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Abstract: For proactively arranged downtime and maintenance of the gearbox, the accurate as-
sessment of residual useful life (RUL) for worn-surface gear is a critical problem that needs to be
solved. In light of this, a novel dynamic assessment methodology for RUL of sun gear was proposed
by coupling Archard’s wear model and a nonlinear dynamics model. By modifying the internal
excitation model, the effect of tooth surface wear is included in the dynamics model. Then, the effect
of dynamic behavior on the wear process of the tooth surface is further fed back by the dynamic
meshing force. On this basis, the influence of input speed, torque load and initial wear depth on the
RUL was analyzed using a planetary gear NGW11-6 as an example. The results indicate that the
torque load has the greatest influence on the RUL, followed by the initial wear depth, and that the
input speed has the least influence. The established methodology will provide a theoretical basis for
the RUL assessment and scheduled maintenance of transmission systems with worn-surface gears.

Keywords: planetary gear train; tooth surface wear; time-varying meshing stiffness; static transmission
error; residual useful life

1. Introduction

The planetary gearbox has found wide application in many diverse power transmis-
sion systems owing to its advantages of high power density, compact structural volume and
steady transmission ratio [1,2]. Tooth surface wear always accompanies the gear transmis-
sion system from the beginning of use to the failure of scrap. As a material removal process,
surface wear will gradually change the micro-geometry morphology and load distribution
of the contacting tooth flanks, which not only reduces the accuracy and efficiency of the gear
system, but also worsens the vibration behavior and ultimately leads to tooth breakage [3].
In view of this, interest in gear wear mechanisms has increased since the 1990s. To improve
the service performance and safety of planetary gearboxes, it is necessary to prioritize the
RUL of gears with worn surface. Although numerous investigations have been conducted
to diagnose tooth surface wear, assessing the RUL for worn-surface gears still remains a
challenge for the academic and industrial communities. According to the focal points of the
investigation, previous research on tooth surface wear has been roughly divided into three
groups: (1) Focusing on the influence of each parameter on the surface wear distribution;
(2) Discussing the effect of surface wear on vibration characteristics of gearbox; (3) Extract-
ing surface wear fault characteristics from vibration signals of gearbox.

For the first group, it is common to establish the prediction model of tooth surface
wear, including the static prediction models [4–6] and the dynamic prediction models [7–9].
Based on the modeling, the influences of material, speed, lubrication, load, modification
and other parameters on the tooth surface wear distribution were further investigated.
Li and Olofsson [10] studied the wear characteristics of two different powder metallurgy
materials and showed that the wear coefficient decreased with increasing pore size in the
gear material. Huangfu et al. [11] discussed the influence of rotational speed on wear
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depth in combination with the loaded tooth contact analysis method with a gearbox dy-
namics model. According to the wear prediction model in mixed lubrication conditions,
Akbarzadeh and Khonsari [12] and Zhang et al. [13] examined the gear performance
in terms of pressure, speed, friction coefficient, and especially, wear rate, by applying
thermo-elasto-hydrodynamic lubrication with rough surface contact. Based on the FZG
gear wear test, Brandão et al. [14] analyzed the influences of base stock, contact load, and
specific film thickness on the surface wear. The findings reveal that contact load has an
effect on wear coefficient, and that the base stock has a significant effect. In addition,
Kahraman et al. [15] used a wear prediction model to investigate the effect of profile devia-
tions on the distribution of helical gear wear due to tooth modification or
manufacturing error.

For the second group, the common point is to model the transmission dynamics
with worn-surface gear, and the fundamental problem is to explore the effect of worn
surface on the internal excitations. Following this track, the effects of surface wear on
the main internal excitations of the meshing pair were studied in detail [16]. For instance,
Shen et al. [17] proposed an improved time-varying meshing stiffness (TVMS) model to take
into account the wear effect and to assess the effect of surface wear on stiffness excitation.
The analysis results by Chen et al. show that tooth surface wear has significant influence on
the extremum and distribution of TVMS and static transmission error (STE) [18]. Consider-
ing that the backlash of the gear transmission system changes over time under the action
of the load torque, Wu et al. [19] used an iterative method to analyze backlash excitation
generated by wear accumulation of the gear pair in the planetary transmission system. As
material removal progresses, tooth surface wear will gradually change the micro-geometry
morphology and load distribution of the contacting tooth flanks, which has a major impact
on the accuracy, efficiency and dynamics of the transmission system. Therefore, another
research focus is to further discuss the effect of the wear process of a tooth surface on the
vibration characteristics of the transmission system. For example, Atanasiu et al. [20] and
Yuksel et al. [21] studied the influence of surface wear on the relative vibration displace-
ment and the contact force based on the dynamics model of single-pair helical gear and
planetary gear train, respectively. Based on the modeling of dynamics, Yang et al. [22] and
Geng et al. [23] explored the influence of surface wear on the periodic motion of gear trains
from the Poincare cross section graph, bifurcation diagram, and so on.

For the third group, the common point is how to extract and diagnose wear fault
from various signals of gearboxes. To this point, as far as the author knows, there have
been numerous in-depth studies in the literature. For instance, Chang et al. [24] proposed
a new method to obtain comprehensive and high-resolution wear information through
non-contact imaging measurement, and monitored the evolution of tooth surface wear.
Considering that tooth surface wear can cause the driving motor current signal modulation
phenomenon, Zhang et al. [25] presented a tooth surface wear-monitoring method based on
a bispectrum analysis of the motor current modulation signal. Since the abrasive particles
in the lubricating oil contain a lot of effective information, the wear state of the gearbox
can be assessed by online monitoring of the relevant parameters of the abrasive particles
in the lubricating oil [26]. Comparatively, fault diagnosis and monitoring using vibration
signals is more widely used in gear transmission systems. For instance, Feng et al. [27] and
Feng et al. [28] tracked the wear evolutionary process by using the cyclic smoothness index
and cyclic-correntropy of vibration signals. Laval et al. [29] used Hilbert demodulation
technology to quantify the actual vibration data from a worn gearbox. Hu et al. [30]
proposed a time-synchronous averaging method to extract the indicators describing the
wear state of the tooth surface from vibration signals.

In summary, scientists have done a great deal of research on wear modeling, analyzing
and diagnosing, which provides a solid foundation for the safety and steady work of gear
transmission systems. However, research on how to predict the RUL of worn-surface gear
with known wear depth is relatively scarce [31]. It is known that the useful life of a gear
is considerably lower than the estimated life in the design stage owing to the existence of
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surface wear. This is because the coupling effect of time-varying working conditions and
dynamic wear process is not taken into account when predicting the RUL for worn-surface
gear. Aiming at this research gap, a RUL prediction methodology is established from the
perspective of the coupling of wear mechanism and the dynamics model. Therefore, the
contributions and innovations of this paper are as follows: (1) The models of time-varying
meshing stiffness and static transmission error of gear with surface wear were modified and
analyzed; (2) An assessment model of residual useful life of worn-surface sun gear under
variable working conditions was established; (3) The effects of initial depth of surface wear
on dynamic meshing force and residual useful life are revealed. The following contents
are organized: a lumped parameter dynamics model and an internal excitation model are
modified to explore the effect of tooth surface wear in Section 2. Then, a RUL prediction
methodology for worn-surface gear is proposed in Section 3, based on the coupling of wear
model and dynamics model. In Section 4, the effects of input speed, load and initial wear
on the RUL of a planetary gearbox are demonstrated. Finally, some conclusions on the full
contribution are made.

2. Dynamic Modeling for a Planetary Gear Train with Worn-Surface Gear
2.1. Description of the Nonlinear Dynamic Model

In this section, a lumped parameter translational-rotational-coupled model of a plane-
tary gear system with tooth-worn surface is proposed by considering the wear effect on
TVMS and STE. The presented lumped parameter nonlinear dynamic model is illustrated
as shown in Figure 1.
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Figure 1. Nonlinear dynamic model for a planetary gear system.

Herein, ohxhyh (h = s, r, c, pn) is a body-fixed coordinate system with origin locating at
the center of the corresponding component. The subscripts ‘s’, ‘r’, ‘c’ and ‘pn’ represent
the sun gear, ring gear, planet carrier and nth planet gear, respectively. For derivation
convenience, assume each planet has identical mass, inertia, meshing stiffness and meshing
damping. khj and chj (j = x, y, u) denote the support stiffness and support damping of
component h in x, y and u directions. ksn, krn and csn, crn represent the meshing stiffness
and meshing damping along the line of action of external meshing pair (s-pn) and internal
meshing pair (r-pn), respectively.

According to the above definitions, the generalized coordinate vector q can be ex-
pressed as:

q =
(

xs, ys, us, xc, yc, uc, xr, yr, ur, xpn, ypn, upn
)T

(n = 1, 2, · · · ) (1)

where xh and yh are the translational displacements of component h along the direction of x
and y, respectively. uh is the torsional displacements along the direction of rotation.
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Define f (δln) (l = s, r) as a nonlinear function to describe the influence of backlash; it
can be written as

f (δln) =


δln − bln

0
δln + bln

δln > bln
−bln ≤ δln ≤ bln

δln < −bln

, (l = sorr) (2)

where 2bln is the backlash value of the s-pn and r-pn meshing pair. δln denotes the relative
displacement of the meshing pairs along the line of action. There are also the following:

δsn = −
(

xs − xpn
)

sin ψsn +
(
ys − ypn

)
cos ψsn + us + upn − esn − hsn (3)

δrn = −
(

xr − xpn
)

sin ψrn +
(
yr − ypn

)
cos ψrn + ur − upn − ern − hrn (4)

where esn and ern denote the STE of s-pn and r-pn meshing pair; hsn and hsn denote the
wear depth along the line of action; ψsn and ψrn denote the relative meshing angle of the
sun gear and ring gear with the nth planet gear; it can be expressed as

ψsn = ψpn − αs (5)

ψrn = ψpn + αr (6)

where αs and αr denote the meshing angle of s-pn and r-pn meshing pair; ψpn denotes the
position angle of nth planet.

2.2. The Differential Equation of Motion for Planetary Gear Train

The dynamical equations for the planetary gear train can be synthesized from the
differential equations of motion of each subsystem, including the sun gear subsystem, the
planet carrier subsystem, the ring gear subsystem and the planet gear subsystems. The
differential equations of motion for each subsystem are as follows:

(1) The differential equations of motion for the sun gear subsystem



ms
( ..

xs − 2ωc
.
ys −ωc

2xs
)
+ ksxxs + csx

.
xs −

N
∑

n=1

[
ksn f (δsn) + csn

.
δsn

]
sin ψsn = 0

ms
( ..
ys + 2ωc

.
xs −ωc

2ys
)
+ ksyys + csy

.
ys +

N
∑

n=1

[
ksn f (δsn) + csn

.
δsn

]
cos ψsn = 0

Is
r2

bs

..
us + ksuus + csu

.
us +

N
∑

n=1

[
ksn f (δsn) + csn

.
δsn

]
= Ts

rbs

(7)

where ms and Is represent the mass and rotational inertia of the sun gear, respectively.
rbs represents the base circle radius of the sun gear. Ts represents the input torque on
the sun gear. ωc represents the rotation speed of the planet carrier.

(2) The differential equations of motion for the planet carrier subsystem

mc
( ..

xc − 2ωc
.
yc −ωc

2xc
)
+ kcxxc + ccx

.
xc +

N
∑

n=1

[
kpnx·δcnx + cpnx

.
δcnx

]
= 0

mc
( ..
yc + 2ωc

.
xc −ωc

2yc
)
+ kcyyc + ccy

.
yc +

N
∑

n=1

[
kpny·δcny + cpny

.
δcny

]
= 0

Ic
r2

c

..
uc + kcuuc + ccu

.
uc +

N
∑

n=1

[
kpnu·δcnu + cpnu

.
δcnu

]
= − Tc

rc

(8)

where mc and Ic represent the mass and rotational inertia of the planet carrier, respec-
tively. rc represents the radius of the pin circle at the planet carrier. Tc represents the
load torque on the planet carrier. δcnx, δcny and δcnu denote the relative displacement
between the nth planet gear and the planet carrier along the direction of x, y and u,
respectively. These can be calculated as

δcnx = xc − xpn − uc sin ψpn (9)
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δcny = yc − ypn + uc cos ψpn (10)

δcnu =
(
xpn − xc

)
sin ψpn −

(
ypn − yc

)
cos ψpn + uc (11)

(3) The differential equations of motion for the ring gear subsystem



mr
( ..

xr − 2ωc
.
yr −ωc

2xr
)
+ krxxr + crx

.
xr −

N
∑

n=1

[
krn f (δrn) + crn

.
δrn

]
sin ψrn = 0

mr
( ..
yr + 2ωc

.
xr −ωc

2yr
)
+ kryyr + cry

.
yr +

N
∑

n=1

[
krn f (δrn) + crn

.
δrn

]
cos ψrn = 0

Ir
r2

br

..
ur + kruur + cru

.
ur +

N
∑

n=1

[
krn f (δrn) + crn

.
δrn

]
= 0

(12)

where mr and Ir represent the mass and rotational inertia of the ring gear, respectively.
rbr represents the base circle radius of the ring gear.

(4) The differential equations of motion for the nth planet gear subsystem


mp

( ..
xpn − 2ωc

.
ypn −ωc

2xpn

)
+
[
ksn f (δsn) + csn

.
δsn

]
sin ψsn +

[
krn f (δrn) + crn

.
δrn

]
sin ψrn − cpnx

.
δcnx − kpnxδcnx = 0

mp

( ..
ypn + 2ωc

.
xpn −ωc

2ypn

)
−
[
ksn f (δsn) + csn

.
δsn

]
cos ψsn −

[
krn f (δrn) + crn

.
δrn

]
cos ψrn − cpny

.
δcny − kpnyδcny = 0

Ip

r2
bp

..
upn +

[
ksn f (δsn) + csn

.
δsn

]
−
[
krn f (δrn) + crn

.
δrn

]
= 0

(13)

where mp and Ip represent the mass and rotational inertia of the planet gear, respec-
tively. rbp represents the base circle radius of the planet gear.

By the 2nd Newtonian law, the dynamic model of planetary gear transmission system
can be obtained by coupling the differential equations of motion of the above subsystem,
as shown:

M
..
q + [Cb + Cm + ωcG]

.
q +

[
Kb + Km −ω2

c Kω

]
q = F (14)

where M represents the mass matrix. Cb and Kb represent the support damping and
support stiffness matrix, respectively. Cm and Km represent the meshing damping and
meshing stiffness matrix, respectively. G represents the gyroscopic matrix. Kω represents
the centripetal stiffness matrix. F represents the combination of external and internal
excitation forces. Reference [32] can be used to obtain the correlation matrix. Herein, the
fourth-order variable-step Runge–Kutta method is used to solve the differential equations
of motion.

2.3. Internal Excitation with Tooth Surface Wear

(1) Model of TVMS
TVMS is a critical internal excitation in a gear transmission system [33], which is

usually calculated by the energy method. The application of the energy method in the
calculation of TVMS for a worn-surface meshing pair is briefly discussed below.

A tooth model with surface wear is established firstly as shown in Figure 2. Herein, it
is assumed that the surface wear is equal in the direction of tooth width. The healthy profile
is represented by a solid line, and the worn-surface profile is represented by a dashed line.
O1O2 is the centerline of the gear tooth. hw denotes the depth of surface wear. Then, the
force diagram of tooth with surface wear is analyzed as in Figure 3. Herein, O denotes the
geometric center of the gear. Segments BC and CD are the involute curve and transition
curve of the tooth profile, respectively. Fm denotes the meshing force along the line of
action. Fa and Fb are the components of Fm along the radial direction and the tangential
direction. Point P designates the meshing point, and P1 and P2 designate a random position
on the transition curve and involute curve of the tooth profile. α and α2 denote the angles
between the involute generating line corresponding to points P and P2 and the y-axis.
xα, x1, x2 and yα, y1, y2 are the distance from points P, P1 and P2 to the y-axis and x-axis,
respectively. Rb and Rf denote the radii of base circle and root circle of gear. αb and αf are
the angles between OC, OD and x-axis.
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k EIE y B
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The analysis found that tooth surface wear affects the tooth cross-sectional area and
the rotational inertia. The wear effect is expressed as follows:

Awear
2 = (2y2 − hw(x2))B (15)

Iwear
2 =

1
12

(2y2 − hw(x2))
3B + Awear

2

(
Rb sin αb −

2y2 − hw(x2)

2

)2
(16)

where Awear
2 and Iwear

2 denote the cross-sectional area and the rotational inertia of the
worn-surface tooth. B denotes the tooth width.

Furthermore, bending stiffness kwear
b , shear stiffness kwear

s and axial compression
stiffness kwear

a affected by tooth surface wear need to be rewritten as

1
kwear

b
=
∫ xC

xD

[cos α(xα − x1)− (yα − hw(x2)) sin α]2

E
(
2y3

1B/3
) dx1 +

∫ xα

xC

[cos α(xα − x2)− (yα − hw(x2)) sin α]2

EIwear
2

dx2 (17)

1
kwear

s
=
∫ xC

xD

1.2(1 + ν) cos2 α

Ey1B
dx1 +

∫ xα

xC

2.4(1 + ν) cos2 α

EAwear
2

dx2 (18)

1
kwear

a
=
∫ xC

xD

sin2 α

2Ey1B
dx1 +

∫ xα

xC

sin2 α

EAwear
2

dx2 (19)

where E denotes the Young’s modulus, and ν denotes the Poisson’s ratio.
The Hertz contact stiffness kh and fillet-foundation stiffness kf are unaffected by tooth

surface wear, which can be calculated as [34]:

1
kh

=
4
(
1− ν2)
πEB

(20)
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1
kf

=
cos2 α

EB

[
Lf

µ2
f

S2
f
+ Mf

µf
Sf

+ Pf

(
1 + Qf tan2 α

)]
(21)

Herein,

µf =
Rb

cos α
− Rf, Sf = 2Rfαf (22)

αf =
1
Z

[
π

2
+ 2 tan α0(h∗a − Rρ) +

2Rρ/mn

cos α0

]
(23)

where h∗a denotes the addendum coefficient. mn denotes the gear module. Rρ denotes the
radius of curvature of the root transition curve. α0 is the pressure angle. The coefficients Lf,
Mf, Pf and Qf can be expressed by the polynomial

Xfi(hfi, αf) =
Afi

α2
f
+ Bfih2

fi +
Cfihfi

αf
+

Dfi
αf

+ Efihfi + Ffi, hfi =
Rf

Rint
(24)

where the coefficient values of Afi, Bfi, Cfi, Dfi, Efi and Ffi can be referred to reference [35].
Rint denotes the radius of the inner hole of the gear.

Then, the TVMS with tooth surface wear is calculated by

kwear =
I

∑
i=1

1
1

kh,i
+ 1

kwear
a1,i

+ 1
kwear

b1,i
+ 1

kwear
s1,i

+ 1
λ1kf1,i

+ 1
kwear

a2,i
+ 1

kwear
b2,i

+ 1
kwear

s2,i
+ 1

λ2kf2,i

(25)

where I represents the meshing pairs. kwear
a1,i , kwear

b1,i , kwear
s1,i and kwear

a2,i , kwear
b2,i , kwear

s2,i represent
the axial compressive stiffness, bending stiffness and shear stiffness of driving and driven
gears with tooth surface wear. kf1,i and kf2,i represent the fillet-foundation stiffness of
corresponding gear. λ1 and λ2 represent the correction coefficients. The subscript i denotes
the ith meshing pair.

In order to introduce the periodic mesh stiffness kwear into the dynamic model, it needs
to be further expressed as a time-varying variable. The Fourier series function is the most
common form and its expression can be written as the following [36]:

ksn(t) ≈ ksnm +
l

∑
v=1

[kv
san cos(vωmt) + kv

sbn sin(vωmt)] (26)

krn(t) ≈ krnm +
l

∑
v=1

[kv
ran cos(vωmt) + kv

rbn sin(vωmt)] (27)

where ksnm and krnm are the mean values of mesh stiffness of sun–planet and planet–ring
gear meshing pairs. kv

san, kv
sbn and kv

ran, kv
rbn are the amplitudes of the vth order harmonic

stiffness of corresponding meshing pair. ωm is the mesh frequency.
(2) Model of STE
Static transmission error inevitably exists in gear transmission system due to errors

and deformations. The comprehensive error can be modeled as

TE = EM + EA + EL (28)

where EM and EA denote the manufacturing error and installation error. EL denotes the
elastic deformation under load.

Considering the uncertainty of manufacturing errors in practical engineering, it is more
appropriate to construct a gear manufacturing error model by the probability distribution
statistics method. Therefore, the manufacturing error of the gear can be calculated as [37]:

EM =
1
2
(
∆F′t − ∆ f ′t

)
sin θ +

1
2

∆ f ′t sin(zθ) (29)
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where ∆F′t and ∆ f ′t represent the gear total tangential composite deviation and single tooth
tangential composite deviation. z denotes the number of teeth. θ is rolling angle uniformly
and randomly distributed in the range of [0, 2π].

The installation error is generally reflected in the fit of the shaft and bore between gear
and shaft, shaft and bearing, and bearing and gearbox. Therefore, the installation error can
generally be described by the tolerance and calculated as

EA =
3

∑
q=1

∆eq sin θq (30)

where ∆e1, ∆e2 and ∆e3 represent the fit tolerance between gear and shaft, shaft and bearing
cone, and bearing cup and gearbox. θq is the rotation angle, satisfying uniformly and
randomly distribution in the range of [0, 2π].

Elastic deformation is non-negligible as the tooth surface is affected by the meshing
force. It can be calculated by Hooke’s law as

EL =
F(t)
k1(t)

(31)

where F(t) represents the component of meshing force undertaken by a gear tooth. k1(t)
represents the bearing stiffness of the tooth.

Then, the STE of the meshing pair can be calculated as

eSTE = TEp + TEg = EMp + EAp + ELp + EMg + EAg + ELg (32)

where eSTE represents the STE. TEp and TEg represent the comprehensive error of the
driving gear and driven gear, respectively. EMp, EAp, ELp and EMg, EAg, ELg represent
manufacturing error, installation error and elastic deformation of driving gear and driven
gear, respectively.

The effect of tooth surface wear on the direction of the line of action is represented by
displacement excitation, which can be calculated as

hwear
w =

hw(x2)

cos(α2)
(33)

Considering that a meshing pair consists of a driving and a driven gear, the effect of
surface wear on the composite error of a meshing pair can be expressed as

hwear
pg = hwear

w1 + hwear
w2 (34)

where hwear
w1 and hwear

w2 denote the depth of surface wear of driving and driven gear, respectively.
Then, the STE in a single meshing pair with worn surface can be described as

ewear
STE = TEp + TEg + hwear

pg (35)

The STE in a multiple meshing pair with worn surface can be written as

ewear
STE = min

(
TEp1 + TEg1 + hwear

pg1 , TEp2 + TEg2 + hwear
pg2

)
(36)

where hwear
pg1 and hwear

pg2 denote the composite error of meshing pair introduced by
surface wear.

Similarly, the STE of sun–planet and planet–ring gear meshing pairs need to
rewritten as

esn(t) ≈ esnm +
l

∑
v=1

[ev
san cos(vωmt) + ev

sbn sin(vωmt)] (37)
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ern(t) ≈ ernm +
l

∑
v=1

[ev
ran cos(vωmt) + ev

rbn sin(vωmt)] (38)

where esnm and ernm are the mean values of transmission error of sun–planet and planet–
ring gear meshing pairs. ev

san, ev
sbn and ev

ran, ev
rbn are the amplitudes of the vth order harmonic

transmission error of the corresponding meshing pair.

3. Residual Useful Life Assessment Methodology for a Worn-Surface Sun Gear
3.1. Wear Prediction Method

Tooth surface wear results from gear operation under various lubrication conditions
and the lubricant used. Here, Archard’s wear model is adopted to calculate the wear depth
of contact points in tooth surface, as shown [38]:

h =

s∫
0

kpds (39)

where h represents the wear depth of contact points. k represents the wear coefficient for the
contact tooth surface. p represents the contact pressure of gear meshing pair. s represents
the relative sliding distance between the two contact points in different tooth surfaces. The
calculation of relevant parameters will be briefly described below.

The lubrication mode of an NGW11-6 gear transmission system is elastohydrodynamic
lubrication. In addition, the wear coefficient depends on load, speed, lubrication, surface
roughness and other factors, which can be calculated by empirical regression formula [39]

k0 =
3.981× 1029

E′
L1.219G−7.377S1.589 (40)

where L, G, S and E′ denote the dimensionless load, the dimensionless lubrication pressure–
viscosity coefficient, the dimensionless composite roughness and the equivalent elastic
modulus of gear material, respectively. The calculation of each symbol is as follows:

L =
F

E′R′
, G = αE′, S =

Rc
α

R′
, E′ =

E
2(1− ν2)

(41)

where F denotes the load per unit length, α denotes the temperature-dependent pressure-
viscosity coefficient, R′ denotes the equivalent radius of contact surface and Rc

α denotes the
composite roughness of contact surfaces. They can be calculated as follows:

1
R′

=
1

R1
+

1
R2

(42)

Rc
α =

√
R2

α1 + R2
α2 (43)

where R1 and R2 are curvature radii of tooth profile curves of driving and driven gear at
contact points. R2

α1 and R2
α2 denote the tooth surface roughness of driving and driven gear.

Considering the effect of lubricating oil film thickness on surface wear, the wear
coefficient was modified as follows [40]:

k =


k0,

2
7 k0(4− λ)

0,
,

λ ≤ 1
2

1
2 < λ < 4

λ ≥ 4
(44)

where k0 represents the wear coefficient at a lower speed. λ is defined as the proportion of
the minimum film thickness to the composite surface roughness.
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The contact stress at any position in the tooth profile contact region can be calculated
by Hertz contact theory, as

p(x) =
2F
√(

a2
H − x2

)
πa2

H
(45)

where aH denotes the half width of tooth contact deformation under load.

aH =

√
4FR′

πE′
(46)

The relative sliding distance between the two contact points in different tooth surfaces
can be expressed by the product of the relative sliding speed and the contact width:

s1 = 2aH

∣∣∣⇀v r1−
⇀
v r2

∣∣∣∣∣∣⇀v r1

∣∣∣ = 2aH
|R1ω1−R2ω2|

R1ω1

s2 = 2aH

∣∣∣⇀v r2−
⇀
v r1

∣∣∣∣∣∣⇀v r2

∣∣∣ = 2aH
|R1ω1−R2ω2|

R2ω2

(47)

where s1 and s2 denote the relative sliding distance of two contact points. vr1 and vr2 denote
the velocity of contact points along the tangent direction of driving and driven gear profile.
ω1 and ω2 denote the angular velocity of the two meshing gears.

The wear coefficient k, contact pressure p and relative sliding distance s can be deter-
mined by adopting the initial parameters into Equations (44), (45) and (47). Substituting
these computational parameters of k, p and s back into Equation (39), the wear depth during
one wear cycle can be obtained.

3.2. Residual Useful Life Assessment Methodology

The essence of the proposed method is the application of Archard’s wear model to
establish the RUL assessment methodology of worn-surface gear with varying working
conditions. Therefore, to accurately predict the RUL of a gear based on tooth surface wear
mechanism, the methodology used is coupling of the dynamic model and wear model. The
flowchart of the calculation methodology is shown in Figure 4.

The assessment process of RUL can be simply described as follows:

(1) Input the basic parameters of the transmission system (as shown in Table 1), and
the state parameters, such as input speed ns, load Tc and the initial depth of surface
wear hw.

(2) Based on the internal excitation model of TVMS and STE, kq
m(t) and eq

STE(t) of every
worn-surface meshing pair (i.e., the s-pn and the r-pn meshing pair) for q-th geometry
update can be calculated.

(3) Then, the dynamic meshing force (DMF) of the transmission system is obtained by
introducing the stiffness excitation kq

m(t) and displacement excitation eq
STE(t) with

tooth surface wear into the dynamic model.
(4) By inserting the DMF into Hertz’s contact model, the dynamic contact pressure p can

be obtained.
(5) Then, the depth of wear is calculated according to Archard’s formula with the param-

eters of k, p and s. (∆hq
i )ζ

(i = s, sp, pr, r) denotes the wear depth during the ζ-th wear
cycle of q-th geometry update. Herein, the subscripts ‘s’ and ‘sp’ stand for the sun
and planet gear of the s-pn meshing pair, respectively. Accordingly, the subscripts ‘pr’
and ‘r’ stand for the planet and ring gear of the r-pn meshing pair, respectively.

(6) The wear depth of a single cycle was added to the total wear depth and the cumulative
depth of the q-th geometry tooth surface update. Here, the wear depth of the sun
gear is taken as an indicator of wear state because its wear is most serious in the
planetary gear train. hq

s is the wear depth of accumulated the first ζ wear cycles of
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the q-th geometry update, and hs denotes the total depth of the first q-th geometry
update wear.

(7) When the wear depth hs reaches the preset wear threshold εt
s, the RUL of worn-surface

gear is calculated and output. Otherwise, the wear process will continue to repeat.
(8) Then, the accumulation wear depth hq

s needs to be compared with the q-th threshold
ε

q
s. If hq

s ≥ ε
q
s, the accumulated life is calculated, and then the internal excitation and

dynamic response are recalculated to carry out a new round of the tooth surface wear
process. Otherwise, the wear cycle is repeated under the tooth profile reconstruction
of the q-th.

Figure 4. RUL assessment methodology for a worn-surface gear.

Table 1. The basic parameters of NGW11-6 planetary gearbox.

Parameters Sun Planet Ring Carrier

Number of tooth z 20 29 79 —
Module mn (mm) 2.25 2.25 2.25 2.25

Mass m (kg) 0.53 0.35 1.85 4.5
Inertia I (kg·mm2) 146 297 17,440 11,178

Diameter of basic circle db (mm) 42.29 61.31 167.03 113
Tooth width B (mm) 25 28 25 —

Bearing stiffness (N·µm −1) 10 58 1000 195
Torsional bearing stiffness (N·µm−1) 10 — 57.6 10

Pressure angle (◦) αs = 20◦, αr = 20◦

Damping coefficient of bearing chx = chy = 0.03
Damping coefficient of meshing csn = crn = 0.07

Backlash bc (µm) 110
Rated torque Tc (Nm) 134
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Through the above coupling iteration of the dynamic model and the wear model, the
RUL of the worn-surface gear under variable working conditions can be calculated.

4. Numerical Simulation and Discussions

In this section, the effect of initial surface wear depth on internal excitation, DMF,
and RUL are investigated using an NGW11-6 industrial planetary gearbox. The basic
parameters of the planetary gearbox are shown in Table 1.

The effect of tooth surface wear on TVMS, STE and DMF of a sun–planet meshing
pair is mainly discussed below, considering that the wear of sun gear is the largest in the
planetary gear set. Furthermore, the effect of initial wear depth and working conditions on
the RUL are investigated.

4.1. Effect of Tooth Surface Wear on Internal Excitation

This subsection analyzes the effect of initial wear depth on TVMS and STE. Without
loss of generality, the sun gear is preset with a maximum wear depth of hs = 20 µm,
40 µm, 60 µm, 80 µm and 100 µm. Accordingly, the wear depth of planet gear in a sun–
planet meshing pair can be calculated by wear model.

Figure 5 presents the surface wear distribution for the sun gear and planet gear, which
obviously shows that the wear distribution is uneven along the profile. In detail, the
heaviest surface wear occurs in the dedendum of the gear and the lightest wear in the
pitch point. This is due to the fact that the relative sliding distance is the largest at the
dedendum, while the two gears are regarded as pure rolling elements without a relative
sliding distance at the pitch point. In addition, it is obvious from the distribution curve of
tooth surface wear that the mutation phenomenon occurs in two places. This is because in
the transmission process, the alternating change of single-double teeth causes a change in
the load on the single tooth, resulting in an abrupt change in wear distribution.
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By introducing the above wear distribution into the time-varying stiffness energy
method, the meshing stiffness under different wear depth states can be calculated, as
shown in Figure 6.

Figure 6a shows the meshing stiffness curves under different tooth surface wear
depths, and Figure 6b,c shows the locally enlarged meshing stiffness curves. Figure 6a
indicates that tooth surface wear has a very weak influence on time-varying meshing
stiffness. As the maximum surface wear depth increases to 100 µm, the average of meshing
stiffness decreases by 0.683 N/µm compared to the healthy state. This is mainly because
in the gear system, the magnitude of wear depth is always in the micron range, which is
greatly different from the gear tooth thickness, so it has little influence on the TVMS. In
addition, the meshing stiffness of the double-contact zone is more affected by wear than
that of the single-contact zone. The reason for this phenomenon is that the surface wear
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depth in the single-contact zone is relatively small. However, in the double-contact zone,
the adjacent worn-surface teeth meshed simultaneously, and the superimposition of the
two worn-surface pairs led to a significant reduction in meshing stiffness.
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The accumulation of tooth surface wear will gradually increase the influence on static
transmission error. Through the analysis model, the static transmission errors of the sun–
planet meshing pair with different surface wear depths can be calculated and is shown
in Figure 7.
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It is evident from Figure 7 that the fluctuation and amplitude of the STE increase
significantly with increasing wear depth of tooth surface. In detail, the fluctuation of STE
is 2.52 µm, 20.38 µm, 40.67 µm, 60.91 µm, 81.06 µm and 101.23 µm, respectively, with a
maximum wear depth of the sun gear tooth surface increase from 0 µm to 20 µm, 40 µm,
60 µm, 80 µm and 100 µm, and an amplitude increase from 7.11 µm to 26.84 µm, 47.22 µm,
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67.55 µm, 87.82 µm and 108.04 µm. The main reason for the above phenomenon is that
the material of the tooth surface is removed by wear, which leads to the increase in the
backlash between the sun–planet meshing pairs. Meanwhile, the surface wear depth is one
to two orders of magnitude greater than the STE in the healthy state. Therefore, surface
wear is particularly obvious in the STE, which has a relatively large effect.

In addition, it is also obvious that the STE is affected by surface wear in a similar way
to TVMS, with the least influence in the single-contact zone and the greatest influence in the
double-contact zone. These phenomena are closely related to the actual wear distribution.

4.2. Effect of Tooth Surface Wear on DMF

To study the influence of tooth surface wear on dynamic meshing force, the wear effect
is introduced through static transmission error and time-varying meshing stiffness in the
dynamic model. Without loss of generality, the maximum wear depth of sun gear is set as
hs= 0 µm, 20 µm, 40 µm, 60 µm, 80 µm, and 100 µm; the input load is Tc = 90 Nm, and the
input speed is ns = 1000 r/min.

Figure 8 shows the fluctuation curve of DMF affected by surface wear depth. It can be
seen that with the introduction of tooth surface wear, the fluctuation of DMF becomes more
complex. In detail, in the double-contact zone ([0 T 0.2 T]), the fluctuation of DMF increases
with increasing wear depth. In the single-contact zone ([0.2 T 1 T]), the introduction of
tooth surface wear increases the number of impacts of DMF, such as impacts around 0.35 T,
0.55 T and 0.65 T. It can be interpreted that surface wear changes the tooth profile and contact
conditions, thus affecting the dynamic response. In addition, an interesting phenomenon
can be observed in the figure. On the left side of the pitch point (T < 0.6), as the surface wear
depth increases, the position of the extreme point of the DMF curve gradually becomes
larger. In contrast, when T > 0.6, the position of the extreme point is gradually smaller.
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To further clarify the influence of initial wear depth on DMF, Figure 9 shows the
distribution interval of DMF at different initial wear depths. In the figure, the maximum
value and the fluctuation range of DMF first decrease and then increase with the gradual
increase in the wear depth of the tooth surface. In detail, as the surface wear depth increases
from 0 µm to 40 µm, the fluctuation range gradually decreases from [1.346 kN 1.490 kN] to
[1.355 kN 1.469 kN]. In addition, the surface wear depth continues to increase to 100 µm,
and the DMF increases from [1.354 kN 1.475 kN] to [1.315 kN 1.508 kN]. The main reason is
that at the initial stage of wear, the tooth surface wear brings a “wearing-in” effect on the
gear transmission system, thus reducing the fluctuation of DMF. As the wear continues, the
contact tooth surface gradually deteriorates, thus increasing the fluctuation range of DMF.
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4.3. Effect of Wear Depth on RUL

Considering that the fluctuation of DMF varies with the degree of wear, it will affect
the RUL of worn-surface gear. Therefore, the influence of the initial wear depth on the
RUL is analyzed. Herein, according to relevant standards, the precision of the planetary
gear train is considered invalid when the wear depth of the tooth at any contact point in
this case reaches 400 µm. The working condition is set as: torque load Tc = 134 Nm, input
speed ns = 1500 r/min. In addition, the initial wear depth of the sun gear tooth surface is
set as hs = 10 µm, 20 µm, 30 µm, 40 µm, 50 µm, 60 µm, 70 µm, 80 µm, 90 µm and 100 µm.

As can be seen from the change trend shown in Figure 10, the RUL gradually decreases
as the initial wear depth increases. More specifically, as the initial wear depth of the tooth
surface increases from 10 µm to 100 µm, the RUL of the worn-surface gear decreases from
1.600 × 107 cycles to 1.222 × 107 cycles. This agrees with the actual situation, that is,
the more severe the tooth surface wear, the shorter the RUL. In addition, to describe the
effect degree of initial wear depth on RUL more clearly, the relative change in the RUL per
10 µm wear depth is given. According to the relative change curve, the relative change in
RUL gradually decreases as the initial wear depth increases. This indicates that as the wear
depth increases, the wear cycle required to generate the same depth of wear is gradually
reduced; that is, the dynamic wear process of gear system is gradually accelerated.
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4.4. Effect of Working Condition on RUL

In engineering applications, estimating the RUL of gears under variable working
conditions is also a focus problem that needs to be considered and solved. In this subsection,
the effects of torque load and input speed on the RUL of gears with worn surface are
analyzed. Herein, the initial surface wear of sun gear and planet gear is 0 µm.

Firstly, the effect of torque load on the RUL is analyzed. The simulation condition
is set as: input speed ns = 1500 r/min, torque load Tc= 30 Nm, 60 Nm, 90 Nm, 120 Nm
and 150 Nm.
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The effect of torque load on the RUL is shown in Figure 11. It can be observed that
as the torque load increases, the RUL of worn-surface sun gear decreases gradually. In
detail, when torque load increases from 30 Nm to 60 Nm, 90 Nm, 120 Nm and 150 Nm, the
RUL of worn-surface gear decreased from 6.786 × 107 cycles to 3.540 × 107, 2.405 × 107,
1.822 × 107 and 1.470 × 107 cycles. It can be explained that the increased torque load
increases the contact stress of the meshing pair, leading to the increase in wear depth in a
single wear cycle, thus reducing the RUL of worn-surface sun gear. Additionally, it can
also be observed that as the torque load increases, the slope of the RUL curve decreases,
indicating that as the torque load increases, its influence on the RUL of worn-surface
gear decreases.
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Input speed is also one of the more important factors affecting the RUL of worn-surface
gear. To clarify the influence rule of input speed, the following analysis is made. Herein,
the simulation condition is set as: torque load Tc = 134 Nm, input speed ns = 300 r/min,
600 r/min, 900 r/min, 1200 r/min and 1500 r/min.

Figure 12 shows the influence of input speed on the RUL of a worn-surface sun gear.
From the figure, it can be seen that with increasing input speed, the RUL of the worn-surface
gear increases slowly at first and then gradually decreases. As the input speed increases
from 300 r/min to 600 r/min, 900 r/min, 1200 r/min and 1500 r/min, the RUL of the
worn surface increases from 1.681 × 107 cycles to 1.682 × 107 cycles, and then decreases to
1.666 × 107, 1.664 × 107 and 1.637 × 107 cycles. This phenomenon shows that the input
speed has a strong nonlinear effect on the RUL of worn-surface gear. This is mainly because
the tooth surface wear has a large impact on the STE, and thus has a great influence on the
dynamic behavior of the nonlinear gear system at different speeds, which further acts on
the wear rate and affects the RUL of the worn-surface gear.
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5. Conclusions

Based on the coupling of a wear model with a dynamic model, an assessment method-
ology of RUL for worn-surface gear is proposed. The following conclusions can be summa-
rized from this study:

(1) Based on the modified model of TVMS and STE considering tooth surface wear, the
effect of wear depth on TVMS and STE was analyzed. The results show that the
surface wear has little influence on the TVMS, but has obvious influence on the STE.

(2) The effect of surface wear on the DMF was analyzed by introducing the stiffness and
displacement excitation with wear into the translational–torsional dynamic model
of the planetary gear train. The results indicate that at the primary stage of tooth
surface wear, the fluctuation range of DMF decreases gradually, presenting a state
of “wearing-in”. Subsequently, the contact condition of tooth surface deteriorates
gradually, and the fluctuation range of DMF will increase.

(3) An assessment model of RUL for worn-surface gear under varying working conditions
was proposed, and the influence of initial wear depth and varying working conditions
on RUL was analyzed based on the model. The results show that the torque load has
the greatest influence on the RUL, followed by the initial wear depth, and the input
speed has the least influence.

Although an accurate prediction model for the RUL of worn-surface gear is proposed
based on the wear mechanism and dynamics model, the limitation of this method is that
the uncertainty of the parameters is not taken into account. This paper only takes the
number of cycles as the index of RUL, while in actual engineering, different indexes may
be proposed according to different requirements, such as residual service time and residual
structural strength, which can be further studied. In addition, considering the influence of
lubrication conditions and lubricants used on the wear process is also a valuable research
direction to conduct in-depth, detailed and accurate lubrication modeling.
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