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Abstract: In this paper, a simple and effective self-adaptive material interpolation scheme is proposed
to solve the numerical instability problem, which may occur in topology optimization considering
geometrical nonlinearity when using density-based method. The primary concept of the proposed
method revolves around enhancing the deformation resistance of minimum-density or intermediate-
density elements, thus avoiding numerical instability due to excessive distortion of these elements.
The proposed self-adaptive material interpolation scheme is based on the power law method, and
the stiffness of minimum-density or intermediate-density elements can be adjusted by a single
parameter, α. During the optimization process, the parameter α will be changed according to an
adaptive adjustment strategy to ensure that elements within the design domain are not excessively
distorted, while the mechanical behavior of the structure can be approximated with acceptable
accuracy. Numerical examples of minimizing compliance and maximizing displacement of structure
are given to prove the validity of the proposed self-adaptive material interpolation scheme.

Keywords: self-adaptive material interpolation scheme; geometrical nonlinearity; topology optimization

1. Introduction

Topology optimization is a well-known structural design method that aims to seek
an optimized material layout within a certain design domain under given constraints
and boundary conditions. Topology optimization is based on the finite element method
and numerical optimization method, which enable it to provide more novel and efficient
designs without relying on the designer’s experience. In 1988, Bendsøe and Kikuchi [1]
introduced the homogenization method and used it to realize the structural topology opti-
mization. Since then, the topology optimization method has attracted a lot of attention from
researchers. After years of development, researchers have proposed various kinds of topol-
ogy optimization approaches, such as solid isotropic material with penalization (SIMP) ap-
proach [2], the level-set method (LSM) [3], moving morphable components/void (MMC/V)
method [4,5], evolutionary structural optimization (ESO) and bi-directional evolutionary
structural optimization (BESO) method [6,7]. Sigmund and Maute [8], Xia et al. [9] and
Zhu et al. [10] have provided detailed reviews of existing topology optimization methods.

Many research works on topology optimization do not take nonlinearity into consid-
eration which, however, are only applicable to small deformation cases. In most practi-
cal engineering cases, such as compliant mechanism design, the structure tends to have
large deformations. Under these circumstances, the finite element analysis with linear
assumption can not provide an accurate prediction of the structural response, which would
provide incorrect sensitivity information and thus lead to unreasonable optimization re-
sults. Therefore, considering the nonlinear effects during the topology optimization process
is necessary.

Tracing back to the last decade of 20th century, Bendsoe [11], Jog [12], and Bruns and
Tortorelli [13] have introduced the nonlinear assumption into the topology optimization.
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Buhl et al. [14] formulated topology optimization model based on the SIMP approach while
considering geometrically nonlinearity. Their numerical experiment result revealed that in
the cases of small displacements, the differences in optimization results due to nonlinearity
are small. However, in some situations, such as when buckling effects occur, the effect of
nonlinearity may be significant.

In recent years, researchers have devoted more and more efforts to studying nonlinear
topology optimization problems. Bruns et al. [15] and Gea et al. [16] proposed topology
optimization frame works of elastic structures and compliant mechanisms design with
geometrically nonlinearities based on the SIMP approach. Based on the level set method,
Kwak and Cho [17] introduced a topology optimization method for geometrically non-
linear structures. Huang and Xie [18] applied the BESO method to structure stiffness
optimization problem with a combination of geometrically and materially nonlinear mod-
eling. Xue et al. [19] considered nonlinear structural response analysis and developed an
MMV-based method with an explicit B-spline description.

At present, the power-law penalization in SIMP is a material interpolation scheme that
is widely used in addressing the topology optimization problem [5,20]. With this method,
the material properties are formulated as a function of relative density, which is also known
as the design variable. In general, the relative material density take values ranging from
0 to 1. Elements with a material density of 1 represent solid elements and elements with
a material density of 0 represent void elements. The elements with intermediate-density
materials would be penalized so that the most elements in the design domain could evolve
to solid or void elements [2]. But, during or after the topology optimization procedure, it
is found that elements with intermediate-density cannot be completely removed from the
design domain. When performing nonlinear topology optimization, the “numerical instability”
problem tends to occur in the region where the elements have low density, especially in cases
of large deformation. This phenomenon results from excessive element distortion. The
excessive distortion would make the elemental tangent stiffness matrix turn to indefinite or
even negative definite, which result in failure of finite element analysis [21–23].

Researchers have put a lot of effort into solving the numerical instability problem. As
the low density elements are easy to distort excessively, Bruns et al. [24] proposed method to
remove them from the mesh that the finite element analysis is applied. Meanwhile, the low
density elements would be added back according to the proposed strategy. Yoon et al. [25]
presented a element connectivity parameterization method, in which the connectivity
between elements is regarded as design variables instead of element density. And all the
elements within design domain are defined as solid elements. Wang et al. [23] tried to
address the problem from the aspect of energy and proposed a new energy interpolation
scheme. In this method, the numerical instability is alleviated by modeling the low density
elements with linear theory. Luo et al. [22] proposed a additive hyperelasticity technique. Its
main idea is to add an additional layer of hyperelastic material on the top of original design
domain to increase its stiffness, thus preventing low-density elements from distorting
excessively. Chen et al. [21] present an educational nonlinear topology optimization Matlab
codes that combines additive hyperelasticity techniques with the well-known finite element
analysis software, ANSYS 17.1, to make it more suitable for beginners.

In this research, the numerical instability problem in the topology optimization con-
sidering geometrical nonlinearity is studied. The St. Venant Kirchhoff model can be used
to model nonlinear materials, and has been widely applied in the nonlinear topology opti-
mization. However, the St. Venant Kirchhoff model is based on a linear material model and
is not well suited for situations where large deformations of the material occur. Therefore,
the hyperelastic material model is applied in the following research instead of St. Venant
Kirchhoff model [21]. Then, a simple but effective self-adaptive material interpolation
scheme is constructed to address the problem of numerical instability. The main idea is to
dynamically adjust the properties of minimum-density or intermediate-density elements
within the design domain to prevent excessive distortion. Based on the proposed scheme,
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the adjoint method is employed to calculate the sensitivity numbers. Finally, the Method of
Moving Asymptotes (MMA) is used to find the solution.

The organization of the following content is shown as follows: In Section 2, the
general topology optimization model is illustrated. In Section 3, an effective material
interpolation scheme for nonlinear topology optimization is proposed. In Sections 4 and 5,
the formulations of the finite element analysis and sensitivity analysis are constructed.
Numerical examples concerning structural stiffness design and compliant mechanism
design are given for illustrating the effectiveness of the material interpolation scheme in
Section 6. Finally, the conclusions are drawn in Section 7.

2. Topology Optimization Formulation

In the research of topology optimization, the displacement maximization problem
and compliance minimization problem are two typical topology optimization problems.
Therefore, these two problems are considered in this research. One of the important
parts of topology optimization is the finite element theory, which provides the basis for
optimization. Before the optimization, the design domain is meshed into elements. The
density of elements is regarded as variable and would change during the optimization. The
compliance minimization problem and the displacement maximization problem can be
formulated as the same form, which is presented as follows:

min : C = lTU

s.t. : R(x, U) = 0

: V ≤ V∗

: 0 < xmin ≤ xi ≤ 1

(1)

where C denotes the objective value. x denotes the design variable vector, which represents
the density of elements. R(x, U) represents the residual force vector of the design domain
derived by nonlinear finite element analysis, and its value being equal to 0 means the
balance of force. U is a vector which contains the nodal displacement. V represents the
volume fraction and V∗ represents the target volume fraction. xi is the ith element in the
vector x, where xi = 1 stands for a solid element and xi = xmin stands for a void element.
The minimum value of the design variable, xmin, is defined as a small positive value (such
as 0.001). For compliance minimization problem, l equals to the external force vector, Fext.
As for the displacement maximization problem, l represents a vector with its element
corresponding to the direction of output displacement equals to −1.

3. Self-Adaptive Material Interpolation Scheme

Some compliant mechanisms, such as bi-stable mechanism and constant force mech-
anism, need to experience large deformations during operation. Thus, geometrical non-
linearity need to be considered in finite element analysis during topology optimization.
However, topology optimization based on density interpolation often fails due to excessive
distortion of some elements.

The main reason is that low-density elements are relatively softer and easier to deform.
Therefore, even if the external force of the design domain is small, the low-density elements
has a tendency of distorting excessively. Then, their tangent stiffness matrices may turn
to indefinite or even negative definite. As a result, the displacement vector can not be
calculated and the finite element analysis are force to stop. Many researchers [25–27] have
investigated the above numerical instability phenomenon and found that it occurs in the
region of low-density elements (e.g., those with relative densities between 0.1 and 0.3).

Here, we use the C-shape cantilever beam to demonstrate the numerical instability
problem, while the schema of C-shape cantilever beam is presented in Figure 1a. The
C-shape beam is fixed by its left side and two concentrate forces of different direction is
applied on two nodes. The values of forces are set as f1 = 0.2 N and f2 = 0.3 N. The
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overall structure is meshed by square elements, and the side length of elements is 1mm.
The Young’s modulus of elements is given as E1 = 108 Pa and the Possion ratio is 0.3. The
gray area, Ωvoid, represents the void element region. The void region is empty and has no
material, but the void region is filled with void elements in the density-based approach.
Without the influence of void elements that have minimum density, the deformation of
the C-shape cantilever beam is regarded as the true deformation, which is illustrated in
Figure 1b.

Figure 1. The schematic diagram of (a) a C-shape cantilever beam and its (b) true deformation.

In the topology optimization using the density-based method, the Solid Isotropic
Microstructure with Penalty (SIMP) approach is widely used, which provides an interpola-
tion method for defining the physical properties of the intermediate density element. In
this way, the elastic modulus of the element can be formulated as a function of elemental
relative densities, which is shown below:

Ee = xp
e E0 (2)

where E0 represents the elastic modulus of the solid element. p is used to penalized the
element density value, and its value is set to be 3 by referring to previous studies [2,21].
The minimum density value of element, xmin, is 0.001. Therefore, by using the interpolation
scheme in Equation (2), the void element has an elastic modulus of 10−9E0. A small elastic
modulus can alleviate the influence of void element on predicting the behavior of the
overall structure. However, if such elements appear in the early stage of optimization, it
may lead to high distortion that would interrupt the finite element analysis. Therefore,
void elements with a larger modulus of elasticity values are preferred in some cases.

Under this circumstance, a self-adaptive material interpolation scheme is proposed,
aiming to improve the optimization stability while ensuring the accuracy. In the proposed
scheme, the expression of the elastic modulus is written as:

Ee = E0

[
xp

e (1− α) + α
]

(3)

where α is a control parameter with its value raging between 0 and 1. According to
Equation (3), changing the value of α would not affect the elastic modulus of solid el-
ements. Both the minimum-density elements and intermediate-density elements would
be affected by the value of α. By increasing (or decreasing) the value of α, the elastic
modulus of the minimum-density and intermediate-density elements will increase (or
decrease) simultaneously. In order to derive a solution with fewer intermediate density
elements, the elements’ density would be penalized by a power law function at the same
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time. The comparison between the interpolation schemes of Equations (2) and (3) is shown
in Figure 2.

As shown in Figure 2, the value of α has a influence on the elastic modulus of the
minimum-density and intermediate-density elements at the same time. The elastic mod-
ulus of the minimum-density elements is proportional to the value of α. The proposed
interpolation scheme in Equation (3) degenerates into the classical interpolation scheme
shown in Equation (2), when the parameter α is set to 0. When the value of parameter α is
increased, the element would become stiffer, and the deformation of the elements can be
alleviated, which promotes the smooth convergence of the finite element analysis; however,
it will inevitably leave an impact on the precision of the finite element analysis results.
Decreasing the value of parameter α would increase the precision of the finite element
analysis, but reduce the stability of the optimization process.

Figure 2. Comparison of material interpolation scheme. The blue line represents the scheme in
Equation (2) while the red line represents the scheme in Equation (3).

To demonstrate the effect of α, a case analysis for the C-shape beam is given. By
applying the proposed interpolation scheme and setting different α, the finite element
analysis results are compared. Firstly, elements with density ρe = 0.001 are uniformly
added to the void region, Ωvoid, of the C-shape cantilever beam. It should be noticed
that, using the material interpolation scheme in Equation (2), the nonlinear finite element
analysis would fail. Applying the proposed material interpolation scheme, the values of α
are set to 1× 10−2, 1× 10−4 and 1× 10−7 in different cases, respectively. The effect of α on
the finite element analysis can be visualized through the nonlinear finite element analysis
of the above cases. Figure 3a–c show the deformation of the C-shape cantilever beam and
deformed meshes with α values of 1× 10−2, 1× 10−4 and 1× 10−7, respectively.

Figure 3a shows the deformation of the C-shape cantilever beam when the parameter
α equals 1× 10−2. The deformation presented in Figure 3a has a significant difference with
respect to the true deformation shown in Figure 1b. The displacement direction of the
beam at the bottom is downward rather than upward, as shown in Figure 1b. Therefore, an
improper value of parameter α can significantly affect the finite element analysis result.

As presented in Figure 3a,b, the deformation of the C-shape cantilever beam becomes
more obvious and also closer to the true deformation when the value of α decreases to
1× 10−4 and 1× 10−7. However, when the value of parameter α continues to decrease to
1× 10−8 or below, the finite element analysis, however, cannot converge and obtain an
effective result because of the excessive deformation. In conclusion, decreasing the value of
parameter α can improve the finite element analysis accuracy, but also increase the risk of
failing of its failure.
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Figure 3. The deformation of C-shape cantilever with different values of α: (a) α = 1 × 10−2,
(b) α = 1× 10−4, and (c) α = 1× 10−7.

To quantitatively compare the influence of various α values on accuracy, the output
displacement is determined by measuring the displacement of the upper right corner of the
C-shape beam. By setting the parameter α from 1× 10−7 to 1× 10−1, the corresponding
estimated values of output displacement are summarized in Figure 4. The true value of
output displacement, Uout, is calculated after removing the void elements totally from the
void region, which is also known as element removal method. The comparison between
estimated value and true value of output displacement is shown in Figure 4.

Figure 4. Effect of different values of the parameter α on the output displacement.

As shown in Figure 4, when α is in a certain range (1× 10−7 ∼ 1× 10−5 ), the estimated
results of Uout are very close to its true value. Therefore, choosing a suitable value of α
can not only benefit the nonlinear finite element analysis process, but also ensure enough
accuracy. In order to achieve a harmonious equilibrium between the precision and stability
of the finite element analysis in the realm of topology optimization, a strategy of adaptive
adjustment is put forth: an adaptive adjustment strategy based on maximum strain, which
is proposed and shown below:

α(k) =

max
(

ε
(k−1)
von /ε∗, 0.8

)
· α(k−1), if ε

(k−1)
von ≤ ε∗(

ε
(k−1)
von /ε∗

)
· α(k−1), if ε

(k−1)
von > ε∗

(4)

where α(k) represents the value of α at the kth iteration. ε
(k)
von denotes the maximum von’s

strain in all elements within the design domain at k iterations. α is conservatively defined
as a relatively large value at the beginning of the topology optimization, thus ensuring
that the finite element analysis converges properly. If the strain of element in previous
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iteration is smaller than a given value, ε∗, then it means that the deformation is relatively
slight at this time, so the value of α will be decreased to improve the accuracy. If the strain
of element in previous iteration is greater than ε∗, then it means that the deformation is
relatively large, so the value of α will be increase to avoid the risk of excessive distortion. It
can be found that when ε∗ is set to 0.6, satisfactory topology optimization results can be
derived in most cases. A detailed discussion can be found in Appendix A.

4. Finite Element Analysis
4.1. Hyperelastic Material Model

In this paper, large deformations of the structure are considered, so the linear assump-
tions used in the small deformation problem is not able to predict the true behavior of
structure. By using the total Lagrangian finite element formulation, the Lagrange strain
tensor of the structure is written as:

E =
1
2

(
FT · F − I

)
(5)

where F = I + u⊗∇ represents the deformation gradient tensor. I represents the identity
tensor, with components described by the Kronekor delta symbol, δik.

The hyperelastic material model is suitable for simulating materials such as rubber
and polymers that exhibit an elastic response when subjected to large deformations. The
hyperelastic material model is defined by the strain energy potential equation, which is

W ≡ Φ(C) + φ(J) (6)

where C = FT · F represents the right Cauchy–Green deformation tensor and J denotes the
determinant of deformation tensor, i.e., J = det(F).

Several hyperelastic models, such as Neo-Hookean model, Mooney–Rivlin model,
Ogden model and Yeoh model, have been proposed and used in different fields of engi-
neering. In this paper, the Neo-Hookean model is applied, since it has a simple form [28].
For Neo-Hookean material [29], the components of Equation (6) are shown as below:

Φ(C) =
µ

2
( Ī1 − 3)

φ(J) =
K
2
(J − 1)2

(7)

where Ī1 is the first deviatoric strain invariant defined as Ī1 = J
−2
3 I1 and I1 = trace(C). µ

is the initial shear moduli of the Neo-Hookean material, while the K represents the initial
bulk moduli. The definitions of them are shown below:

µ =
E

2(1 + ν)

K =
E

3(1− 2ν)

(8)

where E and ν represents the elastic modulus and Poisson’s ratio, respectively.
Taking the derivative of Equation (6) with respect to C, the 2nd Piola Kirchhoff stress

can be derived as:
S = 2

∂W
∂C

= 2
∂Φ

∂C
+

∂φ

∂J
JC−1

= µJ−2/3
(

I − IC
3

C−1
)
+ KJ(J − 1)C−1

(9)
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According to Holzapfel [30], the Cauchy stress is written as:

σ =
1
J

τ =
1
J

FSFT

=
1
J

(
µJ−2/3

(
b− I1

3
I
)
+ KJ(J − 1)I

)
=

1
J

µ

(
b̄− Ī1

3
I
)
+ K(J − 1)I

(10)

where τ represents the Kirchhoff stress and b̄ = J
−2
3 b.

The left Cauchy Green deformation tensor b is written as:

b = FFT (11)

The material stiffness tensor is

C = 2
∂S
∂C

= 4
∂2Φ

∂C∂C
+ 2

∂

∂C

(
∂φ

∂J

)
⊗ JC−1 + 2

∂φ

∂J
∂

∂C

(
JC−1

)
(12)

4.2. Finite Element Formulation

Since the design domain is meshed in a series of elements, the displacement within
the ith element is specified by interpolating between n nodal values:

ui =
n

∑
a=1

Na(ξ)ua
i (13)

where ξ denotes the local element coordinates of an arbitrary point. ua
i is the displacement

vector at node a. Na(ξ) denotes the shape functions described in local element coordinates.
n is the number of nodes of element.

Then, deformation corresponding to a given displacement field can be given:

Fij = δij +
∂ui
∂ξ j

= δij +
n

∑
a=1

∂Na

∂ξ j
ua

i (14)

The relation between strain and displacement is written as

ε = B(u)Tu (15)

where B represents the strain–displacement matrix.
By using the finite element method, the design domain is meshed. The Newton–

Raphson method is employed to determine a displacement vector, denoted as U, that
satisfies the structure equilibrium, which is

R(x, U) = Pext − Pint = 0 (16)

where R(x, U) represents the residual force vector. The internal nodal force vector Pint is de-
fined as Pint = ∑e Pe

int. The definition of elemental internal force vector Pe
int is shown below:

Fe
int = B(ue)

TSedV (17)

where Se is the 2nd Piola Kirchhoff stress of eth element and dV is the volume of element.
A state of static equilibrium is deemed to have been achieved when the norm of the

residual vector R(x, U) is below the threshold of an small positive quantity. The Newton–
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Raphson procedure is employed to find a solution of this nonlinear problem based on the
following iterative calculations for linear systems:

K(k)
T ∆u(k) = R(k)

∆u(k) = u(k+1) − u(k)
(18)

where (k) denotes the number of iteration steps.

5. Sensitivity Analysis

Here, the adjoint method is employed for calculation of sensitivity analysis. An
augmented objective function is constructed by adding a zero term to the objective function
in Equation (1), which is written as:

C = lTU + λT R(x, U) (19)

where λ is the adjoint vector. Since the term R(x, U) is a 0 vector, the adjoint vector λ can
be any random vector.

Differentiating both sides of Equation (19) yields

∂C
∂xe

= lT ∂U
∂xe
− λT

(
∂R
∂U

∂U
∂xe

+
∂R
∂xe

)
=

(
lT − λT ∂R

∂U

)
∂U
xe

+ λT ∂R
∂xe

(20)

Based on the premise that λ is an arbitrary vector, we assume that lT − λT ∂R
∂U = 0.

Then, the term involving with ∂U
xe

can be eliminated. Therefore, the value of λ can be given
as follows [21]:

λT = −lT(
∂R
∂U

)−1 = lTK−1
T (21)

where K−1
T is the inverse of global tangent stiffness matrix.

Then, the formulation of sensitivity number is written as:

∂C
∂xe

= −λT ∂Fint
∂xe

(22)

According to Equation (3), the material stiffness tensor of element is related to xe by

Ce = C0[x
p
e (1− α) + α] (23)

where p is defined as 3. And the parameter α determine the stiffness of minimum-density
and intermediate-density elements. Thereby, the sensitivity number of the eth element is
written as:

∂C
∂xe

= −λT ∂Fint
∂xe

= − pxp−1
e (1− α)

xp
e (1− α) + α

λT
e F int

e (24)

where λT
e and F int

e represents the adjoint vector and internal force vector of the eth element.
The formulation of the sensitivity number is simple, which also makes it easy to implement.

Checkerboard and mesh-dependency problems are typical problems in topology opti-
mization applications. An effective solution is to introduce a low pass filter to smooth the
elemental sensitivity numbers. The weighted average scheme is employed as a sensitivity
number filter, which is shown as follows [2,10]:

∂̂C
∂xe

=
∑N

m=1 HS
e,m

∂C
∂xm

∑N
m=1 HS

e,m
(25)
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Here, HS
e,m is a linear distance factor defined as:

HS
e,m = max(0, rs − D(e, m)) (26)

where rs is the sensitivity filter radius. D(e, m) is the center-to-center distance between the
eth and mth element.

The filtered elemental sensitivity numbers are averaged with the historical information
to stabilize the evolutionary results, which is:

(
∂̂C
∂xe

)k ←
( ∂̂C

∂xe
)k + ( ∂̂C

∂xe
)k−1

2
, for k > 2 (27)

where k denotes the number of iteration steps.

6. Numerical Examples

Numerical examples are provided for the purpose of validating the effectiveness of
the proposed method in the optimization of geometrically nonlinear structures. Two of
numerical examples are compliance minimization problems, which aim to improve the
stiffness of structures. The last numerical example solves displacement maximization
problem, which designs a compliant mechanism to achieve anticipated motion. In all these
examples, the solid material Young’s modulus is E0 = 3.0 GPa and the Poisson’s ratio
is ν = 0.4. The optimization processes will be terminated when the changes in objective
function during a series of iterations are sufficiently small, and the optimization stopping
criterion is shown below:

β =

∣∣∣∣∣ k
∑

k−4
Ji −

k−5
∑

k−9
Ji

∣∣∣∣∣
k
∑

k−4
Ji

< β∗ (28)

where β represents the variation in the objective function and Ji represents the value of
the objective function in the ith iteration. β∗ denotes the allowable tolerance with typical
values ranging between 0.001 and 0.05.

6.1. Topology Optimization of a Cantilever Structure

The problem of optimizing the classical cantilever structure is presented in the first
numerical example. The design domain of cantilever is a rectangular with a size of
0.12 m × 0.03 m, which is shown as Figure 5. The fixed support of the rectangular de-
sign domain is on its left side, and the external force, F, is exerted on the middle part of
its right side [21]. To relax the stress concentration, the external load is evenly applied on
several nodes. The design domain is meshed into 3600 (120 × 30) finite elements and the
target volume fraction of the available material is set to be V∗ = 0.5. At the start of the
optimization, the design domain is filled with elements whose density are set to be 0.5. The
filter radius for the element density and the sensitivity numbers are set as r = 0.0015 m.

Figure 5. The design domain for a cantilever structure design and its boundary condition.

When the external force is small, the optimization can be accomplished by the original
interpolation scheme shown in Equation (2). By setting α = 0, the proposed interpolation
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scheme is equivalent to the interpolation scheme shown in Equation (2). The optimized
structures derived by different interpolation schemes are presented in Figure 6.

Figure 6. The optimized structures by different interpolation scheme when the external force is 1 N:
(a) by the interpolation scheme in Equation (2), C = 4.139× 10−3 J, (b) by the proposed interpolation
scheme in Equation (3), C = 4.058× 10−3 J.

As shown in Figure 6, both the derived topology optimization results have up–down
asymmetric structures, which indicates that the geometrical nonlinearity are considered.
The optimized structure in Figure 6a is are derived with no means to help convergence.
When the proposed method using the interpolation scheme in Equation (3), the obtained op-
timization result is presented in Figure 6b, which differs from the result shown in Figure 6a.
The compliance of structures shown in Figure 6 are 4.139× 10−3 J and 4.058× 10−3 J, re-
spectively. In this example, it can be seen that, by using the proposed self-adaptive material
interpolation model, a new structure can be derived and its compliance is smaller.

However, when the external force increase to 5N, the optimization process would
fail due to the numerical instability if the original interpolation scheme in Equation (2) is
applied. The finite element analysis could not produce a result because some elements were
highly distorted. As a comparison, the geometrically nonlinear topology optimization based
on the proposed material interpolation scheme can successfully produce an optimization
result even with larger input forces. Figure 7 shows the optimization results for input forces
of 5 N, 10 N, 15 N and 20 N, respectively.

Figure 7. The optimized topologies for cantilevers under loads of different values: (a) F = 5 N,
(b) F = 10 N, (c) F = 15 N, and (d) F = 20 N.

As presented in Figure 7, the external force can be increased to 20 N while the numeri-
cal instability would not happen in the optimization. Also, a typical bar structure appears
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on the right part of the cantilever and will become larger as the input force increases, which
is similar to the findings of other researchers [21–23].

The structural compliance convergence histories of the optimization results in Figure 7
are shown in Figure 8.

Figure 8. The compliance convergence histories for cantilevers under different loads by the proposed
method: (a) F = 5 N, (b) F = 10 N, (c) F = 15 N, and (d) F = 20 N.

As can be seen from Figure 8, the compliance values of all the cantilever optimization
examples converge stably.

In order to visualize how the self-adaptive material interpolation scheme works during
procedure of topology optimization, the variation histories of parameter α are recorded
and shown in Figure 9. As shown in Figure 9, when the input force is small (e.g., F = 5 N
and F = 10 N), the deformation of all the elements is small, so the value of α shows a
monotonically decreasing trend and eventually stabilizes near a value close to 0. When the
input force is larger (e.g., F = 15 N and F = 20 N), the deformation of some elements may
exceed the given maximum strain value ε∗ during the optimization. Therefore, from the
change curve of α, it can be seen that there is a phenomenon that its value increases first
and then decreases. But, at the end of optimization, the final values of α are reduced to a
smaller value than the initial value. Therefore, from Figure 9, it is proven that the adaptive
adjustment strategy shown in Equation (4) can stabilize the optimization convergence.

Table 1 shows the detailed optimization results. In each numerical examples, the final
values of parameter α are different. The initial value of α of all the numerical examples are
set to 0.02 and the final value increases with the value of the input force, which indicates
that the larger the input force is, the harder the optimization converges.
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Figure 9. The evolution histories of parameter α for cantilevers under different loads.

Table 1. Comparison of optimization results of cantilever beams under different loads.

Input
Force (N)

Initial
Value of α

Final
Value of α

Displacement at
Loading Point (µm)

Compliance
(N · m)

Displacement by
Element Removal (µm)

Relative
Error

5 0.02 1.00× 10−6 −20.31 0.102 −20.31 0.01%
10 0.02 4.07× 10−4 −35.98 0.360 −35.87 0.31%
15 0.02 1.80× 10−3 −47.78 0.717 −47.39 0.81%
20 0.02 2.20× 10−3 −55.95 1.119 −55.22 1.32%

As discussed earlier, the value of α has an impact on the precision of the finite element
analysis and, therefore, the optimization results may be affected. To quantify the effect of α,
elements with density less than 0.1 were removed from the design domain. To exterminate
the true deformation of the structure, an additional finite element analysis was performed
on the optimization results. By comparing the displacement at the loading point before and
after element removal, the relative error caused by the parameter α can be obtained. As can
be seen from Table 1, the relative error also increases with input force. In the numerical
examples discussed, the relative error is greatest when the input force is 20 N, with a
value of 1.32%. From an engineering point of view, the error caused by introducing α is
acceptable.

In summary, the proposed self-adaptive interpolation scheme can effectively address
the numerical instability problem without decreasing the precision of finite element analysis.
Moreover, the proposed method only causes very little computational stress and has no
significant impact on the efficiency of the optimization. To illustrate this conclusion, the
time consumption for the optimization iterations of the numerical examples shown in
Figure 6 is analyzed. In each iteration, the optimization code can be partitioned into two
primary parts, which are the finite element part and the numerical optimization part.
Taking the first 100 iterations as an example, the average time spent in each part is listed in
Table 2.

Table 2. Comparison of time consumption.

With Proposed
Method

Finite Element
Analysis (s) Optimization (s) Total Time (s)

Figure 6a No 5.99 1.52 7.51
Figure 6b Yes 5.98 1.85 7.83
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Table 2 shows that, the time spent in the finite element analysis is almost the same,
which takes up most of the time in each iteration. The introduction of the parameter α only
affects the efficiency of the optimization part, since there is additional code for determining
its value. In the case shown in Table 2, the code elapsed time for the optimization part
increases from 1.52 s to 1.85 s. The increase of 0.33 s takes only 4.39% of the total time;
therefore, by the proposed method, the nonlinear topology optimization is able to be applied
to the case of larger input force without sacrificing optimization efficiency. Meanwhile, the
geometrically nonlinearity is considered during the topology optimization. Therefore, it is
verified that the proposed self-adaptive interpolation scheme is capable of addressing the
geometrically nonlinear topology optimization problem.

6.2. Topology Optimization of a Double Clamped Structure

The next numerical example is to optimize the double clamped beam, and its design
domain is illustrated in Figure 10. The design domain of double clamped beam is a
rectangular with a size of 0.16 m × 0.04 m. The input force F is exerted on the middle of the
upper side of the design domain, while the left side and the right side are defined as fixed
supports. The design domain is meshed into 160 × 40 four-node square elements. Because
of the symmetric design, the optimization procedure considers only half of the domain, i.e.,
3200 elements.

Figure 10. The design domain and boundary condition for a double clamped structure design.

Also, 4× 4 solid elements are arranged on the location where the external loading is
applied. By referring to the work of other researchers, the target volume, V∗, was set to 0.25.
At the start of the optimization, the design domain is filled with elements whose density
are set to be xe = 0.25 (e = 1, 2, ..., 3200). In this optimization example, the compliance of
the structure is to be minimized. The radius of the filter is 0.0018 m, while the initial value
of parameter α is 0.2. Four different optimization cases with different values of force are
studied in this section. The force values are specified as F = 1.5 N, F = 5 N, F = 12.5 N
and F = 15 N, and Figure 11a–d shows the optimization results.

Figure 11. Optimized double clamped cantilevers under different loads: (a) F = 1.5 N, (b) F = 5 N,
(c) F = 12.5 N, and (d) F = 15 N.

As can be seen from Figure 11, the optimized topologies of the double clamped
structures are similar. All optimized topologies are composed of two bars connected to
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the fixed support and a triangular structure directly subjected to the load. As the load F
increases, the optimized topology only has small changes, such as the top angle of the
triangle structure becomes smaller. Triangular structures with smaller top angles have
greater stiffness, which helps to resist larger input forces.

The detailed optimized results are shown in Table 3. The true finite element analysis
of the optimized topologies are also calculated by removing elements with density less
than 0.3 and the true displacements are presented in Table 3. Table 3 shows that the error
caused by the parameter α is still very small and can be neglected.

Table 3. Optimization results for the double clamped structure example by the self-adaptive interpo-
lation scheme.

Input
Force (N)

Initial
Value of α

Final
Value of α

Displacement at
Loading Point (µm)

Compliance
(N · m)

Displacement by
Element Removal (µm)

Relative
Error

1.5 0.03 1.00× 10−6 −1.141 0.102 −1.144 0.27%
5 0.03 1.00× 10−6 −3.858 0.360 −3.870 0.29%

12.5 0.03 1.00× 10−6 −8.452 0.717 −8.472 0.24%
15 0.03 1.00× 10−6 −10.19 1.119 −10.22 0.33%

6.3. Topology Optimization of a Displacement Inverter

One of a typical application of topology optimization is designing compliant mech-
anism. The third numerical example is to optimize a compliant displacement inverter,
aiming at maximizing its output. Since the displacement inverter has a symmetric struc-
ture, the topology optimization is conducted on half of the displacement inverter to save
computational resources. Then, the design domain can be simplified by eliminating the
symmetric part and adding a symmetrical constraint. Figure 12 shows the sketch of the
design domain as well as its boundary condition. The external load is applied on the upper
left corner of the design domain, which is distributed uniformly over 4× 4 elements at
the input port to avoid the excessive distortion. The density of elements in the loaded
region is set to be 1 and will not alter during the whole optimization procedure. Moreover,
10× 4 solid elements are arranged on the corner where the fixed support is applied. The
density of the other elements is set to 0.25 at the start of the optimization. The stiffness of
input and output spring are defined as Kin = 500 N/m and Kin = 100 N/m, respectively.
The dimension of simplified design domain is 0.1 m × 0.05 m and is meshed into 5000
(100× 50) finite elements. The target material volume fraction is set to 0.25.

Figure 12. The design domain and boundary condition of the displacement inverter.
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Figure 13 shows the optimization results of compliant displacement inverter under
different loads with the α initialized as 0.03. The input loads corresponding to optimized
results in Figure 13a–d are F = 1 N, F = 2.5 N, F = 5 N and F = 7.5 N, respectively. As can
be seen in Figure 13, the bar structure connected to the input region gradually evolves
into a hinge structure as the input load increases. The emergence of the hinge structure is
reasonable since the inverter is undergoing a large deformation and the hinge structure can
provide better load transfer by reducing the input stiffness.

Figure 13. The optimized topologies for displacement inverter under loads of different values:
(a) F = 1 N, (b) F = 2.5 N, (c) F = 5 N, and (d) F = 7.5 N.

The convergence histories are shown in Figure 14a. As can be seen in Figure 14a, the
output displacement values converge stably for all numerical examples. The evolution
process of the parameter, α, for all the examples are shown in Figure 14b. With the proposed
regulation scheme, the parameter α decreases rapidly and finally remains at a very low
level (≤1× 10−4) , which ensures that the behavior of the optimization results are close
to its actual behavior. The optimization results, including the output displacement before
and after void element removal, and iteration numbers, are summarized in Table 4. Since
an increase in the input force tends to increase the deformation of structure, the value of
α has a tendency to increase with the input force to prevent excessive deformation. As
discussed previously, the value of α would affect the accuracy of the finite element analysis.
In all cases above, the maximum value of α is 6× 10−5 and the relative error does not
exceed 1.18%. This discrepancy is deemed satisfactory when considering the perspective
of engineering.

Table 4. Optimization results for the displacement inverter example with self-adaptive material
interpolation scheme.

Input
Force (N)

Output
Displacement (µm)

Output Displacement
after Element Removal (µm)

Relative
Error

1 −1.751 −1.752 0.07%
2.5 −4.281 −4.284 0.08%
5 −8.318 −8.394 0.90%

7.5 −12.29 −12.44 1.18%
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Figure 14. Comparison of optimized topologies under different loads.

6.4. Comparison

There were currently only three available educational codes of topology optimization
considering geometrically nonlinearity. Chen et al. [21] introduced a 213-line code using
the SIMP method, which was based on MATLAB R2016a and ANSYS 17.1. Zhu et al. [31]
proposed a 89-line code, which was established on the open-source program platform
FreeFEM. A 137-line code was built by Han et al. [32] based on the ESO method. The
latter two codes do not take into account the effects of numerical instability, and therefore
optimizing the numerical examples in Section 6 using these two codes, a failure to converge
will be found. Based on the additive hyperelasticity technique [22] and SIMP method, the
213-line Matlab code has a better convergence performance. In this section, the optimiza-
tion results of the 213-line code and the self-adaptive material interpolation scheme are
compared. Taking the cantilever in Section 6.1 as an example, both the method are used to
optimize the cantilever with loads ranging from 5 N to 25 N. The results of the comparison
are presented in Table 5.

Table 5. The results of the comparison between the self-adaptive material interpolation scheme and
213-line Matlab code.

Method
Compliance (N ·m) Time (s)

5N 10 N 15 N 20 N 25 N 5 N 10 N 15 N 20 N 25 N

proposed
method 0.102 0.360 0.717 1.119 1.568 24.679 32.946 33.404 36.150 40.370

213-line
Matlab

code
0.109 0.369 0.730 1.129 1.591 9.469 13.301 13.220 14.322 16.238

Compared to 213-lines code, the compliance of the optimization results derived using
the self-adaptive material interpolation scheme is smaller. In addition, the optimization
takes much less time by using the proposed method. The main reason is that the additive
hyperelasticity technique used in 213-lines code requires adding another layer of elements
to the design domain. More elements reduce the efficiency of finite element analysis as
well as optimization. From the comparison, it can be seen that by using an adaptive
material interpolation scheme, the proposed method can produces better optimization
result efficiently.
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7. Conclusions

A self-adaptive material interpolation scheme for topology optimization of geomet-
rically nonlinear structures is proposed in this study, which is aimed at avoiding the
numerical instability resulting from the excessive distortion of low-density elements. The
proposed scheme is based on the famous SIMP approach, and a parameter, α, is added to
the material interpolation function to adjust the material properties of minimum-density
and intermediate-density elements, which can change the resistance to deformation of these
elements. The main idea behind this approach is to increase the stiffness of the low-density
elements so that they do not deform excessively, thus ensuring that the finite element
analysis can converge. However, the accuracy of the finite element analysis decreases.
Considering the contradictory relationship between the approximation accuracy and con-
vergence performance of the finite element analysis, a self-adaptive strategy is suggested to
regulate the parameters.

Based on the proposed scheme, three numerical examples, including two minimum
compliance and one compliant mechanism deign problems, are then formulated to validate
the proposed scheme. The optimization results show that it is possible to obtain a well-
defined solution with the proposed scheme, which is capable of withstanding greater loads
and deformations. The obtained solutions are reasonable from an engineering point of
view, and the error caused by introduction of parameter α is negligible, since the value
of parameter α is decreased to a very small value by the adaptive adjustment strategy.
From the analysis of the optimization results, the self-adaptive material interpolation
scheme is proved to be effective. Moreover, by comparing the time consumption before
and after applying the proposed scheme, it is found that the efficiency of optimization is
not significantly affected.
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Appendix A

To find out an appropriate value of ε∗, a numerical example of optimizing cantilever
is given. The setting of design domain of cantilever is identical to the one illustrated in
Section 6.1, while The input force is set to 20N. In order to assess the impact of varying ε∗

values, optimization experiments are conducted on the cantilever using different ε∗ values
individually. Set ε∗ between 0.1 and 0.8 with an interval of 0.1. It is noticed that, when the
ε∗ is larger than 0.6, the optimization will break down. The convergence problem in FEA is
result from the over distortion of the elements. The optimization would not be interrupted
by the failure of the FEA by setting the ε∗ to 0.1. But when the optimization is finished,
the design domain is filled with intermediate density elements, which is undesirable. The
main reason is that the allowable strain is so small that the value of α reaches 1 soon after
the optimization begins. In this situation, as defined in Equation (3), the elastic modulus
E0 of all elements is E0, which means the elements within the design domain are all solid
elements. Even so, the strain still exceed the the allowable strain ε∗; thus, the optimization
cannot proceed. Therefore, setting ε∗ too high or too low will not improve the convergence
of the optimization. When ε∗ is set to 0.2 to 0.6, the optimization can be completed, and the
result is shown in Figure A1.



Machines 2023, 11, 1047 19 of 21

Figure A1. The optimized topologies for cantilevers with different ε∗ values: (a) ε∗ = 0.2, (b) ε∗ = 0.3,
(c) ε∗ = 0.4, (d) ε∗ = 0.5 and (e) ε∗ = 0.6.

The optimized cantilevers shown in Figure A1a–e are similar. The cantilever shown
in Figure A1a has a bar on the bottom of the cantilever, which is not connected to the bar
structure on the top. The reason may be that the value of α is so large that the void element
has a relatively large modulus of elasticity, which has a connectivity function. The variation
history of α is shown in Figure A2.

Figure A2. The optimized topologies for cantilevers with different ε∗ values.

From Figure A2, it can be seen that the α is relative large and gradually decrease to a
smaller value. The α at the end of the optimization is the largest when ε∗ = 0.2. The main
reason is that the allowable strain is small, a larger value of α can decrease the strain. The
comparison between optimized cantilever beams results with various ε∗ is presented in
Table A1.
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Table A1. Compari on between optimized cantilever beams results with various ε∗.

ε∗
Initial
Value of α

Final
Value of α

Displacement at
Loading Point (µm)

Compliance
(N · m)

Displacement by
Element Removal (µm)

Relative
Error

0.2 0.02 1.22× 10−1 −52.70 1.054 −68.33 22.9%
0.3 0.02 1.55× 10−2 −56.14 1.123 −55.29 1.46%
0.4 0.02 6.10× 10−3 −56.02 1.120 −55.02 1.82%
0.5 0.02 3.50× 10−3 −56.52 1.131 −55.77 1.36%
0.6 0.02 2.20× 10−3 −55.95 1.119 −55.22 1.32%

From Table A1, the final value of α decreases as ε∗ increases. The final value of α
is largest when ε∗ = 0.2 and the optimized cantilever has a different topology, which is
lack of connectivity. As a result, the relative error of the displacement after removal of the
elements is large at 22.9%. When the ε∗ is chosen between 0.3 and 0.6, the relative error is
much smaller. The relative error is smallest when ε∗ = 0.6. Therefore, this paper chooses a
value of 0.6 for ε∗ in all the numerical examples.
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