
continuous probability distribution of RUL. By introducing a comprehensive op-
timization target that considers the maintenance cost rate, system availability, and
reliability simultaneously, the optimization of maintenance time is realized, and the
recommended maintenance time is given. A complete PdM policy integrating state
prediction and maintenance decision-making is ultimately formed.

• The proposed complete PdM policy is validated through a bearing dataset and com-
pared with several other policies. The effect of different maintenance operation costs
and durations on the model outcomes is explored. The proposed policy has been
proven to have good predictive performance, which can significantly reduce mainte-
nance costs and heighten the availability and reliability of equipment or components.

• The proposed policy enriches the means of RUL prediction and its uncertainty
quantification and provides a reference for the effective connection between RUL
prediction and maintenance decision-making.

The remainder of this paper is structured as follows. Section 2 introduces recent and
related work on the data-driven PdM. Section 3 describes the problem studied briefly.
Section 4 details the established D-PdM policy based on LSTM network and KDE-SGB
method. Section 5 evaluates the D-PdM policy using a public bearing vibration dataset,
compares it with several other policies, and explores the effect of maintenance operation
cost and duration on model outcomes to prove its effectiveness. Section 6 summarizes the
full text.

2. Literature Review

This section mainly focuses on the recent and related research on data-driven PdM policies.
Thanks to the rapid development of data acquisition technologies, in the field of

data-driven PdM, deep learning algorithms, such as Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN), etc., are favored because of their significant advantages in
the automated process of big data [1,22–25]. Among many deep learning methods, the LSTM
neural network is one of the most widely used deep learning methods to track the system
state because of the ability to learn and memorize long-term sequences [26,27]. Compared
to the traditional RNN, it can effectively avoid the problems of gradient explosion and
gradient disappearance [28,29].

There have been many studies on RUL prediction. Abdelghafar et al. [30] proposed
a predictive approach based on the Enhanced Adaptive Guided Differential Evolution-
optimized Support Vector Machine (EAGDE-SVM) to offer high RUL prediction accuracy.
Different evaluation criteria of classification, prediction, and optimization aspects had
been used to evaluate the EAGDE-SVM. Soualhi et al. [31] combined two RUL techniques,
recursive and direct RUL estimation, to estimate the system RUL when dealing with
the variability of degradation trends and unknown failure thresholds. Prognostic health
indicators (HIs) were constructed and chosen to characterize the system’s degradation
trajectory. The ensemble of the derived RULs and their HI trajectories were fused to estimate
the final RUL directly. Shutin et al. [32] proposed a hybrid approach to such prediction
models involving the joint use of physics-based models of adjustable bearings and data-
driven models for fast on-line prediction of their parameters. It had been tested on highly
loaded locomotive traction motor axle bearings for consideration and prediction of their
wear and RUL. Hesabi et al. [29] used the LSTM network to classify and predict the RUL of
the components in the system to determine whether the components have failed. Although
these methods have obtained good prediction results, they only provide point estimates of
the state. However, it is difficult to use only point estimates to calculate probability indexes,
such as availability and reliability, and it is more reasonable to treat state prediction as a
probability problem due to the uncertainty of the future system state [33].

A good PdM policy should estimate not only the system state’s mean value, but also
its probability density function [34]. However, due to the lack of probabilistic orientation,
data-driven methods usually cannot estimate the probability density function of states,
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which makes it difficult to quantify the uncertainty of predictions [19]. Therefore, it is
necessary to establish further an appropriate uncertainty quantification method to improve
the data-driven method. Zhao et al. [20] obtained the estimated value of RUL through the
CNN model. They gained different RUL Confidence Intervals (CIs) based on Gaussian
distribution and quantile regression, respectively. Bracale et al. [35] developed two models
based on time series and quantile regression to predict the probability distribution of
RUL. Caceres et al. [21] established a probabilistic Bayesian recursive RNN to deal with
epistemic uncertainty in forecasting and, at the same time, set the aleatoric uncertainty
to satisfy the Gaussian distribution to obtain the point estimate of RUL and its CI of
certain confidence level. Li et al. [36] proposed a novel Bayesian Deep Learning (BDL)-
based framework to capture the combined effects of aleatoric uncertainty and epistemic
uncertainty in RUL forecasting and adopted a sequential Bayesian boosting algorithm
to unify the state transition and observation information through a single BDL model;
a good RUL probability distribution prediction effect is finally achieved. Gao et al. [37]
obtained a series of RUL prediction values through RNN, assuming that RUL satisfies the
Gaussian distribution, and used a Multilayer Perceptron (MLP) to obtain the probability of
different RUL. Li et al. [38] adopted a Just-in-time Learning (JITL) scheme to deal with the
randomness of fault evolution and the diversity of degradation patterns. They developed
a Randomized and Smoothed Gradient Boosting Decision Tree (RS-GBDT) model for the
prediction of RUL and its CI. For multi-component systems, Tamssaouet et al. [39] proposed
an online joint uncertainty quantification and model estimation method based on particle
filtering and gradient descent for predicting the RUL of a system and its CI, which considers
the interaction between components. As for multi-component systems, Nguyen et al. [40]
used a combination of probabilistic models and deep regression neural networks to predict
the component’s RUL distribution and then used the system architecture information to
deduce system reliability and the quantitative formula of system-level RUL uncertainty. In
general, there are still few studies on RUL prediction and quantification of its uncertainty.
Most of these existing studies use the Bayesian framework to update prior estimates or
combine specific regression models to predict RUL distributions. Priori hypotheses are
required in these studies, so the accuracy of the forecast results could be easily affected
by the subjective factors of the initial assumptions. It is worth mentioning that some
studies have been devoted to the determination of RUL’s CIs [20,21], but for maintenance
decision-making, a continuous probability distribution of RUL would be more useful. As
in numerous studies on maintenance decision-making, the probability distribution of RUL
is obtained through stochastic models [18,41]. The probability of failure before any time
can be obtained and is not limited to the probability of failure in a specific interval. It
is convenient to give a more accurate maintenance plan, including spare parts ordering,
maintenance personnel arrangement, etc.

In addition, although both state prediction and maintenance decision-making are
involved in PdM policies and only the combination of the two can form a complete PdM
policy, the above studies have not continued to study maintenance decision-making based
on RUL prediction to achieve the full functionality of PdM.

Through the above analysis, two deficiencies in the current PdM-related research can
be clarified:

• There are still few studies on data-driven RUL prediction and its uncertainty quan-
tification methods. In the few existing studies, the scope of the prediction models
used is extremely limited, and most of them need to make subjective priori hypotheses,
making the model’s accuracy highly dependent on prior knowledge. Further exten-
sive research is required, especially the establishing predictive models that reduce the
impact of subjective factors, including priori hypotheses.

• There is still a lack of research to establish a complete PdM policy by consider-
ing both state prediction and maintenance decision-making. It is difficult to align
many state prediction methods that provide only RUL point estimates directly with
maintenance decision-making methods that assume the distribution model of state
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degradation as a known condition. Therefore, combining RUL and its uncertainty
prediction with maintenance decision-making is necessary to obtain a complete PdM
policy with good generality.

The purpose of this work is to establish a data-driven PdM policy that covers RUL
continuous probability distribution prediction and maintenance decision-making to fill
these gaps. To predict RUL and quantify its uncertainty, a new RUL prediction model based
on deep learning algorithms without priori hypotheses is established. It allows for the
prediction of the dynamic continuous probability distribution of RUL to gain a more com-
prehensive understanding of the operational state changes of equipment or components.
A maintenance decision-making method corresponding to RUL prediction is developed
simultaneously to form a complete PdM policy that combines state prediction and main-
tenance decision-making, providing a reference for the development and application of
PdM functions.

The comparison between this paper and the existing research on RUL prediction is
shown in Table 1.

Table 1. The comparison between this paper and existing research related to the Remaining Useful
Life (RUL) prediction.

Related Research

State Prediction

Maintenance
Decision-
MakingPrediction Method

Prior
Knowledge
Is Required

Point
Estimate

Quantitative Form of
Uncertainty

Confidence
Interval (CI)

Continuous
Probability

Distribution

Zhao et al. [20]
Convolutional Neural
Network (CNN) and
quantile regression

√ √ √

Bracale et al. [35] Time series and quantile
regression

√ √ √

Caceres et al. [21]
Probabilistic Bayesian

recursive Recurrent
Neural Network (RNN)

√ √ √ √

Li et al.[36]

Bayesian Deep Learning
(BDL) and sequential

Bayesian boosting
algorithm

√ √ √ √

Gao et al. [37] RNN and Multilayer
Perceptron (MLP)

√ √ √

Li et al. [38]

Randomized and
Smoothed Gradient

Boosting Decision Tree
(RS-GBDT)

√ √

Tamssaouet et al.
[39]

Particle filtering and
gradient descent

√ √ √

Nguyen et al. [40]
Probabilistic models and
deep regression neural

networks

√ √ √ √

Thoppil et al.
[42,43]

Bayesian optimized Long
Short-Term Memory
(LSTM) network and
bidirectional-LSTM

network

√
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Table 1. Cont.

Related Research

State Prediction

Maintenance
Decision-
MakingPrediction Method

Prior
Knowledge
Is Required

Point
Estimate

Quantitative Form of
Uncertainty

Confidence
Interval (CI)

Continuous
Probability

Distribution

Pater et al. [44]
LSTM autoencoder and

similarity-based
matching

√

Rathore et al. [45]
Attention-based stacked

bidirectional-LSTM
network

√

Nguyen et al. [1] LSTM network
√ √ √

This paper

LSTM network and
Kernel Density

Estimation with a Single
Globally-optimized

Bandwidth (KDE-SGB)

√ √ √ √

3. Problem Description

This section describes the problem studied and provides some basic assumptions and
related notations utilized in this study.

The performance of equipment or components in the workshop will gradually deteri-
orate over time, and maintenance at an appropriate time will effectively save maintenance
costs, ensure production efficiency, and extend service life. Frequently checking the equip-
ment or components during operation is not practical, but continuous monitoring can be
achieved by using various sensors to collect data. Therefore, using these data to predict
the status of equipment or components, and determine the optimal maintenance time
through specific evaluation indicators based on the state prediction results is necessary.
This paper makes the following assumptions around state prediction and maintenance
decision-making:

• Data on equipment or components can be continuously collected, and some character-
istics of these data will change significantly and even regularly with the degradation
of equipment or components, which can be used for state prediction;

• There is enough historical data available for the training of the prediction model;
• During maintenance, first check and confirm whether the equipment or components

have been failed, and the failure can only be found during maintenance;
• Preventive measures shall be taken if there is no failure of equipment or components.

Otherwise, corrective measures shall be taken;
• The cost and time required for preventive and corrective actions are known, regardless

of the difference between different failure types.

The symbols, parameters, and variables are listed as shown in the abbreviations section.

4. Dynamic Predictive Maintenance Policy Based on LSTM Network

Taking advantage of LSTM network’s outstanding characteristics of system state
tracking, this paper establishes a dynamic PdM policy. The recommended maintenance
time was given through the prediction of RUL probability distribution, combined with
the comprehensive optimization target. This policy is shown in Figure 1. The constructed
LSTM classifier realized the classification of the current RUL. Then, according to the RUL
classification results, the probability distribution of the RUL was converted based on a
kernel density estimation method to form a continuous RUL probability distribution. The
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optimization objective considered several factors and constructed a comprehensive index
as the optimization objective of the algorithm model. The specific content of each step is
described below.
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Figure 1. Dynamic Predictive Maintenance (PdM) policy based on LSTM network.

4.1. Data Pre-Processing

The raw data collected by sensors cannot be directly used for the input of the PdM
model and must be formalized and labeled first.

Sample extraction. According to the input data format requirements of the model,
the raw data was organized into samples in a unified form. Each sample in this paper was
a two-dimensional tensor, including two dimensions of the time step and the sampling
length of each time step. That is, from a series of consecutive data acquisition cycles of a
specific number, each intercepted data segments of a specific length to form a sample, which
corresponded to the state (RUL) of the last data acquisition cycle, as shown in Figure 2.
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Figure 2. Sample extraction method. Data segments with a certain length over several consecutive
data acquisition cycles are extracted to form a sample.

Sample labeling. To train a model and perform classification, the label was defined
and assigned to each corresponding sample used for training. Labels could be defined by
setting different RUL time windows. On the one hand, the classifier should not have too
many categories. Otherwise, the classification effect will be poor. On the other hand, there
should not be too few categories to facilitate the subsequent transformation of the RUL
probability distribution. Because the system in the early stage was running normally and
smoothly and there was still a long time before the failure occurs, there was no need to
continue to pay attention to the RUL situation so that the early period could be regarded as
the first category. The later period before failure could be divided into several categories.

Sample partition. Before training the LSTM classifier, the labeled samples needed
to be divided into the independent training set, validation set, and test set. The training
set was used for iterative training and continuous adjusting of the model parameters, and
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the validation set was used to verify the generalization ability of the model during the
iterative training process and to decide whether to stop training. When it needed to test the
performance of the ultimate model obtained by training, the test set was used for testing.

4.2. LSTM Classifier

The structure of the constructed LSTM classifier is shown in Figure 3, which is divided
into the input layer, the hidden layer, and the output layer. There were two LSTM layers in
the hidden layer. Deep learning algorithms usually perform batch normalization during the
data pre-processing step to improve the computing efficiency and the generalization ability
of the overall model while the net input distribution of LSTM network neurons changes
dynamically with time so the batch normalization method is not suitable. Therefore, layer
normalization was utilized before each LSTM layer to effectively mitigate the situation of
exploding or vanishing gradients and enhance the generalization ability of the model. After
the two-layer LSTM network calculation, only the state output of the last time step was
taken. Then, after two fully connected layers, the final classification calculation result was
obtained, and the category corresponding to the largest item was used as the classification
conclusion. The first fully connected layer used Relu as the activation function to keep the
data dimension unchanged while the second fully connected layer used Softmax as the
activation function to map the data dimension to the number of categories. To prevent
over-fitting and improve the classifier effect, a dropout layer was set behind each LSTM
layer and the previous fully connected layer.

Machines 2023, 11, x FOR PEER REVIEW 8 of 26 
 

 

validation set was used to verify the generalization ability of the model during the itera-
tive training process and to decide whether to stop training. When it needed to test the 
performance of the ultimate model obtained by training, the test set was used for testing. 

4.2. LSTM Classifier 
The structure of the constructed LSTM classifier is shown in Figure 3, which is di-

vided into the input layer, the hidden layer, and the output layer. There were two LSTM 
layers in the hidden layer. Deep learning algorithms usually perform batch normalization 
during the data pre-processing step to improve the computing efficiency and the general-
ization ability of the overall model while the net input distribution of LSTM network neu-
rons changes dynamically with time so the batch normalization method is not suitable. 
Therefore, layer normalization was utilized before each LSTM layer to effectively mitigate 
the situation of exploding or vanishing gradients and enhance the generalization ability 
of the model. After the two-layer LSTM network calculation, only the state output of the 
last time step was taken. Then, after two fully connected layers, the final classification 
calculation result was obtained, and the category corresponding to the largest item was 
used as the classification conclusion. The first fully connected layer used Relu as the acti-
vation function to keep the data dimension unchanged while the second fully connected 
layer used Softmax as the activation function to map the data dimension to the number of 
categories. To prevent over-fitting and improve the classifier effect, a dropout layer was 
set behind each LSTM layer and the previous fully connected layer. 

 
Figure 3. The structure of the LSTM classifier. The data on the right represents the sample dimen-
sions in the input layer, the dropout rate of the dropout layer, and the feature dimensions in other 
network layers, respectively. 

Figure 3. The structure of the LSTM classifier. The data on the right represents the sample dimensions
in the input layer, the dropout rate of the dropout layer, and the feature dimensions in other network
layers, respectively.



Machines 2023, 11, 923 9 of 25

In practical applications, each parameter involved in the LSTM classifier could be
adjusted according to the situation. It is worth noting that although the classification results
of the output layer can be regarded as the possibility that RUL belongs to each category;
such a discrete probability distribution is too “rough” to describe the specific situation of the
RUL distribution. It is not enough to support the subsequent optimization of comprehensive
targets and the recommendation of maintenance time. Therefore, further converting the
RUL classification results into continuous probability distribution was imperative.

4.3. RUL Probability Distribution Transformation Based on KDE-SGB

Using the LSTM classifier can only obtain the probability of the corresponding state
within RUL windows, and the distribution is discrete and with few elements. Therefore,
converting the discrete probability distribution into a continuous and smooth probability
distribution was considered by generating a series of random data points in a certain
method within each category and conducting nonparametric estimation. The process of
converting RUL classification results into a continuous probability distribution is shown in
Figure 4, which is divided into five steps.
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Step 1: Classification conclusion judgment
The maximum value of the classification result determined the category of RUL. In the

early stage of normal and stable operation, that is, in the first category of RUL, there was
no need to pay further attention to the probability distribution of RUL. Therefore, if the
RUL belonged to the first category, it went directly to the next prediction cycle; otherwise,
it proceeded to the following steps.
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Step 2: Random data point number assignment
The given total number N of random data points was allocated to each category

according to the proportion of the classification results. First, the total number N was
multiplied, respectively, by each item in the classification result and rounded down to
complete the preliminary allocation. Then, the fractional part of these multiplication results
from largest to smallest was sorted, and one more data point was assigned to corresponding
categories in the sequence until the remaining data points were all allocated.

Step 3: Random data points generation
A series of random data was generated in each RUL window according to the number

of allocated random data points. Among them, the RUL window of the first category that
was not cared about was replaced with a new one when calculating the distribution. The
new window’s width was the same or close to the other categories and was still adjacent
to the RUL window of the second category. This adjustment was adopted to improve
the accuracy of the probability distribution because under the premise that the classifier
had a certain accuracy, these RULs belonging to the first category that were misidentified
as other categories were also mainly concentrated in a small range close to the second
category. Random data were generated within the RUL window for each category using a
truncated normal distribution. The expectation value µ of the truncated normal distribution
was obtained by averaging the sum of the products of the midpoint of each category’s
RUL window and the corresponding value in the classification results, and the standard
deviation σ could be determined regarding the accuracy of the LSTM classifier. In this
paper, 1/4 width of the RUL window of the currently predicted category was taken as
the σ to ensure that the randomly generated data points were always mainly distributed
within the width of the RUL window, without excessive dispersion or concentration, thus
avoiding the final probability distribution being not smooth enough.

Step 4: Random data points offset
The LSTM classifier does not have many categories and should not have too many,

so it is easy to belong to the same category for a long time, and the classification results
will not change much. At the same time, in the critical phase, when two categories switch,
the classification results will transform rapidly. To avoid these two situations causing the
probability distribution prediction result of RUL to stagnate for a long time or fluctuate
too fast, the offset of random data points needed to be set appropriately. For all categories,
the ideal expectations {I1, I2, · · · , In} were set with the upper limits of RUL windows as
the initial value. In the whole maintenance cycle, each time a prediction was executed to
obtain the RUL classification result, one prediction cycle duration ts was subtracted from
the Ii of the related category. The difference between the updated Ii and expectation value
µ was the offset value of the random data point.

Step 5: Kernel density estimation
Random data points were regressed using the KDE-SGB method proposed by Shi-

mazaki et al. [46]. The basic principle was to form an overall probability distribution
through the superposition of the kernel densities of a series of data points within a small
interval, and the width of the globally unified interval (i.e., bandwidth) was optimized.
The kernel density estimation method does not use prior knowledge about the data distri-
bution and does not add any assumptions to the data distribution. It only needs to set the
kernel function. It is a method to study the characteristics of the data distribution from the
data sample itself. Therefore, compared with the prediction method of pre-assuming the
distribution type based on experience, the kernel density estimation can be closer to the
actual situation of the data sample and is universal. When the number of discrete points
was abundant in kernel density estimation, the selection of different commonly used kernel
functions had little influence on the results. Therefore, this paper directly selected the
normal distribution as the kernel function of the KDE-SGB. The single global optimization
bandwidth of the kernel function was determined based on the principle of minimizing
the Mean Integrated Square Error (MISE) between the estimated rate and the unknown
underlying rate [46]. Using the series of randomly generated data points as input, the
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estimated probability density for any location within a given range can be obtained through
kernel density estimation.

After the above steps, the RUL probability distribution could be transformed and
outputted. The pseudo-code of the above procedure is shown in Algorithm 1.

Algorithm 1: RUL probability distribution transformation.

1: input: {y1, y2, · · · , yn}; N; {(a1, b1), (a2, b2), · · · , (an, bn)}; {I1, I2, · · · , In}; ts; {t1, t2, · · · , tm};
2: output: { f (t1), f (t2), · · · , f (tm)};
3: //Step 1:
4: if y1 = max{y1, y2, · · · , yn} then
5: go to the next prediction cycle;
6: else
7: //Step 2:
8: for i← 1 to n do
9: Si ← bN·yic ;
10: Di ← N·yi − Si ;
11: sort {D1, D2, · · · , Dn} from the largest to the smallest, and mark the subscript sequence after sorting as {k1, k2, · · · , kn};
12: for j← 1 to (N −

n
∑

i=1
Si) do

13: Sk j
← Sk j

+ 1 ;
14: //Step 3:

15: µ←
n
∑

i=1
( ai+bi

2 ·yi)/n ;

16: for i← 1 to n do
17: σ← (bi − ai)/4 ;
18: randomly generate Si number of data points through truncated normal distribution g(x|µ, σ, ai, bi) , denote as Pi;

19: P←
n
∪

i=1
Pi ;

20: //Step 4:
21: (Ii ← Ii − ts)|(yi = max{y1, y2, · · · , yn}) ;
22: d← (Ii|(yi = max{y1, y2, · · · , yn}))− µ ;
23: Q← {p + d|p ∈ P} ;
24: //Step 5:
25: use the KDE-SGB method to obtain { f (t1), f (t2), · · · , f (tm)};
26: return { f (t1), f (t2), · · · , f (tm)};

4.4. Comprehensive Optimization Target

Currently, the most common optimization target in PdM-related research is main-
tenance cost, including inventory cost of works-in-progress and spare parts, equipment
downtime cost, etc. [14], but some methods of reducing maintenance costs often do not con-
sider other parameters, such as equipment availability, total production cost, etc. In practice,
these methods can negatively affect other goals while reducing maintenance costs [47].
Although cost is essential to production management, other factors cannot be ignored.
Therefore, many scholars have also researched maintenance decision-making, considering
equipment availability [48,49], reliability [50], and so on. To improve the universality of
the proposed model, this paper comprehensively considered the three optimization targets
of the maintenance cost, availability, and reliability of systems. It adopted a weighted
Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) approach [51]
to construct a comprehensive optimization target. The recommended maintenance time
was given through optimization of it.

• Maintenance cost rate calculation

The costs of taking preventive and corrective actions (including inspection costs) were
Cp and Cc, respectively. Downtime will generate additional costs; let the downtime cost
per unit time be Cd. Then, the expected maintenance cost rate EC was:

EC =
1

Ettotal − Etd
(Cp(1− Pf(t)) + CcPf(t) + Cd·Etd), (1)
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where t was the maintenance time, which meant maintenance would be performed after
time length t. Pf(t) was the probability that the RUL in current was less than t, i.e., the
cumulative distribution value of the predicted RUL probability distribution. Ettotal was
the estimated total duration of the current maintenance cycle, and Etd was the estimated
downtime duration. When a failure occurs, the equipment needs to be shut down immedi-
ately for corrective replacement. Preventive maintenance of the device or component can
be performed during idle time to avoid taking up equipment operating time and increasing
downtime costs. However, the idle time and the degradation process of the device or com-
ponent are independent of each other, and the degradation process is uncertain. Therefore,
referring to the daily maintenance cycle, the system work cycle, and the time required to
arrange the preparation work for maintenance (such as ordering spare parts and arranging
maintenance personnel), etc., the time interval ∆t was given. When RUL is less than ∆t, it
must also be shut down for maintenance to avoid failure. Assuming that the equipment
or component has been running for a duration t0 in the current maintenance cycle, and
the time required for preventive maintenance and corrective replacement was tp and tc,
respectively, then:

Ettotal = t0 + t + tcPf(t) + tp(Pf(t + ∆t)− Pf(t)) (2)

Etd = tcPf(t) + tp[Pf(t + ∆t)− Pf(t)] +
∫ t

−∞
(t− x) f (x)dx, (3)

where f (x) was the probability density value of RUL. The first term in the Formula (3) was
the downtime caused by corrective replacement when a failure occurs, the second term
was the downtime caused by shutting down for maintenance when the RUL was less than
∆t, and the third term was the downtime caused by the failure before the maintenance.

• Availability calculation

The availability represents the percentage of time that equipment or critical compo-
nents can be normally running. The formula of its expectation EA was:

EA =
Ettotal − Etd

Ettotal
. (4)

• Reliability calculation

The reliability represents the probability that equipment or key components will not
fail until a certain point in time. Its expectation ER could be expressed as:

ER = 1− Pf(t). (5)

• Comprehensive optimization target

For maintenance decision-making, the lower the maintenance cost, the better, and
the higher the availability and reliability, the better. To facilitate the establishment of the
comprehensive optimization target, the expectations of maintenance cost rate, availability,
and reliability were homogenized and normalized, which were denoted by ZC, ZA, and
ZR, respectively. Generally, there were upper and lower limits for maintenance cost rate
and lower limits for availability and reliability. Therefore:

ZC = ECmin
EC , ZC ∈

(
ECmin
ECmax

, 1
)

ZA = EA, ZA ∈ (EAmin, 1)
ZR = ER, ZR ∈ (ERmin, 1)

(6)

Among them, the lower limit ECmin of the maintenance cost rate was obtained from the
minimum value of EC in Formula (1). The upper limit ECmax of the maintenance cost rate,
the lower limit EAmin of the availability, and the lower limit ERmin of the reliability were
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preset or obtained by calculating the corresponding extreme values from Equations (1), (4),
and (5), respectively. According to the TOPSIS method, the optimal solution and the worst
solution were:

Z+ = (1, 1, 1) (7)

Z− =

(
ECmin

ECmax
, EAmin, ERmin

)
. (8)

The Euclidean distances between the three normalization indicators and the optimal
and worst solutions were calculated, respectively:

D+ =

√
(ZC − 1)2ωC

2 + (ZA − 1)2ωA
2 + (ZR − 1)2ωR

2 (9)

D− =

√(
ZC −

ECmin

ECmax

)2
ωC

2 + (ZA − EAmin)
2ωA

2 + (ZR − ERmin)
2ωR

2. (10)

Among them, ωC, ωA, and ωR were the weights of the normalized maintenance cost rate,
availability, and reliability, respectively, which could be set and adjusted manually to
realize the intervention in the PdM decision-making process. The closeness of the three
normalization indicators to the optimal solution was:

CD =
D−

D− + D+
. (11)

CD was the comprehensive optimization target, and the time t corresponding to its maxi-
mum value was the recommended maintenance time.

5. Case Verification and Performance Evaluation Based on Bearing Vibration Data

Taking the bearing vibration data set [52] provided by the Center for Intelligent
Maintenance Systems (IMS), University of Cincinnati as an example, the above method was
experimentally verified. The acquisition scheme of bearing vibration data was to install
four bearings on one shaft, keep the rotational speed and radial load constant, and install
the accelerometer on the bearing seat to collect vibration data. The verification content
consisted of three parts: the accuracy of the LSTM classifier, the error of the RUL probability
distribution, and the performance of the D-PdM. In addition, the influence of different
maintenance operation costs and durations on the model results was further explored. The
algorithm model was developed with python3, and the LSTM classifier was built under
the TensorFlow machine learning framework. Datasets, programs, and calculation results
of this work can be found in https://www.kaggle.com/datasets/shulian00/pdm-bearing
(accessed on 17 September 2023).

5.1. Accuracy Verification of the LSTM Classifier

The data of the second experiment bearing 1 in the data set was selected for the
training and verification of the classifier. The variation of the standard deviation of bearing
vibration data is shown in Figure 5. It was assumed that the bearing was determined to
be failed when the standard deviation reached a certain value and rose continuously. The
entire process could be divided into three stages, the steady running stage, the significant
degradation stage, and the failure stage. In the steady running stage, the bearing was in
good condition, and there was no need to pay attention to its RUL distribution, so this stage
was classified as category 1. In the significant degradation stage, the RUL of the bearing
needed to be continuously concerned. For the subsequent RUL probability distribution
transformation steps, the more RUL categories, the more accurate the distribution model
will be. However, the number of categories should not be too large; otherwise, the accuracy
of the classifier will be greatly affected. This paper divided the significant degradation

https://www.kaggle.com/datasets/shulian00/pdm-bearing
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stage into eight parts, which were classified as categories 2~9. The last failure stage was
classified as category 10.
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The parameter settings of the LSTM classifier in this paper are shown in Figure 3. The
dimensions of each sample were [200, 200], the hidden dimensions of each LSTM layer were
128, and the dropout rate was set to 0.2. The number of samples in the training, validation,
and test sets was 16,000, 2000, and 2000, respectively. To keep the number of samples of
each category balanced during training and verification, so as not to affect the validity of
the model and the credibility of the verification results, the sample numbers of the three
sample sets were evenly distributed to each category before the training samples were
extracted, and in each category, they were further evenly distributed to each data acquisition
cycle. If there were still remaining parts, they were distributed randomly. The data of
each data acquisition cycle was divided according to the ratio of 8:1:1 and used to extract
training samples, validation samples, and test samples, respectively. When extracting
samples, according to the aforementioned sample extraction method, 200 vibration data
were extracted in 200 consecutive time steps (i.e., data acquisition cycles), thereby forming
samples with dimensions [200, 200]. The category of the last data acquisition cycle in each
sample was the category of the sample, and the sample label was assigned according to
the category. The samples extracted by the above method formed the training set, the
verification set, and the test set.

Then, the training set was imported into the built LSTM classifier model for training.
The samples were shuffled before training to avoid too many samples of the same category
in a batch, which would significantly impact the model’s accuracy. The batch size for
training was set to 100, the optimizer used Adam, the learning rate was set to 1 × 10−3,
and the loss function was specified as a categorical cross-entropy loss function. The total
number of epochs was set to 300. After each iteration epoch, the classification accuracy
was monitored through the validation set. The training would be terminated early if the
model’s accuracy did not improve for 50 consecutive epochs. After three cycles of training,
the best accuracy rates monitored by the validation set were 96.85%, 97.00%, and 96.75%,
respectively. The best model obtained from the second training with the highest accuracy
rate was selected and verified by inputting the validation set.
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The accuracy of the classifier was evaluated using the probability confusion matrix [1].
The probability confusion matrix of the classification conclusion after importing the test
set is shown in Figure 6. The overall accuracy rate of the test set classification was 96.95%.
Except for the fourth category, where the accuracy rate was below 95% and it was relatively
easy to predict RUL as the latter category incorrectly, the prediction accuracy of other
categories was above 95%, especially in the last two categories around the bearing failure,
the accuracy remained high, which was of great help to the PdM of the bearing. The case of
classification prediction errors is mainly about predicting the RUL as a category adjacent
to the actual category, and these errors should mainly occur at the junction between the
ranges of different categories, which is a normal phenomenon.
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tion conclusion.

To test the performance of the LSTM classifier on different bearings, another bear-
ing (the third experiment bearing 3 in the data set) was selected for model training and
verification, according to the previous steps. The probability confusion matrix obtained
from classification verification is shown in Figure 7. The overall accuracy rate of the test
set classification was 86.45%, and the performance was not very good in the 3rd, 4th, and
5th categories, in which the accuracy rates were below 80%. It is relatively easy to predict
RUL as the first few categories incorrectly, which is due to the bearing in the early stage
maintaining a stable operation state for a long time, and its vibration signal characteristics
also remain almost unchanged for a long period. In contrast, the prediction accuracy of
the categories from category 7 onwards was above 95%, maintaining a high level, which
showed that the model can still accurately grasp the state change trend of the bearing in the
later stage of operation. Accurate prediction of the state close to failure is the key to bearing
maintenance, and the low prediction accuracy during the early steady running stage has
little impact on the maintenance activity plan. Of course, in practical applications, the
number of parallel prediction channels in each prediction cycle can also be increased, and
the final classification conclusion can be determined by comparing the prediction results of
all channels to reduce the risk of the wrong prediction further.
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The above test shows that the constructed LSTM classifier has high accuracy and
certain portability.

5.2. Error Analysis of RUL Probability Distribution

After the classification of the RUL was completed, the continuous probability distribu-
tion of the RUL was obtained by further conversion based on the classification result. In this
paper, the number N of random data points in the transformation process of RUL probabil-
ity distribution in each prediction period was 10,000. The probability density values at 101
equidistant time points were gained for the subsequent calculation of the comprehensive
optimization target. These time points were taken within the significant degradation stage
and the 30 data acquisition cycles before and after the significant degradation stage (in-
cluding two endpoints) for the convenience of obtaining the RUL probability distribution
profile at both ends of the significant degradation stage. This was also the concerned stage
of the whole degradation process.

To evaluate the error of the resulting RUL probability distribution, appropriate extrac-
tion of the vibration data was required to “obtain” data for complete degradation cycles.
The test set and validation set of the second experiment bearing 1 in Section 4.1 was selected,
and the data of each data acquisition cycle were divided into data segments with a length
of 200. Then, a data segment in each data acquisition cycle was randomly selected in turn
to form a degeneration cycle. By analogy, three degradation cycles were extracted without
repetition and used for error analysis of the RUL probability distribution.

The data of the three degradation cycles were classified with the LSTM classifier and
converted into the probability distribution with the kernel density estimation, respectively,
and the RUL probability prediction of the concerned stage in each degradation cycle was
obtained as shown in Figure 8. It can be seen from the figure that, at different times, the
RUL probability distribution is always concentrated in a small area, and its probability
density decreases rapidly on both sides. The whole RUL probability distribution shifts to
the smaller side with the decrease in the actual RUL value. What is more, the continuous
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probability distribution of RUL at any time can be obtained during maintenance decision-
making. In the three degradation cycles, the RUL probability distribution has obvious
periodic changes. Near the position of the transition between the two categories, the peak
value of the RUL probability distribution is significantly lower than that of the prediction
cycles before and after. This is caused by the rapid conversion of the probabilities around
the boundary of two categories when making classification by the LSTM classifier, making
it more difficult to predict the actual situation of RUL accurately in this region compared
to other regions. It is worth mentioning that, since the RUL distribution of the system is
predicted through the collected data, to facilitate the model calculation, there is a region
with a negative RUL value, which indicates the probability of failure. The RUL probability
distribution was further analyzed through the Root Mean Square Error (RMSE) and the
mean deviation probability within a certain range, as shown in Table 2. The RMSE values of
different degradation cycles have obvious fluctuations, but they are all kept within a small
range. As for the deviation of the mean of the RUL probability distribution from the actual
RUL, within the range of ±5, the first degradation cycle with the lowest probability can still
be maintained above 80%. The deviations of all the mean values are within the range of
±10. The mean value of RUL probability distribution and its 90% and 95% CI are shown in
Figure 9, indicating that the changing trend of RUL distribution probability concentration
area is consistent with the change of actual RUL, and the accuracy of RUL prediction results
maintains a high level. This result shows that, compared to the classifier only obtaining the
discrete probabilities of several categories, further probability distribution transformation
greatly improves the level of RUL prediction.
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Table 2. RUL probability distribution analysis.

Degradation Cycle Root Mean Square Error The Probability of Deviation
within ±5

The Probability of Deviation
within ±10

1 3.6036 80.74% 100.00%
2 2.2166 98.89% 100.00%
3 3.1606 89.63% 100.00%
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5.3. Performance Evaluation of PdM Policies

To evaluate the performance of the D-PdM proposed in this paper, using the test set
and validation set of the second experiment bearing 1 and the third experiment bearing 3,
40 degradation cycles were extracted and formed following the method in the previous
section. The data collection interval was taken as the unit duration. Considering that the
difference between the total duration of the two experiments was too great and the service
life was also random in the actual situation, only the last 1000 data acquisition cycles of
the third experiment bearing 3 were retained in order to be closer to the actual situation. A
series of integers in the range [−200, 200] were randomly generated as the runtime offset
for the resulting series of degradation cycles. On this basis, the sequence of the extracted
40 degradation cycles was shuffled, so the degradation cycles’ duration was variable and
random. It was assumed that the corresponding model parameter set could be correctly
selected when using the LSTM classifier for classification.

During performance evaluation, Periodic Maintenance (PeM) policy, Classification-
based Predictive Maintenance (C-PdM) policy, and Ideal Maintenance (IdM) policy were
used as comparisons.

• Periodic Maintenance (PeM) policy

The time point tPeM for PeM was calculated from historical degradation cycle data,
such that the ratio of the number of degradation cycles that fail before tPeM to fail after
tPeM was closest to the ratio of the preventive action cost Cp to the corrective action cost
Cc, where tPeM took an integer. Since periodic maintenance can make full preparations
for maintenance, such as ordering spare parts and arranging maintenance personnel,
maintenance operations were considered being performed during idle time. In addition
to the cost of preventive or corrective action and the cost of downtime due to corrective
replacement, only the cost of additional downtime due to failure before maintenance was
considered. The cost of a single maintenance cycle was:

CPeM =

{
Cp, tPeM ≤ L
Cc + (tPeM − L + tc)Cd, tPeM > L

, (12)
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where L was the actual useful life corresponding to the current maintenance cycle. Since
the failure of the system can only be known when maintenance is carried out, there are
cases where failure has occurred, but maintenance is carried out after some time.

• Classification-based Predictive Maintenance (C-PdM) policy

This policy also uses the LSTM classifier established in this paper but does not perform
subsequent probability distribution conversion, directly regards the classification results as
the probability of each category instead, and the maintenance decision is determined by
judging whether the probability of failure exceeds the threshold and by comparing the cost
rates of immediate maintenance and no maintenance at present. Since it was impossible to
make a clear judgment on the RUL, which made it difficult to prepare in advance, to avoid
failures in the maintenance process, the equipment was immediately stopped to execute
maintenance operations (it can be seen from the subsequent numerical experiment results
that there was indeed a considerable probability of failure if maintenance was selected to be
carried out at the idle time). The threshold of failure probability was set to 1%. Immediate
maintenance in the current prediction cycle will incur preventative maintenance cost Cp
and downtime duration tp, and no maintenance will risk failure in the next prediction cycle.
The cost rate expectations ECDR and ECDN for immediate maintenance and no maintenance
temporarily were:

ECDR =
Cp + tpCd

t0
(13)

ECDN =
y10(Cc + tcCd) + (1− y10)(Cp + tpCd)

t0 + 1
, (14)

where y10 was the value of the last category in the classification result, regarded as a
probability. By judging whether y10 exceeded 1% and comparing the magnitudes of ECDR
and ECDN, the option with a lower expected cost rate was selected. In practice, additional
downtime costs are incurred if a failure has already occurred before maintenance is carried
out. The actual cost of a single maintenance cycle was:

CCPdM =

{
Cp + tpCd, tCPdM ≤ L
Cc + (tCPdM − L + tc)Cd, tCPdM > L

, (15)

where tCPdM was the maintenance time point determined by the C-PdM policy.

• Ideal Maintenance (IdM) policy

IdM is a hypothetical perfect maintenance policy that enables optimal maintenance at
the optimal time point, that is, at the last moment before failure, and completes preventive
maintenance in idle time without incurring downtime costs. Each maintenance cycle
coincides with the degradation cycle, and the cost of each maintenance cycle is equal to
Cp. This is not achievable in practice and is only used as a reference for other policies in
this paper.

• Dynamic Predictive Maintenance (D-PdM) policy

In the D-PdM policy in this paper, considering that the prediction results might
still lead to misjudgments, for the sake of safety, when the recommended maintenance
time given twice in a row was less than or equal to 5, the maintenance operation was
arranged, denoted as δ = 0. When the recommended maintenance time is 0, it will stop
immediately for maintenance, which is recorded as δ = 1. In practice, if a failure has
occurred before the maintenance operation is scheduled, the corrective replacement cost
and downtime costs are incurred. If the maintenance operation is scheduled within 5 cycles
before the failure occurs without immediate shutdown, the bearing is considered having
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failed during maintenance scheduling and requires corrective replacement. The cost of a
single maintenance cycle was:

CDPdM =


Cp, δ = 0&(tDPdM + 5) ≤ L
Cp + tpCd, δ = 1&tDPdM ≤ L
Cc + tcCd, δ = 0&tDPdM ≤ L < (tDPdM + 5)
Cc + (tDPdM − L + tc)Cd, tDPdM > L

. (16)

The variable tDPdM was the maintenance time point determined by the model.
The above policies were compared through the data of 40 degradation cycles, and

the actual overall maintenance cost rate, overall availability, and overall reliability under
different policies were compared. Here, the overall reliability was calculated by the per-
centage of maintenance cycles without failures. The values of the relevant parameters in
this paper are shown in Table 3, where tPeM was calculated from the training set data. The
obtained results are shown in Table 4, and the performance comparison of these policies
is shown in Figure 10. It can be seen that except for 11 cycles of failures under the PeM
policy, no failures occur under other policies. Due to failures and premature stops of
maintenance cycles, PeM has longer downtime and shorter operating duration, resulting in
significantly shorter total maintenance cycles duration and total normal operating duration
compared to D-PdM and C-PdM. The total maintenance cycles duration and total normal
operating duration of D-PdM and C-PdM are not significantly different from IdM. In terms
of overall maintenance cost rate, PeM is the highest, reaching 0.9474. Compared with
PeM, D-PdM and C-PdM save 70.02% and 60.30% in maintenance costs, respectively. In
terms of overall availability, the D-PdM and C-PdM maintain high levels, approaching
100%, and significantly higher than that of PeM. The overall availability of D-PdM is 0.46%
higher than that of C-PdM. In terms of overall reliability, due to some failures in the PeM
policy, the reliable operation of the bearings was not well guaranteed, with a reliability
of only 72.50%. While D-PdM and C-PdM can quickly issue warnings and ensure stable
and reliable operation of bearings. It can be concluded that compared to PdM, D-PdM and
C-PdM can comprehensively improve the health management level of critical equipment
or components. Overall, the performance of D-PdM is superior to that of C-PdM, and it
is very close to IdM under ideal conditions. This is because D-PdM can obtain the RUL
distribution of bearings more precisely at any time, especially when approaching failures,
to more accurately determine whether maintenance is needed, maximize the service life
of bearings, and avoid failure risks. Compared to PeM and C-PdM, D-PdM can reduce
maintenance costs by 24.49~70.02%, improve availability by 0.46%~1.90%, and improve
reliability by 0.00~27.50%. Therefore, it is believed that the D-PdM policy proposed in this
paper has good performance for the bearing case used.

Table 3. The values of the relevant parameters in the performance evaluation of PdM policies.

Parameter Cp Cc Cd ∆t tp tc ωC ωA ωR tPeM

Value 250 1000 20 5 5 20 0.6 0.2 0.2 847

Table 4. Maintenance results under different policies.

Policy Number of
Failures

Total
Maintenance

Cycles Duration

Total
Normal

Operating
Duration

Total
Maintenance

Cost

Overall
Maintenance

Cost Rate

Overall
Availability

Overall
Reliability

PeM 11 34,100 33,429 31,670 0.9474 98.03% 72.50%
C-PdM 0 37,425 37,225 14,000 0.3761 99.47% 100.00%

IdM 0 38,407 38,407 10,000 0.2604 100.00% 100.00%
D-PdM 0 36,998 36,973 10,500 0.2840 99.93% 100.00%
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5.4. Influence of Different Maintenance Operation Costs and Durations

For maintenance policies, the different costs and durations of maintenance operations
will have a significant influence on the maintenance schedule. Several situations that
may arise in practice are considered. (1) The system cannot be subjected to preventive
maintenance and can only be replaced, that is, Cp = Cc and tp = tc. (2) Cp is much less
than Cc. (3) Cp is less than Cc, but the difference in the order of magnitude between the
two is small. (4) The variable tp is much less than tc. (5) The variable tp is less than tc, but
the difference in the order of magnitude between the two is small. According to the above
situation, the working conditions for setting different values of Cp, Cc, tp, and tc are shown
in Table 5, and other parameters remain unchanged.

Table 5. Different maintenance operation costs and durations.

Parameter Cp Cc tp tc

Case 1 1000 1000 20 20
Case 2 1 1000 5 20
Case 3 250 1000 5 20
Case 4 1 1000 1 100
Case 5 250 1000 1 100

The overall maintenance cost rate, overall availability, and overall reliability of C-PdM
and D-PdM under various working conditions are shown in Figure 11. In general, the
maintenance effect of D-PdM is better than that of C-PdM under all the different working
conditions. In terms of maintenance cost rate, maintenance execution cost is the most
important factor for the model results of C-PdM and D-PdM, which is consistent with
common sense. Compared with C-PdM, the cost advantage of D-PdM is more reflected
when the difference between Cp and Cc is larger, and the change is smaller when the
maintenance time is different. In terms of system availability, it mainly depends on the size
of tp since both policies are effective in avoiding failure. Compared with the C-PdM policy,
the D-PdM policy can more accurately grasp the system RUL at any time, which is more
helpful to reduce downtime, so the system availability is higher under the D-PdM policy.
As for the system reliability, in case 1, two maintenance cycles failed under the C-PdM
policy, which is caused by the error in the classification result of the LSTM classifier. Even
if the accuracy of the LSTM classifier can reach more than 96% within the period around
the failure and y10 is limited to no more than 1%, it still cannot completely avoid the failure,
indicating that the C-PdM policy has certain defects and may not be suitable when Cp and
Cc is close to or even equal to each other. In contrast, the D-PdM policy ensures the safety
of the system under all working conditions.
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Of course, the bearing data in the application case of the proposed policy are collected
under stable operating parameters, but the actual conditions are constantly changing, so the
performance of the policy under changing conditions remains to be verified. The proposed
probabilistic transformation idea based on kernel density estimation is applicable to not
only LSTM network-based state prediction methods, but also other data-driven methods.
The PdM policy, including state prediction and maintenance decision-making in this paper,
can provide a reference for constructing and applying the PdM function of equipment
or components.

6. Conclusions

In data-driven PdM, there is still a lack of research on the uncertainty characterization
of state prediction results and their application in integration with maintenance decision-
making. This paper proposes a dynamic PdM policy to solve these problems, achieving the
dynamic prediction of continuous probability distribution of RUL, and the maintenance
decision-making with a comprehensive optimization target. Finally, a case study and
performance evaluation of this policy are presented.

A new dynamic PdM policy is designed and developed using the LSTM network
and kernel density estimation method. Through LSTM network-based RUL classification
and RUL probability distribution conversion based on KDE-SGB, the continuous RUL
probability distribution is obtained. The weighted TOPSIS method is used to construct a
comprehensive optimization target according to the maintenance cost rate, availability, and
reliability, and the dynamic maintenance decision is made based on this target. Finally,
a public bearing vibration dataset is used to verify and evaluate the LSTM classifier, the
RUL probability distribution conversion model, and the overall maintenance performance
of the D-PdM policy. The proposed policy exhibits good performance in predicting the
continuous probability distribution of RUL, with prediction results concentrated within a
range of± 10 data acquisition cycles. The D-PdM policy is compared with the PeM, C-PdM,
and IdM policies, and the influence of different maintenance operation costs and durations
on the maintenance effect is further explored. The outcomes show that the D-PdM policy
constructed in this paper has comprehensive performance advantages in maintenance cost
reduction and availability and reliability improvement. Compared with the two policies,
PeM and C-PdM, the proposed policy can reduce maintenance costs by 24.49~70.02%,
increase availability by 0.46~1.90%, and improve reliability by 0.00~27.50%. Moreover, the
performance of it is more stable under various maintenance costs and durations.

The proposed policy provides a new approach for predicting RUL and quantifying its
uncertainty. Compared with the method that only provides point estimation of the state, it
is more conducive to comprehensively control the evolution of equipment or component
operating states. It is also more beneficial for maintenance decision-making to consider
probability indexes without the need for priori hypotheses and reducing the demand for
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expert knowledge. The proposed policy links RUL prediction with maintenance decision-
making, forming a complete PdM policy and providing reference cases for the construction
and application of PdM. In addition, the RUL probability distribution transformation
method proposed in this paper based on the KDE-SGB can also provide a continuous
probability distribution transformation idea for the existing methods merely obtaining RUL
point estimates so as to carry out maintenance decision-making better.

At present, the proposed policy is only tested with the bearing case under fixed
operating conditions, demonstrating its effectiveness under a single operating condition,
while its performance applied in complex operating conditions and for different equipment
or components still needs to be verified. In the future, the application scenarios of the
proposed policy will be expanded upon, and the systematic integration of PdM policies in
the case of multiple components will be studied based on this work.
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Abbreviations

Notation
{y1, y2, · · · , yn} RUL classification results
N The number of random data points
µσ The expectation and standard deviation of the truncated normal distribution
ts Prediction cycle duration
{(a1, b1), (a2, b2), · · · , (an, bn)} Ranges of RUL categories when calculating the distribution
{I1, I2, · · · , In} Ideal expectation values corresponding to RUL categories
{t1, t2, · · · , tm} Time points at which the RUL probability density value needs to be obtained
Cp, tp Preventive maintenance cost and time required
Cc, tc Corrective replacement cost and time required
Cd, Etd Downtime cost per unit of time and estimated downtime
t Maintenance time
∆t The time interval used to determine whether shutdown is required for maintenance
t0 Run time in the current maintenance cycle
Ettotal Estimated duration of the maintenance cycle
Pf(t), f (x) Cumulative distribution value and probability density value of RUL
EC, ECmax, ECmin The expectation of maintenance cost rate and its upper and lower limits
EA, EAmin The expectation of availability and its lower limit
ER, ERmin The expectation of reliability and its lower limit
ZC, ZA, ZR Expectations of maintenance cost rate, availability, and reliability after convergence and normalization
Z+, Z− The optimal and worst solutions of the TOPSIS method
D+, D− Euclidean distances between the three normalized indexes and the optimal and worst solutions
ωC, ωA, ωR Weights of normalized maintenance cost rate, availability, and reliability
CD Comprehensive optimization target
L The actual useful life of equipment or components in the current maintenance cycle
ECDR, ECDN Cost rate expectations for immediate maintenance and no maintenance temporarily
δ A sign indicating whether to shut down for maintenance
tPeM, tCPdM, tDPdM Maintenance time under PeM, C-PdM, and D-PdM policies

https://www.kaggle.com/datasets/shulian00/pdm-bearing
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