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Abstract: Rotor unbalance is the most important factor affecting the dynamic performance of aircraft
engines. The existing unbalance prediction and control methods are insufficient for multi-stage rotors.
The post-assembly unbalance of rotors in aircraft engines is a critical factor affecting their dynamic
performance. In order to predict and reduce the unbalance of multi-stage rotors after assembly,
this paper establishes a measurement model for the center-of-mass offset of aircraft engine rotors
through decoupled calculations of the unbalance. Furthermore, it constructs an unbalance prediction
model using the spatial transfer mechanism of combined rotor offset centers under the influence of
manufacturing errors. Additionally, a method for measuring rotor unbalance during the assembly
phase is proposed. The experimental results of the unbalance in multi-stage combined rotor assembly
indicate that the degree of agreement between the predicted results and the experimental results is
91.3%, resulting in a reduction in the mean error of 15.3% compared to before the correction. The
study also investigates the impact of manufacturing errors on unbalance. This research provides
robust support for controlling the unbalance in multi-stage combined rotor assembly.

Keywords: aircraft rotor; decoupling algorithm; unbalance; manufacturing errors; prediction;
regulation

1. Introduction

Aircraft engines are often referred to as the “crown jewel of the industry,” characterized
by typical features of high temperature, high pressure, and high rotational speed during
operation [1]. The high-pressure compressor rotor system, as a core component of aircraft
engines, has post-assembly unbalance characteristics that are key factors influencing the
performance of the engine’s rotor. Unbalance is the primary excitation source for rotor
system vibration responses. Therefore, achieving prediction and control of unbalances is
especially crucial for enhancing the assembly quality and service performance of aircraft
engines [2,3].

Due to the uncertainty in determining the center of mass for each rotor stage and the
ambiguous spatial transfer mechanisms during assembly, the prediction of multi-stage
rotor unbalance during assembly becomes unreliable [4]. Furthermore, real-time testing of
unbalance quantities is challenging during the assembly process, which can lead to final
assembly quality not meeting the requirements, subsequently affecting the rotor system’s
vibration response. Aircraft engine rotors are symmetrical, cylindrical components that
rotate. In the high-pressure rotor assembly process, manufacturing errors in various mating
surfaces and the assembly phase itself can influence the positions of the center of mass
and the rotation axis at each rotor stage, resulting in rotor unbalance. Therefore, research
focused on rotor unbalance prediction models that consider manufacturing errors and the
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assembly phase is crucial for effectively reducing assembly unbalance and improving rotor
operational performance [5,6].

Center-of-mass offset after rotor assembly can lead to rotor unbalance, subsequently
inducing vibrations in the entire system. Many experts have studied the impact of post-
assembly center-of-mass offset-induced rotor unbalance on engine vibrations. Qing et al. [7]
established a model for the breathing behavior of cracks with mass eccentricity and con-
ducted a specific study on the torsional effects of unbalance orientation angles. Liu [8]
proposes a method to minimize stage-by-stage initial unbalance in aero engine assembly of
multi-stage rotors based on the connective assembly model. The analysis includes the prop-
agation of mass eccentric deviation in the assembly, and the effectiveness of the proposed
method is verified through the assembly of multi-stage rotors using the optimal assembly
strategy. Wang’s [9] study focuses on the dual-rotor system supported by dual bearings,
where the Riccati transfer matrix method with good numerical stability is used to establish
the model of the magnetic suspended dual-rotor system unbalance response. Finally, the
dynamic characteristics of the unbalance response are investigated. M.B. et al. [10,11]
employed the transfer matrix method to analytically derive the influence coefficients for
a rotor-bearing system with both mass unbalance and bow. They identified distributed
unbalance through the investigation of a polynomial curve representing the eccentricity
distribution. Furthermore, the unbalance distribution is estimated by analyzing vibration
responses measured at speeds below the balancing speed. Wang, LK et al. [12] investigated
the impact of unbalance location on the critical speed and vibration characteristics of a
double-overhung rotor. Moreover, numerous scholars have investigated techniques for
post-assembly adjustments of the geometric attributes and unbalance properties of aviation
engines. The prediction model of rotor unbalance often encounters difficulties in dealing
with many stages of a rotor. Mu and Sun et al. [13,14] studied an assembly accuracy pre-
diction method for aviation engine rotors that takes into account manufacturing errors
and assembly deformations. Additionally, a spatial transfer model for offsetting the center
of mass was proposed, enabling control over assembly accuracy and unbalance. Zhang
et al. [15] proposed a model-based rotor-balancing method, followed by the utilization of
the differential evolution algorithm to obtain the optimization solution. Zhang et al. [16]
presented a method for representing geometric errors using Non-Uniform Rational B-Spline
(NURBS) surfaces. This approach enables the incorporation of geometric errors in the vir-
tual modeling of mechanical assemblies. Li et al. [17] proposed a datum error elimination
method that takes into account the independence of geometric characteristics from the
measurement datum. This method enhances the accuracy of the rotor characteristic matrix
and assembly model. Zhu Z et al. [18] conducted an analysis of the impact resulting from
variations in assembly sequences on the geometric deviation of critical features within
an assembly. This information can be used to identify specific assembly sequences for
evaluation, potentially serving as valuable evidence for optimizing the assembly process
planning. Sun et al. [19,20] established a transfer model for mass eccentricity and intro-
duced a novel method for the propagation and control of unbalance during the assembly
process. Many experts and scholars have conducted corresponding research on the pre-
diction and real-time testing of unbalance during the assembly process of multi-stage
rotors. Li R et al. [21] constructed a measurement model for the centroid deviation of
aero-engine rotors by decoupling unbalance. This model reveals the spatial transmission
mechanism of centroid deviation in the assembled rotors, taking into account the influence
of machining errors. Yue Chen et al. [22] proposed a method for optimizing the unbalance
of a multi-stage rotor during assembly. In contrast to traditional methods that rely on static
features, Lan L et al. [23] proposed a method that combines dynamic features with support
vector machines (SVM) for the precise detection and classification of rotor unbalance faults.
Sudhakar et al. [24] introduced a comprehensive methodology for fault identification that
aims to minimize errors even when there are fewer measured vibrations available in the
current study. The measurement method for centroid deviation encompasses techniques
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such as the weighing method [25–27], multiline torsional pendulum method [28,29], and
modal identification method [30,31], among others.

During the assembly of aircraft engine rotors, the axis of rotation changes as the
assembly progresses, causing errors in the center-of-mass deviation from the rotation axis
at each stage to vary in real time. This makes accurate prediction of unbalance quantities
challenging. Additionally, the difficulties in conducting real-time unbalance testing during
the assembly process result in significant deviations in the final unbalance quantities, failing
to meet the assembly requirements.

To address this issue, this paper focuses on the measurement of unbalance during
the assembly process of multi-stage rotors and on accurate prediction. The following
tasks have been undertaken: Establishment of a measurement model for the centroid
deviation of engine rotors and a spatial transfer model during the assembly phase. Based
on these models, a predictive model for the unbalance of multi-stage rotors has been
constructed and a method for measuring rotor unbalance during the intermediate assembly
stages introduced. This method involves the correction of original prediction results
using intermediate test data and optimization of rotor unbalance through assembly-phase
adjustments.

2. Rotor Unbalance Prediction Model
2.1. Decoupling Algorithm of Rotor Unbalance

To establish a centroid transfer model during the rotor assembly process, it is necessary
to decouple the unbalance of individual stages to obtain the centroid positions of each stage.

As shown in Figure 1, during the unbalance testing of aircraft engine rotors, two
unbalance correction planes are established, namely Correction Plane 1 and Correction
Plane 2. The unbalance measurement on these two planes is denoted as ω1 and ω2,
respectively. The overall unbalance of the aircraft engine, denoted as ω, is the vector
sum of the unbalances on these two correction planes. Due to the non-uniform shape
of the rotor and manufacturing irregularities, the actual center-of-mass position must be
obtained through decoupling from the unbalance measurements. It can be assumed that
two unbalance mass centers exist on the two correction planes, respectively. Their positions
are defined in a coordinate system with the front face of the rotor serving as the reference
plane, as described by Equation (1).(

x1,
w1 cos ϕ1

m
,

w1 sin ϕ1

m

)
;
(

x2,
w2 cos ϕ2

m
,

w2 sin ϕ2

m

)
(1)

Herein, x1 and x2 represent the distances from the two correction planes to the co-
ordinate origin, while ϕ1 and ϕ2 denote the phases of unbalance ω1 and ω2, respectively.
Furthermore, ‘m’ denotes a mass unit conversion factor, which is equal to the rotor’s mass
in the equation.
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The position of the rotor’s centroid in the single-body rotating coordinate system is
expressed by the equation:(

x1 +
w2

w1 − w2
(x2 − x1),

w1 cos ϕ1 + w2 cos ϕ2

m
,

w1 sin ϕ1 + w2 sin ϕ2

m

)
(2)

The offset of the centroid relative to the actual rotation axis of the rotor is expressed
as follows:

µ =

√
w1

2 + w22 + 2w1w2 cos(ϕ1 − ϕ2)

m
(3)

The phase of this offset centroid can be expressed as:

ϕ =
w1 sin ϕ1 + w2 sin ϕ2

w1 cos ϕ1 + w2 cos ϕ2
(4)

The quantities involved in Equations (1)–(4) include ‘m’, which represents the rotor’s
mass and can be measured using a mass scale. The rotor’s two unbalance quantities, ω1
and ω2, along with their phases ϕ1 and ϕ2, can be obtained through testing on a vertical
balancing machine. Through the decoupling calculations outlined above, the position of
the rotor’s centroid in the single-body rotating coordinate system, denoted as ‘ci’, can be
determined. Subsequently, the centroid offset and its phase offset can be further calculated.

2.2. Prediction Model for Multi-Stage Rotor Unbalance

The high-pressure compressor rotor system is assembled from multiple stages of rotors,
and the errors in rotor centroids relative to the axis of rotation change as the assembly
process progresses, consequently affecting the final unbalance. Therefore, constructing a
centroid transfer model for multi-stage rotor assembly and determining the ultimate axis
of rotation are crucial for accurately predicting the unbalance quantities.

The position of a single-stage rotor in its single-body rotating coordinate system is
denoted as ci. Following the actual assembly sequence of the aeroengine rotor, the centroids
of each rotor stage are represented as c1, c2, c3, . . . cn (where ‘n’ is the number of stages
in the aeroengine rotor). The centroid deviations for each rotor stage are u1, u2, u3, . . . un,
and the corresponding phases of these centroid deviations, which are the same as those
for static unbalance, are denoted as ϕ1, ϕ2, ϕ3 . . . ϕn. The total centroid deviation for the
assembled rotor is ‘um’.

Assuming that the fit between parts is ideal with no manufacturing errors, and the
actual rotation axis after assembly coincides with the ideal rotation axis, the transmission
relationship of the centroids of the rotor at different stages is only related to the position
of the centroid of each single-stage rotor in its own single-body rotating coordinate sys-
tem. However, due to manufacturing errors between the mating surfaces of parts, errors
accumulate and transfer between different mating surfaces along the assembly path as the
assembly process progresses. Under different assembly phases, the rotor generates different
rotation axes, leading to changes in the offset of the centroids of each rotor stage relative to
the rotation axis. Therefore, the machining error of the rotor is a factor affecting the actual
rotation axis of the rotor after assembly, while the position of the rotor’s centroid determines
the distance of the centroid deviation from the rotation axis after assembly. These factors are
coupled with each other. To understand the mutual influence between them, it is necessary
to establish the transformation relationships between the single-body rotating coordinate
system, single-body coordinate system, assembly coordinate system, and assembly rotating
coordinate system when assembling multi-stage rotors. The schematic diagram depicting
the relationships between these coordinate systems is shown in Figure 2.
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The position matrices of the centroids of each rotor stage in their respective single-body
rotating coordinate systems can be represented as follows:

ci = [xi, yi, zi] (5)

where xi, yi, zi can be calculated through the decoupling calculations based on Equation (2).
The position matrix of the centroid of a single-stage rotor in a single-body coordinate

system with its front face as the coordinate base can be represented as follows:

cs
i = [xs

i , ys
i , zs

i ] (6)

where xs
i , ys

i , zs
i represent the centroid coordinates of the i-th rotor along the x, y, and z axes

in its single-body coordinate system. The transformation relationship between Equations (5)
and (6) is represented as xs

i
ys

i
zs

i

 =

 1 0 θy
0 1 −θx
−θy θx 1

xi
yi
zi

 (7)

where θx and θy represent the machining errors of the front face of the parts.
The position matrix of the centroid of the i-th rotor stage in the assembly coordinate

system can be obtained from its position matrix in the single-body coordinate system, as in
Equation (8).

ca
i = (

i−1

∏
1

Rk) · cs
i (8)

where Rk is the spatial pose representation matrix of the k-th rotor stage. During assembly,
each rotor stage can be rotated around its z-axis to adjust the assembly phase. Therefore,
Rk contains factors related to phase rotation. According to the theory of homogeneous
transformations, Rk can be represented as given in the equation:

Rk =


cosαk −sinαk ∆θy 0
sinαk cosαk −∆θx 0

−∆θycosαk + ∆θxsinαk ∆θysinαk + ∆θxcosαk 1 h
0 0 0 1

 (9)

Here, αk represents the phase value for the assembly of the respective rotor stage, ∆θx
and ∆θy denote the differences in angular offsets around the x-axis and y-axis, respectively,
for the fitting planes of the front and back faces of the rotor stage. Additionally, ‘h’ represents
the height of the respective rotor stage.

Therefore, the end face’s error plane can be fitted using the least squares method to
obtain the expression for the machining surface, and the radial runout data can be fitted to
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determine the center of the error surface. The expression for the actual assembly surface of
the i-th rotor stage, obtained through fitting, is given by

Aix + Biy + Ciz + Di = 0 (10)

Here, Ai, Bi, Ci, and Di represent the coefficients of the i-th rotor stage’s end face equa-
tion. Due to the high machining accuracy of the rotor contact surface, the deviation error of
the end face caused by machining errors is extremely small. According to reference [32],
the deflection error of the i-th rotor stage’s end face around the x and y axes is given by

θxi = −
Bi
Ci

, θyi = −
Ai
Ci

(11)

After obtaining the positions of centroids for each stage of the rotor in the assembly
coordinate system, it is also necessary to determine the rotor’s axis of rotation. It is known
that the rotation axis passes through the origin O (0, 0, 0) of the assembly coordinate
system and the center OA

n =
(
xA

n , yA
n , zA

n
)

of the upper surface of the last-stage rotor. The
coordinates of the center of the upper surface can be obtained using the Equation (12). The
schematic representation of the centroids of each rotor stage and the rotation axis during
assembly are shown in Figure 3.

OA
n = (

n−1

∏
1

Rk) · PA
n (12)

Here, OA
n represents the center of the upper surface of the last-stage rotor in the

assembly coordinate system, and PA
n represents the center of the upper surface of the

last-stage rotor in its individual coordinate system.
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The vector representing the rotation axis can be expressed as follows:

n = (xA
n , yA

n , zA
n ) (13)

The offset of the centroids of each stage of the assembled aircraft engine rotor relative
to the rotation axis is as follows

µi =

∣∣∣∣ →CiOA
n ×

→
n
∣∣∣∣

|n| (14)
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The phase of the centroid offset for each stage of the rotor can be expressed as follows,
based on the equation

ϕi = arctan
yR

i
xR

i
(15)

It can be easily obtained that the decomposed unbalance quantity of the aircraft engine
rotor is as follows, based on the equation

wix = ∑ µimicosϕi, wiy = ∑ µimi sin ϕi (16)

The unbalanced quantity of the assembled aircraft engine rotor is given by

w =
√

wix
2 + wiy

2 (17)

As evident from the above, the position of the center of mass for the ith-stage rotor is
influenced by the machining errors of the preceding i − 1 stages, resulting in both rotation
and translation transformations in its individual coordinate system. Additionally, with
the assembly of each rotor stage, there is a change in the direction of the actual rotation
axis. Once we obtain the positions of the centers of mass of each rotor stage in the assembly
coordinate system and the direction vectors of the rotation axes, we can calculate the center
of mass offsets of each rotor stage relative to the rotation axis. Multiplying these offsets
by the masses of each rotor stage yields the unbalanced quantity of the assembled rotor.
Furthermore, by adjusting the assembly phases of each rotor stage, we can fine-tune the
total rotor unbalance quantity.

3. Model Correction Based on Experimental Values as Inputs
3.1. Unbalance Measurement Method during the Assembly Synchronization Process

During the assembly process of multi-stage rotors, unfinished rotors, due to the
absence of bolt connections or the lack of corresponding balancing fixtures, cannot be tested
for unbalance on the unbalance machine at the intermediate assembly stage. As a result, it
is impossible to determine the real-time unbalance status of the already assembled rotors,
which is detrimental to the subsequent rotor assembly process. Therefore, a precision-
based method for measuring rotor unbalance is proposed. This method involves precision
testing to calculate the rotor’s unbalance status, providing valuable information for the
subsequent assembly. Additionally, it saves both the effort and economic costs associated
with unbalance testing.

Taking the assembly of the i − 1 rotor component and the i-th rotor as an example,
through deduction it can be determined that we have already measured the unbalance
of the i − 1 level rotor component, denoted as ωi−1. The centroid position of the i-1
rotor component in the assembly coordinate system is known as ca

i−1 =
[
xa

i−1, ya
i−1, za

i−1
]
.

The position of the i-th level rotor in its own body-revolving coordinate system is given
by ci = [xi, yi, zi]. We first transform the centroid position coordinates of the i-th rotor
component to a coordinate system with the non-assembly face (the rear end face of the
rotor) as the coordinate base. The coordinate transformation is described by the equation

c∗i = θeca
i (18)

Here, c∗i =
[
x∗i , y∗i , z∗i

]
represents the centroid position of the i-th level rotor in a

coordinate system with the non-assembly face as the coordinate base. θe is the machining
error matrix for the non-assembly face, and its form is the same as the one presented in
Equation (7).

After assembling the i-th rotor component with the i − 1-th rotor component, the posi-
tion of the i-th rotor’s center of mass in the assembly coordinate system can be determined
by the equation
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xR

i
yR

i
zR

i
1

 =


1 0 θy′ − θy dx′ − dx
0 1 θx− θx′ dy′ − dy

θy− θy′ θx′ − θx 1 ∑ hi
0 0 0 1




x∗i
y∗i
z∗i
1

 (19)

where ca
i =

[
xa

i , ya
i , za

i
]

represents the center of mass of the i-th rotor component in the
assembly coordinate system, θx, θy, θx’ and θy’ represent the deflection values of the upper
and lower surfaces of the i-th assembly, and dx, dy, dx’ and dy’ represent the eccentricity val-
ues of the centers of the upper and lower surfaces. Once the positions of the center of mass
for the previous i − 1 rotor components and the i-th rotor are determined, the unbalance of
the previous i rotor components can be calculated, as discussed in the preceding section.

3.2. Method of Model Correction with Intermediate Test Measurements as Input

In multi-stage rotor unbalance prediction, the prediction error increases rapidly with
the number of rotor stages, rendering existing prediction models ineffective and inadequate.
This paper employs a model correction method that uses actual measurements as input to
refine the unbalance prediction model for multi-stage rotors. The schematic diagram of the
correction method is illustrated in Figure 4.
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Figure 4. Schematic Diagram of the Correction Principle for the Unbalance Optimization Model in
N-Stage Rotor Assembly.

In the example presented in this paper, the assembly of the seven-stage rotor is initially
predicted using the initial prediction model. This yields the initial assembly phases for the
seven-stage rotor. Then, the test measurements for the i-stage rotor component are input
into the prediction model, and adjustments are made to the initial phases of the subsequent
n − i stages. This process is repeated iteratively.

4. Experimental Design
4.1. Measurement of Rotor Unbalance

The experimental rotor structure in this study is illustrated in the diagram. The
experimental rotor consists of seven components, each of which is labeled in Figure 5
with their respective names, including stages 1 to 6 and the drum shaft. Referring to the
decoupling method for single-stage rotors described in Section 2, each rotor stage can
be tested using the horizontal balancing machine depicted in Figure 6, which provides
unbalance measurements and phase information on two correction planes. The unbalance
test results for the 7th rotor stage are presented in Table 1.
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Table 1. Unbalance test results of each rotor stage.

Rotors ω1(g.mm) ϕ1(◦) ω2(g.mm) ϕ2(◦)

1 169 84 147 256
2 273 225 98 72
3 229 200 77 230
4 78 215 165 188
5 164 305 118 322
6 53 77 284 174
7 120 95 254 33

According to Equation (2), the centroid of a single-stage rotor can be decoupled by
analyzing the unbalance measurements on the two correction planes. This provides the
position of the single-stage rotor’s centroid in its individual rotary coordinate system.
Then, using Equation (7), you can determine the positions of each rotor stage’s centroid
in their respective individual coordinate systems. Furthermore, based on Equation (8),
you can calculate the positions of each rotor stage’s centroid in the assembly coordinate
system. The offset of each centroid relative to the rotation axis can be obtained using
Equation (14). The total unbalance quantity of the assembly can then be computed using
Equation (17). By adjusting the assembly phase using the original prediction model, you
can optimize the unbalance quantity for the seven-stage rotor under these manufacturing
errors. Additionally, after adjusting the initial prediction model based on intermediate test
measurements, the adjusted phase results are shown in Figure 7, illustrating the changes in
the size and position of the offset centroids before and after adjustment.
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Figure 7. Schematic Diagram of Center of Mass Offset in Before and After Correction.

As shown in Figure 6, this paper used a horizontal balancing machine to measure the
unbalance of the assembled rotor. According to the multi-stage rotor unbalance prediction
model proposed in Section 2, the optimal assembly angles for each stage of the rotor were
determined. According to the proposed approach in this paper, the unbalance predictions
before and after model correction, as well as the phase of assembly for each stage of the
rotor, are shown in Figure 8.
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Figure 8. Precise air-bearing turntable.

Simultaneously, the effectiveness of the model is demonstrated through a set of control
groups. The predicted results of the three groups were 900, 580 and 520 g.mm, respectively.
From Figure 9, it can be observed that, when using the proposed model to guide assembly,
the unbalance levels before and after correction decreased by 35.5% and 42.2% relative to
the control experiments, respectively. The model resulted in a 15.8% reduction in unbalance
levels after correction compared to before. According to the three different assembly phases,
the experimental results of the unbalance quantity obtained are 990, 765 and 570 g.mm,
respectively. The experimental results of the seven-stage rotor assembly show that the
degree of agreement between the predicted results and the experimental results is 91.3%,
resulting in a reduction in the mean error of 15.3% compared to before the correction.
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4.2. Measurement of Rotor Manufacturing Errors

According to the spatial transfer model of the rotor’s center of mass proposed in this
paper during the assembly process, it is necessary to measure the manufacturing errors
in the radial and axial directions of each rotor stage. In this study, a precision air-bearing
turntable, as shown in Figure 9, was used to measure manufacturing errors. The turntable
is equipped with four TESA-GT31 sensors, which measure the axial and radial surface
machining errors at the front and rear ends of the rotor. The measurement accuracy is 0.1
um, the repeatability is 0.1 um, and the angular offset accuracy is 0.3′′. The measurement
results of manufacturing errors for each rotor are presented in Table 2.

Table 2. Measurement results of manufacturing errors for each rotor stage.

Rotors
Eccentricity Error Tilt Error

dx(mm) dy(mm) θx(e − 5) θy(e − 5)

1 0.0071 −0.0080 0.9258 3.0230
2 −0.0163 0.0012 1.8970 3.6620
3 0.0020 0.0113 0.6221 2.2835
4 0.0125 −0.0015 1.4430 0.0398
5 −0.0065 −0.0027 1.3600 0.3945
6 −0.0031 0.0037 0.3258 1.5660
7 0.0094 −0.0045 0.7441 1.8358

5. Discussion
5.1. The Relationship between Unbalance and Centroid Concentricity

To study the mutual influence between centroid concentricity and the unbalance of
the rotor, we provide a brief analysis as follows. The position matrix of the center of mass
of each rotor stage in the assembly coordinate system can be expressed as ca

i =
[
xa

i , ya
i , za

i
]
.

Consequently, the positions of the center of mass of each rotor stage in the assembly rotating
coordinate system can be represented as cR

i = Rn · ca
i , where

Rn =

 cosβ 0 −sinβ
sinαsinβ cosβ sinαcosβ
cosαsinβ −sinα cosαcosβ

 (20)

Describing the concentricity error of the centroid distribution by using the actual
rotation axis as the reference axis and considering the minimum cylinder radius d that
encompasses all centroids,

d = max(u1, u2, u3 . . . un) (21)

The concentricity error of the centroid distribution represents the range of the centroid
positions of individual components in the assembly. During the operation of the rotor, since
the centroids are not aligned in a straight line, it can introduce additional bending moments
to the mating surfaces of the components. Rotor assemblies with dispersed centroid
distributions can also result in significant additional unModal balancing of flexible rotors
with bow and distributed unbalance if deformation occurs during operation. Therefore,
while predicting the unbalance of the assembly, it is essential to consider the distribution of
the centroids of individual components.

We observed that controlling the assembly phase to minimize rotor unbalance often
results in a larger eccentricity error for the centroids of each rotor stage. Conversely, con-
trolling only the eccentricity error does not guarantee the rotor’s unbalance after assembly.
Taking the example of a seven-stage rotor assembly, when the minimum value for total
unbalance is achieved at 730, the eccentricity error for each rotor stage is 0.14. When
controlling the eccentricity error to a minimum of 0.06, the total unbalance increases to
1160. As shown in Figure 10, as the centroid eccentricity varies from 0.06 to 0.30, the rotor’s
optimal unbalance first decreases and then increases. The rotor’s unbalance is minimized
when the eccentricity error is around 0.14 mm.
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5.2. The Impact of Manufacturing Errors on Unbalance

To study the influence of manufacturing errors on the minimum unbalance quantity,
rotor masses were set at 3 kg, 4 kg, and 3.5 kg, with rotor heights of 40 mm, 45 mm, and
30 mm. Rotor eccentricity errors were set as shown in the table, and tilt errors were set
at 0.5’, 1.0’, 1.5’, 2.0’, 2.5’, 3.0’, and 3.5’. Changing the assembly angle can optimize the
total unbalance quantity and concentricity of the assembly. The relationship between tilt
error and minimum unbalance quantity was plotted using numerical simulation results, as
shown in Figure 11. The results for rotor eccentricity errors are presented in Table 1. When
the rotor eccentricity errors were dx = 0.003 and dy = 0.004, the corresponding assembly
rotor unbalance quantities for different tilt errors were 304, 268, 231, 245, 432, 578, and 729.
The results indicate that as the tilt error increases, the unbalance quantity of the assembled
rotor first decreases and then increases. The initial decrease is due to the overall centroid
offset caused by tilt errors being offset by the centroid offset caused by eccentricity errors.
However, as the tilt error continues to increase, the additional eccentricity caused by tilt
errors gradually dominates, causing the centroids to move away from the axis, resulting in
an increase in the total unbalance quantity of the assembled rotor.
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To study the influence of manufacturing errors on the concentricity when achieving
the minimum unbalance quantity, the curve shown in Figure 12 was plotted. As the tilt
error increases, the concentricity error when reaching the minimum unbalance quantity
shows a trend of first decreasing and then increasing. Reasonable control of tilt errors
during the manufacturing phase has a positive impact on the optimization results of
unbalance quantity and concentricity after assembly. At the same time, due to the less
pronounced effect of eccentricity error, as shown in Figure 12, when the tilt error is 2′′, the
concentricity error when achieving the minimum unbalance quantity remains around 0.06
as the eccentricity error increases from 0.005 to 0.015.
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6. Conclusions

This paper establishes a measurement model for the offset of the center of mass of an
aircraft engine rotor by decoupling the unbalance of a single-stage rotor. It also constructs
an initial prediction model for unbalance levels using the spatial transfer mechanism of
combined rotor offset centers influenced by manufacturing errors and assembly phase.
Additionally, it proposes a method for measuring rotor unbalance during the assembly-
incomplete stage and refines the initial prediction model using intermediate measurement
data. Results from a seven-stage rotor assembly experiment demonstrate that, under the
control of the initial prediction model, the unbalance levels decreased by 35.5% compared
to the control group.

(1) After model correction, the assembly unbalance decreased by 42.2% compared to
the control group. The unbalance levels after model correction reduced by 15.8%
compared to before correction, confirming the effectiveness of the model adjustment.
The theoretical values after model correction matched experimental values by 91.3%,
and the average error is reduced by 15.3% compared to before correction.

(2) The relationship between the concentricity of the center of mass and unbalance levels
was explored. As concentricity decreased, assembly unbalance initially decreased and
then increased. During rotor assembly, both factors should be reasonably considered.

(3) The impact of manufacturing errors on unbalance levels and concentricity was stud-
ied. With increasing tilt error, unbalance initially decreased and then increased. When
tilt error falls within a reasonable range, eccentricity error has minimal impact on
unbalance. As tilt error increases, the concentricity at the point of optimal unbalance
initially decreases and then increases. As eccentricity error increases from 0.005 to
0.015, the concentricity at the point of optimal unbalance remains around 0.06. To
simultaneously control rotor concentricity while achieving optimal unbalance, partic-
ular attention should be paid to tilt errors during rotor machining and subsequent
assembly. These research findings can effectively support the quality adjustment of
multi-stage rotor assemblies.
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