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Abstract: The increasing complexity of mathematical models developed as part of the recent advance-
ments in autonomous mobility platforms has led to an escalation in uncertainty. Despite the intricate
nature of such models, the detection, decision, and control methods for autonomous mobility path
tracking remain critical. This study aims to achieve path tracking based on pixel-based control errors
without parameters in the mathematical model. The proposed approach entails deriving control
errors from a multi-particle filter based on a camera, estimating the error dynamics coefficients
through a recursive least squares (RLS) approach, and using the sliding mode approach and weighted
injection to formulate a cost function that leverages the estimated coefficients and control errors.
The resultant adaptive steering control expedites the convergence of control errors towards zero by
determining the magnitude of the injection variable based on the control errors and the finite-time
convergence condition. The efficacy of the proposed approach is evaluated through an S-curved and
elliptical path using autonomous mobility equipped with a single steering and driving module. The
results demonstrate the capability of the approach to reasonably track target paths through driving
and steering control facilitated by a multi-particle filter and a lidar-based obstacle detection system.

Keywords: adaptive steering control; sliding mode approach; weighted injection; multi-particle filter;
recursive least squares; autonomous mobility

1. Introduction

Autonomous mobility is undergoing development across various platforms, catering
to specific use cases that enhance user convenience and operational efficiency. These
platforms encompass domains such as smart factories, smart farms, automobiles, and
healthcare facilities. Within the realm of autonomous mobility, sensors, including cameras,
lidars, and radars, play a pivotal role in obstacle detection, path tracking, and environmental
perception. Additionally, the strategic placement of these sensors is a crucial consideration
for effective autonomous operation. However, the diversification of autonomous mobility
platforms introduces heightened complexity and uncertainty in mathematical modeling.
The implications of such uncertainty can exert detrimental effects on control mechanisms.
Hence, the development of perception, decision, and control techniques that account for
disturbances and uncertainties is of paramount significance.

Zhang et al., employed camera-derived lane detection and lateral error calculations
to propose a path-tracking algorithm for intelligent electric vehicles. This algorithm inte-
grated a linear quadratic regulator based on error dynamics and sliding mode control [1].
Muthalagu et al.,, presented an algorithm that utilizes vision or camera data to detect
straight lines, curves, and steep lanes through a combination of edge detection, polynomial
regression, perspective transformation, and histogram analysis [2]. Jiao et al., introduced
a lane detection approach that incorporated a multi-lane following Kalman filter. Their
algorithm centered on lane voting vanishing points derived from camera-based original
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images for simplified grid-based noise filtering [3]. Miyamoto et al., devised a unique
road-following technique that combines image processing with semantic segmentation.
The practicality of this method was confirmed through a 500 m test drive employing three
webcams and a robot [4]. De Morais et al., outlined a hybrid control architecture merging
deep reinforcement learning with a robust linear quadratic regulator. This architecture
leveraged RGB information from vision-based images to maintain an autonomous vehicle
within the lane center, even amidst uncertainties and disturbances [5]. Khan et al., proposed
an efficient conventional neural network approach featuring minimal parameters and a
lightweight structural model, which can be implemented in embedded devices for accurate
lane detection using vision or camera-based images [6].

Recent research dedicated to the advancement of human-following mobile robots has
focused on object tracking algorithms leveraging techniques such as histogram of oriented
gradient, support vector machines, color histogram comparison [7], and correlation filters
utilizing RGB and pixel data [8]. Investigations are also in progress to devise path tracking
for mobile robots that incorporate the robustness of sliding mode control [9,10] with the
uncertainties and disturbances inherent in mathematical models and parameters and reflect
the physical characteristics of the robot based on a model predictive controller [11,12]. Addi-
tionally, some studies are exploring path-following strategies for mobile robots, harnessing
GPS and vision or camera sensors [13,14].

The particle filter, which is suitable for nonlinear and non-Gaussian filtering, finds
application across diverse signal processing fields and mathematical models. It is widely
utilized for visual tracking and localization using vision or cameras. Camera-based visual
tracking is used in multiple applications ranging from automated surveillance to object
tracking and medical care. Since the surrounding environment continuously changes when
an object moves, studies are being conducted on object tracking that is robust despite
changes in lighting, background confusion, and scale [15-18]. In the context of autonomous
driving and vehicle navigation, researchers are actively engaged in refining location esti-
mation through particle filter-based approaches for autonomous vehicles and robots. This
aims to secure accurate location determination within indoor environments, mitigating the
uncertainties associated with GPS sensors [19-21]. A controller based on a mathematical
model for path following autonomous vehicles and robots may adversely affect control
performance due to uncertainties in parameters and mathematical models, as well as distur-
bances in various driving situations. Studies are currently being conducted to enhance the
performance of path-tracking control by compensating for uncertainties and disturbances
in parameters and mathematical models. This is achieved using neural networks and deep
reinforcement [22-26], as well as adaptive rules [27,28].

Previous research has explored methodologies for lane and object detection utilizing
pixel and RGB data from camera images, particle filters, and image processing techniques.
Furthermore, ongoing investigations have validated the evolution of robust path-tracking
control algorithms based on artificial intelligence and adaptive principles. These algorithms
are designed to counterbalance uncertainties and disturbances inherent in mathematical
models and parameters. This framework has culminated in diverse forms of autonomous
mobility tailored to distinct use cases, such as human following and path tracking, to
enhance worker safety and operational efficiency. However, these path tracking algo-
rithms based on artificial intelligence require extensive learning methods using reliable
and sufficient training data that represent normal path tracking conditions. Additionally,
since the results are derived from learned data, there is a limitation in the determina-
tion and quantification of path misjudgment, especially when obstacles are present in the
path. Therefore, the present study proposes an adaptive steering control algorithm for
autonomous mobility systems. The central objective is to enhance worker convenience and
operational efficiency by tracking color-coded paths in initial infrastructure settings, such
as smart farms and factories, with adaptive control algorithms without depending on the
parameters of complex mathematical models. Additionally, by utilizing a particle filter to
detect the target path, it becomes feasible to develop a functional safety algorithm that can
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identify in real-time path misjudgment with distance index. The control errors used for the
autonomous path-tracking mechanism were derived through a multi-particle filter-based
approach based on camera RGB data. The adaptive steering control algorithm harnesses the
control error alongside the estimated coefficients derived from simplified error dynamics
via an RLS methodology. The cost function incorporates the sliding mode approach and
weighted injection while considering the control error. The weighted injection ensures swift
convergence of control errors to zero, as it dynamically adjusts the injection magnitude
based on the control error magnitude while also considering the finite-time convergence
condition. To evaluate the performance of the adaptive steering control algorithm, tests
were conducted on S-curved and elliptical paths using autonomous mobility with a single
steering and driving module.

The remainder of this paper is structured as follows. Section 2 introduces the concept
of control error derivation through a multi-particle filter mechanism and describes the
adaptive steering control algorithm. Section 3 discusses the performance of the proposed
algorithm in tests conducted in working environments using developed autonomous
mobility. Finally, Sections 4 and 5 present the conclusions and future avenues of research.

2. Adaptive Path Tracking Algorithm of Autonomous Mobility

Figure 1 illustrates the comprehensive model schematic of the autonomous mobility
path tracking algorithm. In the perception section, control errors and RGB errors were
calculated using a camera based on a multi-particle filter. The current steering angle was
calculated using a variable resistor (VR), while distance and angle data were measured
using lidar to detect obstacles in the surrounding environment. In the decision section, the
steering angle error is calculated by using the control errors obtained from the multi-particle
filter and the target steering angle derived from the adaptive steering control algorithm.
Moreover, based on RGB errors and lidar-based measured distance and angle data, path
recognition and obstacle detection were determined. In the control section, a pulse signal
was generated to control the direction of the steering motor rotation based on the steering
angle error. Additionally, a PWM signal was generated to converge the steering angle error
to zero. These signals were then applied to the steering motor. The driving motor was
controlled by a driving signal that passed through a functional safety algorithm for driving.
Constant PWM signals were applied and traveled at a constant velocity.
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Figure 1. Overall block diagram of the path tracking algorithm for autonomous mobility.

Section 2.1 describes a method for deriving control errors using a camera based on a
multi-particle filter. In Section 2.2, an adaptive steering control algorithm designed based
on a sliding mode approach and weighted injection using control errors and coefficients of
simplified error dynamics estimated based on RLS is described.
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2.1. Multi-Particle Filter-Based Control Errors Derivation

The particle filter converges towards the RGB value that best matches the camera
image by iteratively executing particle update, likelihood calculation, and resampling steps.
Equation (1) outlines the procedure for updating the generated particles. It predicts the
current particles’ position and speed based on the preceding state value.

Xy = Xj—1 + W1 1)

In Equation (1), the current particles’ positions and velocities (X} ) are forecasted by
adding the discrete-time particles from the previous (Xy_1), coupled with the system noise
sequence (wk_1 ). This noise sequence results from the product of the standard deviation of
position and velocity and the disturbance [29].

2

1 5
Lipe = log| ———¢*kes 2
log g(\/ZT_w_RGB ) (2)
d = /(R = Rp)2 + (Ge — Gi)2 + (B — By)? )

N
Ln
wN = 4
N 1; T L (4)
R N

X =Y wnX, @)

i=1

As shown in Equations (2) and (3), the likelihood is calculated using a Multinomial
resampling methodology that takes into account the error between the target RGB value
and the RGB standard deviation. Particles with a low weight are then replaced by particles
with a high weight through weight calculation, as shown in Equation (4). This enables
the determination of the predicted location that most closely corresponds to the target
RGB, as illustrated in Equation (5). The iterative execution of particle update, likelihood
calculation, weight update, and resampling engenders the iterative refinement of the
predicted location. Figure 2 presents a schematic illustration of the control error derivation
using a multi-particle filter.
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Figure 2. Schematic of multi-particle filter-based control error derivation.

Particles within two regions of interest (ROIs), denoted as upper and lower, are gener-
ated. Clustering these particles yields two clustering points emanating from the location



Machines 2023, 11, 972 50f 22

most akin to the target path RGB. Employing a straight line that intersects the two cluster
points and a contact point (xc,y.) perpendicular to the preview point (x,,y,), pixel-based
lateral preview error ey, ,ir.; and current yaw angle error ey are derived (Equations (6)—(8)).

Cyp,pixel = Xc — Xp (6)

—an (2N
Peyr = tan <X2 — X1> (7)
ey = Yeur — Pes 8)

The preview point is designed at the camera’s width midpoint, with preview distance
and ROI range being predetermined design parameters. To accommodate camera distortion
and perspective, the upper and lower ROIs are set at a 2:1 ratio. The desired yaw angle, as
determined through the multi-particle filter for a straight path, approximates zero based
on experimental findings. The derived value for the target yaw angle is approximately
—0.04 (rad).

2.2. Adaptive Steering Control Algorithm

Figure 3 presents the schematic model illustrating the proposed adaptive steering
control algorithm. Multi-particle filter-based control errors are derived using the RGB
data from the camera image. The coefficients pertinent to the RLS-based simplified error
dynamics are estimated, alongside control errors, by assessing the rate of change in errors
obtained through the Kalman filter. The adaptive steering control algorithm, designed
based on the sliding mode approach and weighted injection, is responsible for determining
the desired steering angle. This algorithm effectively employs both the estimated coefficient
and control error.

. Estimated
Recursive Least coef ficeint

Squares-based
Coefficient Estimation

Error
dif ferential

: Control ir
I . Desired

mflgce;;fu Multi-Particle Filter-based | errors Kalman Filter-based Adaptive Steering | steering angle
Control Error Derivation Err;;t?r::;iriz:tlal Control Derivation

Weighted
Weighted Injection | iJection
Calculation

Figure 3. Block diagram of the adaptive steering control algorithm.

Equation (9) encapsulates the integrated error achieved by assigning weights to the
lateral preview and yaw angle errors, both of which stem from the multi-particle filter.
Building upon this foundation, a simplified error dynamics is formulated, as depicted in
Equation (10).

€ = W1eyp,pixel + waey )

e=Ae+B+u (10)
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To deduce the coefficients pertinent to the error dynamics described in Equation (10),
RLS with multiple forgetting factors is employed. This method involves the definition of
output (y), regressor (¢), and estimate (6), as outlined in Equations (11) and (12).

y=¢6", 9=[¢1 ¢2], 0=1[61 62)" (11)

y=ée(k—1)—u(k—1), ¢ = [e(k—1) 1],0=[A(k) B(K)]" (12)

Equation (13) presents a cost function for RLS with multiple forgetting factors that
span from zero to one. As the value approaches unity, preceding data is accorded greater
weight, thereby instigating gradual parameter estimation changes.

k
V(00 820, K) = 3 £ A () — 91001 (K) — 9a()6a(k)+
o o (13)
2 2 A5 (VD) = ¢1(061(k) — 2(0)6: (1))

By leveraging the regressor outlined in Equation (12), the coefficients governing the
estimation simplified error dynamics, which minimize the cost function of the recursive
least squares method defined in Equation (13), are computed. This process is embodied in
Equation (14) [30].

[@(k)} { 1 LRem]
b))~ L@@k 1 19
[ 1(k = 1)+ Ly (k) (y (k) — 1 (k) (k) — 472()62())}

2(k = 1) + La(K) (y (k) — 1 (k)01 (K) — 2 (k)02 (k)

Within Equation (14), the gain value (L) for estimation and the covariance (P), which
remains positively oriented, are updated at each sampling instance. This is outlined in
Equation (15).

Ly (k) = Pi(k — D)1 (k) (A1 + ¢1 T (k) Py (k — 1) (k)

Pi(k) = (I = Ly(k)p1 T (k)) Py (k — 1)/ A\ (15)
La(k) = Pa(k — 1o (k) (A2 + ¢2T (k) Pa(k — 1)ha (k)

Py(k) = (I —La(k)g2" (k) Pa(k —1)/ A2

To assess the stability of the control algorithm and devise the control input, an A
Lyapunov candidate function is introduced, as shown in Equation (16). The integrated
error is factored into this process. Equation (17) lays out two conditions for the Lyapunov
candidate function and its derivative, ensuring the integrated error’s convergence to zero
within a finite time.

] = %ez (16)
Condition (1) ] < —th%, a>0
Condition (2) lim V = oo (17)

le|—o0

To ascertain the magnitude of the injection term required to expedite the integrated
error’s convergence to zero within a finite duration, the integrated error’s rate of change,
defined in Equation (10), can be substituted for the time derivative of the Lyapunov
candidate function. This leads to the representation shown in Equation (18).

J = eé =e(Ae+B+u) (18)
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The control input, devised to minimize errors and ensure control stability, is defined
in Equation (19). Within this equation, coefficients of the simplified error dynamics are
estimated using RLS, and the injection term is established using integrated error, as denoted
in Equation (20).

u=—Ae—B+v (19)

v = —psign(e) (20)

Substituting Equations (19) and (20) into the derivative of the Lyapunov candidate
function results in the formulation depicted in Equation (21). The disparity between the
actual system and the estimated value is represented as demonstrated in Equation (22).
The scope of the disturbance boundary can be characterized using the reachability factor,
as expounded upon in Equations (23) and (24).

J=e(Ae+B—Ae—B+v)=c((A—A)e+ (B B)—psign(e)) (21)
r=(A—A)e+ (B-B) (22)

rl+n =L (23)

r| < Ly (24)

By substituting the disturbance’s boundary, as compliant with Equation (24), into
Equation (21), it can be expressed as Equation (25). Furthermore, by leveraging convergence
condition 1 within a finite time, it can also be represented as Equation (26).

J=e(r+v) <lelLy — lelo = —le|(p — Lp) (25)

J < —avi=— ] (26)

When the right-hand sides of Equations (25) and (26) are equated, the injection term'’s
magnitude can be determined using Equation (27).

-~
SV

The weighted injection term’s magnitude is defined as per Equation (28), with the
weighting factor (m) ranging from zero to one. The weighting factor is designed using the
absolute integrated error value and threshold for the integrated error (e,), as elucidated in
Equation (29). Where the threshold in Equation (29) is a design parameter used to adjust
the gradient of the weighting factor. When the absolute value of the integrated error is
smaller than the threshold, the weighting factor is computed by a linear function of less
than one, which significantly impacts the finite time convergence condition. Conversely,
when the absolute value of the integrated error is larger than the threshold, the weighting
factor is set to a value of one. This ensures swift convergence to zero during instances of
significant control error by modulating the injection term’s magnitude based on the error’s
magnitude while adhering to the finite time convergence condition.

+ Ly (27)

14
P—\*@(lfm)+m(|r\+’7) (28)
=L, (e > ey m = 1) (29)
€th
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By constructing a Lyapunov candidate function grounded in a sliding mode approach
and weighted injection, an adaptive steering control input is derived. Equation (30) show-
cases the derivation of the control input employing control errors and coefficients of the sim-
plified error dynamics, as estimated through RLS. To mitigate the chattering phenomenon
induced by the sign function, a sigmoid function is employed. When Equation (30) is inte-
grated into Equation (18), which represents the Lyapunov function’s derivative, it yields
Equation (31). This underlines that the algorithm’s Lyapunov stability is established based
on the designed weighted injection term.

~

u=—Ae— B — psign(e) (30)

~ o
= —le|—=(1—m)+m(lr|+71) <0, (¢ 40 31
J=lel 75— m)+m(r|+1) <0, (e #0) (31)
The ensuing section delves into the performance evaluation outcomes of the adaptive
steering control algorithm, anchored in actual autonomous mobility.

3. Performance Evaluation

To evaluate the proposed adaptive steering control algorithm, a simplified error
equation based on a multi-particle filter and sliding modes was utilized. This approach
eliminates the need for a mathematical model and camera calibration. The evaluation
was conducted on the actual autonomous mobility developed, using S-curved and ellip-
tical path tracking performance evaluation. The adaptive steering control algorithm was
implemented in a MATLAB environment.

3.1. Design of Autonomous Mobility Platform

Figure 4 shows the front view, side view, concept, and hardware architecture of the
developed autonomous mobility. Autonomous mobility consists of a single steering and
driving system equipped with a camera, lidar sensor, VR, and two free wheels. The lidar
detects surrounding obstacles, and the camera is used for path tracking based on multi-
particle filters. VR calculates the angle of the current steering motor. The steering control
operates by applying PWM and pulse to the steering motor to minimize the error between
the desired steering angle, determined using adaptive steering control, and the current
steering angle calculated based on VR. The goal is to make the error converge to zero.
Additionally, a pulse signal is applied in the rotation direction based on the sign of the
steering angle error to allow for steering and path tracking. The driving control operates at
a constant speed by applying a constant PWM signal to the driving motor. Driving and
braking actions are performed by applying a pulse signal based on the driving flag derived
from lidar and multi-particle filter-based functional safety algorithms. Since the particle
filter follows a path based on the principle of moving towards the point that is most similar
to the target RGB based on probability, it is necessary to determine the error in target path
recognition. The functional safety algorithm applied for this purpose was designed using
upper and lower clustered points and other particles derived from multi-particle filters.
This algorithm is used to determine target path recognition errors and detect obstacles
in the surrounding environment. The error in target path recognition is determined by
comparing the distance between the cluster point defined in Equation (3) and the target
RGB value error and the distance between the cluster point and other particles, as shown
in Equation (32), based on the designed threshold. Here, 14 icies and 0pgyicies represent
the average and standard deviation of the distance between the clustered point and other
particles, respectively.

— 2 2
€fs = \/nuparticles + Uparticles (32)
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Figure 4. (a) Front and (b) side views of the actual autonomous mobility platform; (c) concept of the
autonomous mobility platform; (d) hardware architecture of autonomous mobility system.

As can be seen in Figure 4d, the developed autonomous mobility system utilized one
main PC and four Micro Control Units (MCUs) to control the driving and steering motors,
as well as to measure serial communication-based sensor data from lidar and VR. Using
a main PC equipped with an Intel Core i7-1195 CPU, we implemented a multi-particle
filter algorithm by connecting the main PC to a camera in the MATLAB environment. The
desired steering angle, calculated by the main PC, is transmitted to MCU2 through MCU1
using a PWM signal. The steering angle error was calculated by comparing the current
between the steering angle calculated based on VR and the reference value. The steering
angle error is transmitted to MCU3 using a discrete pulse signal to control the steering
motor. In addition, the driving signal generated by the functional safety algorithm in the
main PC is transmitted to MCU4 through MUC1 using a discrete pulse signal to control the
driving motor. The clock frequency of the MCUs is 16 MHz, and the MCUs are configured
in a distributed structure with three Arduino UNOs and one Arduino NANO operating at
5 V. The four MCUs used a 6 V battery, while the steering and driving motors were powered
by two 24 V batteries. In addition, Ublox’s GPS was used to confirm the trajectory of the
autonomous mobility, while RTK was applied to acquire data at a frequency of 8 Hz. Table 1
presents the specifications of the developed autonomous mobility and the resolution of the
camera utilized in the experiment. The mass of the autonomous mobility is relatively small,
about 38.6 kg.
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Table 1. Autonomous mobility and camera specifications.

Parameter Unit Value
Mass (M) kg About 38.6
Height (H) m 0.45
Depth (D) m 0.55
Width (W) m 0.45
Wheel base (L) m 0.5
Wheel tread (ty) m 0.375
Resolution of camera pixel 1280 x 720

The steering angle was determined by translating the VR voltage into a converted
index value that reflects the angular position of the steering system, as illustrated in
Equation (33). Within Equation (33), “Ayr” denotes the converted index value of the
angular position, which spans from 0 to 1023, while ‘Vy g’ signifies the VR voltage, which
spans from 0 to 5 V. Figure 5 visualizes the VR voltage and the converted index of angular
position as the steering angle changes from —50 to 50 degrees.

1023

Scur = 0.2685 x AVR — 138.0615Wh€7’6, AVR = Vyr X T (33)

VR voltage
T

™

Converted index of angular position of steering system
T T T T T

I I I I I I I I I
10 20 30 0 50 [ o 0 0 100

Steering angle
T T

(deg]

I I I I I
0 a0 %0 k& 0 0

C
Sampling instance

Figure 5. Steering angle calculated based on VR voltage.

3.2. S-Curved Path Tracking Scenario

In this section, an assessment of the adaptive steering control algorithm was conducted
within an S-curved path scenario. The designated path was delineated by yellow color bands,
encompassing two semicircles, each with a 2 m radius, as depicted in Figure 6. The intended
path was devoid of any obstructions within its vicinity. The design parameters for both the
adaptive steering control algorithm and the multi-particle filter are detailed in Table 2. These
identical parameters were employed for the execution of both the S-curved and elliptical
scenarios. These parameters were determined using the trial-and-error method.

(a) (b)

Figure 6. (a) S-curved path tracking concept; (b) image of the S-curved path.
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Table 2. Design parameters of the multi-particle filter and adaptive steering control.

Parameter Unit Value
Standard deviation of position (os) - 20
Standard deviation of velocity (0y,) - 25
Standard deviation of RGB (0rgp) - 20
The number of particles (N) - 1000
RGB of target path (¢, g, br) - (254, 252, 164)
Threshold of RGB data error - 100

Threshold of standard deviation and

average of RGB distance ) (65, 65)
ROI of upper particle pixel 200 < Hpixer < 300
ROI of lower particle pixel 300 < Hpixer < 350
Preview point (x,, Lp) pixel (640, 300)
Weightings of control error (wy, w;) - (0.028, 1.2)
Integrated error threshold (ey;) - 4
Decay rate of the Lyapunov function («) - 1.8
Reachability factor (77) - 0.01
Initial value of estimated states (91, éz) - (1, 0.2)
Forgetting factor (A1, Ap) - (0.998, 0.998)

Figure 7 displays four frames derived from real experiments, offering a visual repre-
sentation of the multi-particle filter’s execution. Where, green and purple dots represent
upper and lower particles, and black dots indicate clustered points. Furthermore, Figure 8
presents four frames showcasing the environmental conditions during the experiments.
The observations made from Figure 7 affirm that particles within the ROI, established at
a 2:1 ratio, gather along the desired path. Both Figures 7 and 8 reveal a coherent pursuit
of the target RGB tracking through the multi-particle filter and the desired path through
adaptive steering control.

Anctual multi-particle filtering image - frame 20 A%tual multi-particle filtering image - frame 100

~

Height [pixel]
Height [pixel]

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
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]
X
=
£
0,
°
T
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200 400 600 800 1000 1200

Figure 7. S-curved path tracking: actual multi-particle filtering images—20, 100, 150, 240 frames.

@ctual experiment environmnetimage - 1st ﬁ\ctual experimentenvironmnetimage - 2nd
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Height [pixel]

100 600 500

Width [pixel] Width [pixel]

Figure 8. S-curved path tracking: images of the actual experimental environment images.

Figure 9 illustrates the control error acquired from the multi-particle filter, the inte-
grated error computed through control error weighting, and the estimated integrated error
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differential derived from the Kalman filter. The converted lateral preview error in Figure 9
shows the result of converting pixels to actual distances. To convert to the actual distance of
lateral preview distance, 15 cm rulers were placed at 20 cm intervals, and the actual distance
for each pixel was measured through an experiment. Accordingly, a function to convert
the lateral preview error based on camera pixels to the actual distance was experimentally
derived, as shown below in Equation (34), and the function consists of preview distance
and pixel-based lateral preview error.

eyp [m] = ((—0.0001Lp +0.0976) x ey,,,pixel) /100 (34)
] Lateral preview error , Integrated error
2 \ s\
3 N~~~V T = \\
5 ‘ ‘ ‘ — /
50 100 150 200 250 -5 A\ =4
. 10 Vm
Converted lateral preview error - ‘ ‘
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E — . .
= AN ] Error differential
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Figure 9. S-curved path tracking: (a) control errors; (b) integrated error and error differential.

As can be seen from the integrated error, the symmetric nature of the control error’s
fluctuation, both in the positive and negative directions, is evident due to the S-curved path.
Moreover, the phenomenon of control error oscillation during curved driving is discernible.
This oscillation can be attributed to factors such as data communication between the MCU
and the main PC, the discrete pulse signals, and the fixed ROL

Figure 10a exhibits the real-time derived coefficients A and B of the simplified error
dynamics through RLS, and Figure 10b presents the computed disturbance boundary based
on the residual between the actual system and its estimated system. In Figure 11, the
weighted injection is depicted, considering finite-time convergence conditions and the
disturbance boundary with the integrated error’s magnitude. Notably, as the integrated
control error fluctuates in both directions, the estimated RLS-based coefficients display
analogous fluctuations. This correspondence in behavior leads to observable variations in
the magnitude of the weighted injection based on the integrated error’s magnitude.

" Estimated coefficient - A 18 Disturvbance boundary
1.04 16 A
T M? N\ AN 14 |

0.98
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I \
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Figure 10. S-curved path tracking: (a) RLS-based estimated coefficient; (b) disturbance boundary.
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Figure 11. S-curved path tracking: (a) weighted injection; (b) weighting gradient for injection.

Figure 12a displays the desired steering angle derived from the adaptive steering
control algorithm alongside the present steering angle computed from VR. Figure 12b
presents the steering angle error. Figure 13a showcases the clockwise and counterclockwise
rotation flags used for discerning the rotation direction predicated on the steering angle
error’s status. In this paper, the threshold value of the steering angle error is set to 0 degrees.
As a result, excessive rotation steering pulse signals are applied to the steering motor,
leading to unnecessary energy consumption. In order to maintain reasonable path tracking
performance and improve energy efficiency in the future, we plan to reduce the rotational
steering flag ratio by applying a threshold value for the steering angle error. Within
Figure 13b, a driving flag of one signifies the implementation of consistent-speed driving,
achieved by applying a specific PWM to the driving motor. Conversely, a driving flag
of zero corresponds to a braking arrangement activated through a pulse signal. Notably,
because there are no obstacles within the target path and the surrounding environment, the
driving signal remains at one. As observed in Figures 12 and 13, the desired steering angle
is tracked by applying PWM and pulse to the steering motor based on the steering angle
error. Vibration phenomena can be observed at the desired steering angle determined by
the adaptive steering control algorithm. This confirms that the oscillation phenomenon of
the control error, which is derived based on the aforementioned particle filter, also affects
control performance. In the future, it is expected that the vibration phenomenon at the
desired steering angle will be alleviated through algorithm improvements in the perception
section, specifically in the control error derivation process.
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Figure 12. S-curved path tracking: (a) steering angles; (b) steering angles error.
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Figure 13. S-curved path tracking: (a) rotational steering flag; (b) driving flag.

Figure 14 presents the distance between the cluster and other particles alongside the
multi-particle filter-induced RGB error pertaining to a functional safety algorithm. Given
the absence of obstructions along the target path, it is evident that both the RGB error and
particle spacing adhere to the specified threshold. Moving to Figure 15, normal driving
is observable, devoid of particle filters and lidar-identified obstacles, as evident in the
depicted sampling instances.
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Figure 14. S-curved path tracking: (a) distance of RGB error; (b) distance of particles, average—STD.
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Figure 15. S-curved path tracking: Functional safety for driving using multi-particle filter and lidar.

Figure 16a displays the trajectory of the autonomous mobility utilizing Ublox’s GPS
alongside the waypoint trajectory gauged through several walks along the generated path.
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In the future, we plan to determine lateral errors by conducting experiments in a controlled
environment using reasonable GPS data measurements. Meanwhile, Figure 16b delineates
an experimental duration of approximately 60 s, with a loop cycle time averaging around
0.229 s per individual sampling instance.

Trajectory

2.5 60

Experiment time

Experiment
||= = Fitted

Waypoint
Experiment

X [m]

1 Sampling instance

-10 -8 —6 —4 -2 0 2 50 100 150 200 250
Y [m] Sampling instance

(@) (b)
Figure 16. S-curved path tracking: (a) trajectory; (b) experiment time.

3.3. Elliptical Path Tracking Scenario in Working Environment

In various industrial sites, obstacles or workers may be present in the target path
due to the complex surrounding environment, including items and workers. When such
obstacles or workers exist, braking or avoidance is necessary for worker safety, work
efficiency, and convenience. Accordingly, in this section, a scenario has been executed to
augment work efficiency and offer convenience to workers in diverse fields, such as smart
farms and smart factories. As shown in Figure 17, autonomous mobility presents obstacle
and worker in black squares contrasting with the target path within an elliptical trajectory,
encompassing two 5 m straight segments and two semicircles with a 2 m radius. In this
paper, autonomous mobility was designed to brake in the presence of obstacles or workers.
Therefore, this scenario shows not only the results of elliptical path tracking but also the
results of functional safety algorithms to ensure the convenience and safety of workers
when they load autonomous mobility or when obstacles are present.

Figure 17. (a) Elliptical path concept; (b) image of the elliptical path.

Figure 18 is the image of the multi-particle filtering; the 135th frame demonstrates
the particles deviating from the path due to the presence of an obstacle. Where, green and
purple dots represent upper and lower particles, and black dots indicate clustered points.
Additionally, in the 310th frame, it is apparent that the autonomous mobility is braking,
even though particles have converged on the target path. This response is attributed to
the detection of a worker using lidar while loading items onto the autonomous mobility.
Figure 19 offers a snapshot from the experimental video, affirming that the braking is
performed by the functional safety algorithm when the obstacle and worker are present in
the target path.
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Figure 18. Elliptical path tracking: actual multi-particle filtering images—50, 135, 310, 500 frames.
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Figure 19. Elliptical path tracking: images of the actual experimental environment.

As shown in Figure 20a, the yaw angle error, attributed to obstacles in the target
path, experiences rapid changes at approximately 135 sampling instances. In addition,
it is noticeable that control errors and oscillation occur due to driving on curved roads,
sampling instances at 100 to 200 and 380 to 520. In Figure 20b, the integrated control
remains within the threshold in the positive as it follows the counterclockwise path along
the elliptical track. As shown in Figures 21 and 22, the control error increases in the curved
section. This results in an increased magnitude of the weighted injection. Accordingly,
when the integrated error exceeds the threshold, the weighting factor becomes one, and

the control input is determined by considering the disturbance boundary derived from the
estimated residual A and B based on RLS.
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Figure 20. Elliptical path tracking: (a) control errors; (b) integrated error and error differential.
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Figure 21. Elliptical path tracking: (a) RLS-based estimated coefficient; (b) disturbance boundary.
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Figure 22. Elliptical path tracking: (a) weighted injection; (b) weighting gradient for injection.

At approximately 135 and 300 sampling instances, the functional safety algorithm
detects the obstacle and worker in the target path, causing the autonomous mobility
to brake. This transition is reflected in the alteration of the driving flag from one to
zero. Even in the state of braking, as particles continue their movement, the control error
may experience rapid fluctuations in either direction. In this way, since the adaptive
steering control utilizes the control error derived from the particle filter, when there is a
misjudgment in path recognition, the control input is also miscalculated. As a result, as
shown in Figure 23a, displaying the current steering angle, a mechanism has been devised
to guide the current steering angle to zero to avert deviation from the path misjudgments
in path recognition. Additionally, Figure 24a shows that rotational steering flag changes
to zero.
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Figure 23. Elliptical path tracking: (a) steering angles; (b) steering angles error.
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Figure 24. Elliptical path tracking: (a) rotational steering flag; (b) driving flag.

Depicted in Figure 25 is the influence of an obstacle in the target path, resulting in
an increase in the distance between the clustered point and the target path RGB error
at approximately 130 sampling instances, surpassing the predefined threshold. Notably,
the distance between the clustered point and the other particles remains within the set
threshold. This indicates the convergence of particles to a location distinct from the target
path. When either the RGB error distance or the relative distance of the particles equals
or surpasses the threshold value, this is recognized as a misjudgment in path recognition.
Correspondingly, Figure 26 illustrates the transition of the driving flag from one to zero.
This shift occurs due to obstacle detection along the target path based on the RGB error
distance at approximately 130 sampling instances, followed by worker detection through
lidar at approximately 300 sampling instances. As can be seen in Figures 25 and 26, when
obstacles or workers exist within the target path, the braking performance can be verified to
ensure worker safety and facilitate convenience using the functional safety algorithm. The
trajectory of the GPS-based autonomous mobility, aligned with waypoints, is showcased in
Figure 27. Resembling a semicircle with two 5 m straight segments and two 2 m radii, this
trajectory captures the essence of the path. Furthermore, the experimental time amounted
to approximately 130 s, with the loop cycle taking approximately 0.227 s.
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Figure 25. Elliptical path tracking: (a) distance of RGB error; (b) distance of particles, average—STD.
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Figure 26. Elliptical path tracking: functional safety for driving using multi-particle filter and lidar.
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Figure 27. Elliptical path tracking: (a) trajectory; (b) experiment time.

4. Discussion

The performance of the adaptive steering control algorithm, as proposed in this study;,
was assessed using a single steering and driving system consisting of autonomous mobility.
Evaluation scenarios encompass two distinct environments: an obstacle- and worker-free
S-curved path and an elliptical path with obstacles and workers. These scenarios are
designed to portray the utilization of autonomous platforms, catering to improve work
efficiency and enhance worker convenience across diverse sectors, including smart farms
and smart factories. The evaluation results confirm a reasonable path tracking performance
of the adaptive steering control input, derived through multi-particle filter-based control
error and coefficients estimated in real-time through RLS.

Since RLS-based coefficient estimation is sensitive to the initial value parameter set-
ting, it was determined using the trial-and-error method. Additionally, the control error
derivation in the recognition and the steering control process confirmed the oscillation
phenomenon. This is expected to be the motion in the particle filtering process, the discrete
signal of the rotation direction applied to the steering motor consisting of zero and one, and
the signal processing process between the four MCUs and the main PC. The autonomous
mobility used in this study traveled at a low speed of approximately 0.25 m/s, applying a
constant PWM to the driving motor. With its relatively low mass of approximately 38.6
kg, the mobility exhibited reasonable path tracking outcomes even when experiencing
oscillations. Nevertheless, it should be noted that such oscillations might potentially impact
path tracking performance during high-speed operation. Addressing this concern is a goal
for future work, potentially involving the utilization of filtering techniques like RLS and
the Kalman filter to compute control errors, as well as smooth and fast signal processing
between the MCUs and the main PC.
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In addition, because the algorithm proposed in this paper relies on RGB images,
changes in lighting conditions may affect the performance of the control. Since the control
error is derived from tracking the RGB values of the target path using a particle filter,
any sudden change in lighting requires modification of the particle filter parameters.
Accordingly, the performance evaluation of the algorithm proposed in this paper was
conducted between 6 and 8 PM, when sunlight does not have much influence. The average
RGB values for scenarios 1 and 2 are shown in Table 3. In the future, we plan to enhance
the algorithm by incorporating average RGB values to robustly detect the target path, even
in varying lighting conditions.

Table 3. Average of RGB value at performance evaluation.

Division Scenario 1 Scenario 2
Average of red value 128 140
Average of green value 126 129
Average of blue value 148 135

5. Conclusions

In this paper, we propose an adaptive steering control algorithm employing a sliding
mode approach and a weighted injection term. The multi-particle filter-based control error
using a camera was derived, and simplified error dynamics based on integrated control were
defined by applying weighting factors to the control error. We estimate the coefficients for this
error dynamics using RLS with multiple forgetting factors. The adaptive steering control input
is then formulated by designing a cost function that incorporates the weighted injection term
and sliding mode approach using the control errors and estimated coefficients.

The objective of this study is to achieve path tracking steering control for autonomous
mobility platforms, overcoming the complexity-induced uncertainty of mathematical mod-
els seen in the development of diverse autonomous systems. The adaptive steering control
input can be determined using the control error derived from pixel via a multi-particle
filter, avoiding reliance on mathematical model parameters. This is achieved by estimating
coefficients of the simplified error dynamics using real-time RLS. Furthermore, by incorpo-
rating a weighted injection term that adjusts according to the control error’s magnitude,
the adaptive control input capable of rapidly reducing the control error to zero is attained
while adhering to finite time convergence conditions.

The multi-particle filter and RLS-based adaptive path tracking algorithm were imple-
mented in the MATLAB environment and evaluated using actual autonomous mobility.
As a result of the evaluation, it was confirmed that the proposed adaptive steering con-
trol algorithm demonstrated reasonable path tracking performance on an S-curved path
without obstacles and an elliptical path with obstacles. On average, the algorithm took
0.228 s per sampling instance. Furthermore, by implementing a functional safety algorithm,
we have confirmed the potential for utilizing autonomous mobility that enhances work
safety, efficiency, and worker convenience in diverse industries. However, an oscillation
was observed as a result of the particle filtering process used to derive the control error,
the signal processing between the four MCUs and the main PC, the discrete pulse signals
applied to the steering motor and the steering control process.

In the future, we intend to assess scenarios at varying speeds and paths, aiming to
enhance data and signal processing through software and hardware enhancements to
minimize oscillations phenomenon in the derivation of control errors and steering control
process. Through the software and hardware advancements, it is anticipated that the
proposed perception and control algorithms can be effectively applied to path tracking of
autonomous mobility platforms in various other applications, such as autonomous vehicles
and robots, for active collaboration with human workers.
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