On a Novel Modulation Cutting Process for Potassium Dihydrogen Phosphate with an Increased Brittle–Ductile Transition Cutting Depth
Abstract
:1. Introduction
2. Materials and Methods
2.1. KDP Crystal
2.2. Two-DOF Fast Tool Servo Mechanism
2.3. Proposal of Novel Modulation Cutting Process
2.4. Machining Setup and Surface Characterization
3. Results and Discussion
3.1. Generation of Trapezoidal Tool Motion Locus
3.2. Machined Surface Morphological Characterization
3.3. Cutting Force Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, M.; Pang, Q.; Wang, J.; Cheng, K. Analysis of 3D microtopography in machined KDP crystal surfaces based on fractal and wavelet methods. Int. J. Mach. Tools Manuf. 2008, 48, 905–913. [Google Scholar] [CrossRef]
- Baisden, P.; Atherton, L.; Hawley, R.; Land, T.; Menapace, J.; Miller, P.; Runkel, M.; Spaeth, M.; Stolz, C.; Suratwala, T. Large optics for the national ignition facility. Fusion Sci. Technol. 2016, 69, 295–351. [Google Scholar] [CrossRef]
- Reyné, S.; Duchateau, G.; Natoli, J.-Y.; Lamaignère, L. Laser-induced damage of KDP crystals by 1ω nanosecond pulses: Influence of crystal orientation. Opt. Express 2009, 17, 21652–21665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Jia, H.; Geng, Y.; Li, P.; Liu, L.; Tian, X.; Yuan, H.; Fan, C.; Su, J.; Hu, D. Research of target uniform illumination on SG-III laser facility. In Proceedings of the High Power Lasers, High Energy Lasers, and Silicon-Based Photonic Integration, Beijing, China, 9–11 May 2016. [Google Scholar]
- Cheng, J.; Wang, J.; Peng, E.; Yang, H.; Chen, H.; Chen, M.; Tan, J. Combined modulation of incident laser light by multiple surface scratches and their effects on the laser damage properties of KH2PO4 crystal. Opt. Express 2020, 28, 8764–8782. [Google Scholar] [CrossRef]
- Qu, M.; Xie, G.; Jin, T.; Cai, R.; Lu, A. Realization of high efficiency and low damage machining of anisotropic KDP crystal by grinding. Precis. Eng. 2019, 55, 464–473. [Google Scholar] [CrossRef]
- Hou, N.; Zhang, Y.; Zhang, L.; Zhang, F. Assessing microstructure changes in potassium dihydrogen phosphate crystals induced by mechanical stresses. Scr. Mater. 2016, 113, 48–50. [Google Scholar] [CrossRef]
- Li, C.; Piao, Y.; Hu, Y.; Wei, Z.; Li, L.; Zhang, F. Modelling and experimental investigation of temperature field during fly-cutting of KDP crystals. Int. J. Mech. Sci. 2021, 210, 106751. [Google Scholar] [CrossRef]
- Chen, W.; Liang, Y.; Sun, Y.; Huo, D.; Lu, L.; Liu, H. Design philosophy of an ultra-precision fly cutting machine tool for KDP crystal machining and its implementation on the structure design. Int. J. Adv. Manuf. Technol. 2014, 70, 429–438. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, Y.; Dai, Y.; Xiao, Q.; Tie, G. Novel magneto-rheological finishing process of KDP crystal by controlling fluid-crystal temperature difference to restrain deliquescence. CIRP Ann. 2018, 67, 587–590. [Google Scholar] [CrossRef]
- Gao, W.; Wei, Q.; Ji, J.; Sun, P.; Ji, F.; Wang, C.; Xu, M. Theoretical modeling and analysis of material removal characteristics for KDP crystal in abrasive-free jet processing. Opt. Express 2019, 27, 6268–6282. [Google Scholar] [CrossRef]
- Cheng, Z.; Gao, H.; Liu, Z.; Guo, D. Investigation of the trajectory uniformity in water dissolution ultraprecision continuous polishing of large-sized KDP crystal. Int. J. Extrem. Manuf. 2020, 4, 045101. [Google Scholar] [CrossRef]
- Wang, S.; An, C.; Zhang, F.; Wang, J.; Lei, X.; Zhang, J. Simulation research on the anisotropic cutting mechanism of KDP crystal using a new constitutive model. Mach. Sci. Technol. 2017, 21, 202–222. [Google Scholar] [CrossRef]
- Jia, H.; Wang, F.; Wu, J.; Tan, X.; Cao, Y. Elastic properties and electronic structure of tetragonal KDP crystal under polishing pressures from first principles. Int. J. Mod. Phys. B 2020, 34, 2050286. [Google Scholar] [CrossRef]
- Borc, J.; Sangwal, K.; Pritula, I.; Dolzhenkova, E. Investigation of pop-in events and indentation size effect on the (001) and (100) faces of KDP crystals by nanoindentation deformation. Mater. Sci. Eng. A 2017, 708, 1–10. [Google Scholar] [CrossRef]
- Hou, N.; Zhang, L.; Zhang, Y.; Zhang, F. On the ultra-precision fabrication of damage-free optical KDP components: Mechanisms and problems. Crit. Rev. Solid State Mater. Sci. 2019, 44, 283–297. [Google Scholar] [CrossRef]
- Huang, W.; Yan, J. Effect of tool geometry on ultraprecision machining of soft-brittle materials: A comprehensive review. Int. J. Extrem. Manuf. 2022, 5, 012003. [Google Scholar] [CrossRef]
- Zhang, X.; Arif, M.; Liu, K.; Kumar, A.S.; Rahman, M. A model to predict the critical undeformed chip thickness in vibration-assisted machining of brittle materials. Int. J. Mach. Tools Manuf. 2013, 69, 57–66. [Google Scholar] [CrossRef]
- Liu, Q.; Liao, Z.; Cheng, J.; Xu, D.; Chen, M. Mechanism of chip formation and surface-defects in orthogonal cutting of soft-brittle potassium dihydrogen phosphate crystals. Mater. Des. 2021, 198, 109327. [Google Scholar] [CrossRef]
- Tie, G.; Dai, Y.; Guan, C.; Zhu, D.; Song, B. Research on full-aperture ductile cutting of KDP crystals using spiral turning technique. J. Mater. Process. Technol. 2013, 213, 2137–2144. [Google Scholar] [CrossRef]
- Huang, W.; Yan, J. Fundamental investigation of diamond cutting of micro V-shaped grooves on a polycrystalline soft-brittle material. J. Manuf. Mater. Process. 2021, 5, 17. [Google Scholar] [CrossRef]
- Chen, H.; Dai, Y.; Zheng, Z.; Gao, H.; Li, X. Effect of crystallographic orientation on cutting forces and surface finish in ductile cutting of KDP crystals. Mach. Sci. Technol. 2011, 15, 231–242. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Y.; Yu, G.; Dong, S.; Zhang, X. Investigation of anisotropic mechanisms in ultra-precision diamond machining of KDP crystal. J. Mater. Process. Technol. 2009, 209, 4169–4177. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Zhou, G.; Wei, Z.; Zhang, L. Theoretical modelling of brittle-to-ductile transition load of KDP crystals on (001) plane during nanoindentation and nanoscratch tests. J. Mater. Res. Technol. 2020, 9, 14142–14157. [Google Scholar] [CrossRef]
- Wang, H.; Zong, W.; Sun, T.; Liu, Q. Modification of three dimensional topography of the machined KDP crystal surface using wavelet analysis method. Appl. Surf. Sci. 2010, 256, 5061–5068. [Google Scholar] [CrossRef]
- Zhang, S.; Zong, W. A novel surface roughness model for potassium dihydrogen phosphate (KDP) crystal in oblique diamond turning. Int. J. Mech. Sci. 2020, 173, 105462. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, L.; Wu, Z. Effect of Anisotropy of Potassium Dihydrogen Phosphate Crystals on Its Deformation Mechanisms Subjected to Nanoindentation. ACS Appl. Mater. Interfaces 2021, 13, 41351–41360. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, M.; Liao, Z.; Feng, J.; Xu, D.; Cheng, J. On the improvement of the ductile removal ability of brittle KDP crystal via temperature effect. Ceram. Int. 2021, 47, 33127–33139. [Google Scholar] [CrossRef]
- Liu, Q.; Liao, Z.; Axinte, D. Temperature effect on the material removal mechanism of soft-brittle crystals at nano/micron scale. Int. J. Mach. Tools Manuf. 2020, 159, 103620. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Zong, W. Modeling and simulation on the effect of tool rake angle in diamond turning of KDP crystal. J. Mater. Process. Technol. 2019, 273, 116259. [Google Scholar] [CrossRef]
- Wang, S.; An, C.; Zhang, F.; Wang, J.; Lei, X.; Zhang, J. An experimental and theoretical investigation on the brittle ductile transition and cutting force anisotropy in cutting KDP crystal. Int. J. Mach. Tools Manuf. 2016, 106, 98–108. [Google Scholar] [CrossRef]
- Pritula, I.; Kolybayeva, M.; Salo, V.; Puzikov, V. Defects of large-size KDP single crystals and their influence on degradation of the optical properties. Opt. Mater. 2007, 30, 98–100. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Li, Z.; Wang, P.; Guo, Z. Removing single-point diamond turning marks using form-preserving active fluid jet polishing. Precis. Eng. 2022, 76, 237–254. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, S.; Chen, K.; Pan, Y.; Guo, P. Vibration analysis and development of an ultrasonic elliptical vibration tool based on a portal frame structure. Precis. Eng. 2017, 50, 421–432. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, K.; Xiang, J. Numerical investigations on the dynamic ploughing interaction in elliptical vibration cutting. In Proceedings of the Second International Conference on Advanced Manufacturing Technology and Manufacturing Systems (ICAMTMS 2023), Nanjing, China, 26–28 May 2023. [Google Scholar]
- Holthusen, A.-K.; Riemer, O.; Brinksmeier, E. Material impact on diamond machining of diffractive optical structures for UV-application. J. Manuf. Mater. Process. 2018, 2, 15. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, X.; Ngoi, B.; Gan, J. Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. J. Mater. Process. Technol. 2002, 121, 243–251. [Google Scholar] [CrossRef]
- Fernando, P.; Zhang, M.; Pei, Z.; Cong, W. Intermittent and continuous rotary ultrasonic machining of K9 glass: An experimental investigation. J. Manuf. Mater. Process. 2017, 1, 20. [Google Scholar] [CrossRef]
- Zhang, J.; Suzuki, N.; Wang, Y.; Shamoto, E. Fundamental investigation of ultra-precision ductile machining of tungsten carbide by applying elliptical vibration cutting with single crystal diamond. J. Mater. Process. Technol. 2014, 214, 2644–2659. [Google Scholar] [CrossRef]
- Huang, W.; Yu, D.; Zhang, X.; Zhang, M.; Chen, D. Ductile-regime machining model for ultrasonic elliptical vibration cutting of brittle materials. J. Manuf. Process. 2018, 36, 68–76. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, J.; Zhang, Y. Development of a novel XZ workpiece vibration generator for cooperative vibration cutting of hierarchical grating structures. Mech. Syst. Sig. Process. 2023, 198, 110422. [Google Scholar] [CrossRef]
- Huang, W.; Yu, D.; Zhang, M.; Cao, Q.; Yao, J. Predictive cutting force model for ductile-regime machining of brittle materials. Int. J. Adv. Manuf. Technol. 2018, 98, 781–790. [Google Scholar] [CrossRef]
- Yang, Y.; Xiang, J.; Zhao, Z. An analytical cutting force model for elliptical vibration texturing of nano-grating surfaces. J. Mater. Process. Technol. 2023, 315, 117901. [Google Scholar] [CrossRef]
Mechanical Property | Value | Mechanical Property | Value |
---|---|---|---|
Working surface | (001) crystal plane | Fracture toughness Kc | 0.3 MPa m1/2 |
Hardness H | 2.0 GPa | Yield strength σs | 51 MPa |
Young’s modulus E | 44 GPa | Specific surface energy γs | 0.6 J/m2 |
Workpiece: (001) Crystal Plane of KDP | Nominal Cutting Velocity vc: 2.4 mm/min | ||
---|---|---|---|
Cutting tool parameters | Tool material: SCD | Tool modulation locus parameters | Bottom length l: 3.5 μm |
Nose radius Rn: 5.1 mm | Modulation height h: 2.2 μm | ||
Rake angle γ0: −25° | First inclined angle θ: 75° | ||
Clearance angle α: 20° | Second inclined angle β: 75° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chen, Y.; Zhao, C. On a Novel Modulation Cutting Process for Potassium Dihydrogen Phosphate with an Increased Brittle–Ductile Transition Cutting Depth. Machines 2023, 11, 961. https://doi.org/10.3390/machines11100961
Yang Y, Chen Y, Zhao C. On a Novel Modulation Cutting Process for Potassium Dihydrogen Phosphate with an Increased Brittle–Ductile Transition Cutting Depth. Machines. 2023; 11(10):961. https://doi.org/10.3390/machines11100961
Chicago/Turabian StyleYang, Yang, Yu Chen, and Chenyang Zhao. 2023. "On a Novel Modulation Cutting Process for Potassium Dihydrogen Phosphate with an Increased Brittle–Ductile Transition Cutting Depth" Machines 11, no. 10: 961. https://doi.org/10.3390/machines11100961
APA StyleYang, Y., Chen, Y., & Zhao, C. (2023). On a Novel Modulation Cutting Process for Potassium Dihydrogen Phosphate with an Increased Brittle–Ductile Transition Cutting Depth. Machines, 11(10), 961. https://doi.org/10.3390/machines11100961