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Abstract: To date, hydraulic energy is still, among the renewable ones, the most widespread and most
exploited to produce electricity. With the current trend to exploit any renewable source available, the
limits for the economic convenience of hydroelectric power plants have significantly changed, making
it interesting and convenient to use even small heads and low flow rates. In the specific applications
of hydraulic turbines operating with low heads, the Kaplan turbine plays the predominant role
among the available machines, also given the possibility of carrying out an “on cam” regulation,
acting simultaneously on the geometry of the rotor and distributor rows, thus allowing a wide flow
rate adjustment range. However, for applications characterized by very low heads and low available
powers, it may not be convenient to use complex regulating devices. For this reason, these plants
usually use axial machines characterized by a partial regulation (of the distributor or of the rotor),
significantly reducing the operating range of the machine compared to the case of double regulation.
In the last decade, the development of reliable and less expensive permanent magnet generators and
power electronic converters and related new control strategies has paved the way for the concept of
regulating hydraulic turbines by means of variable rotational speed. This regulation principle is based
on the possibility of acting in the case of using synchronous permanent magnets electric generators
and electronic power converters and on the variation of the rotational speed of the machine while
keeping the grid frequency constant. The concept can be applied both to pure propellers with fixed a
rotor and fixed distributor and to hydraulic axial turbines with regulation based on the modification
of the variable guide vane opening angle. Although this new regulation approach, even in the case
of the combined guide vane and rotational speed regulation, does not allow to recover most of the
energy losses due to the variation of the operating conditions as effectively as the Kaplan double
regulation does, the variation of the rotation speed, coupled with the variation of the opening of
the distributor row, allows to reduce the tangential kinetic energy losses generated at the turbine
exit during the off-design operations of a fixed blade opening angle rotor. At the same time, this
type of regulation offers a simple and thus low-cost solution. The present study develops the theory
underlying this regulation concept, based on the use of the turbomachinery fundamental equations,
and reports the results of the off-design CFD analysis carried out for different combinations of rotation
speeds and openings of the distributor, showing the improvement of the hydraulic efficiency over a
large range of operating conditions with respect to the single regulation approach.

Keywords: renewable energy conversion; hydraulic turbines; low head hydraulic energy; CFD
calculation; innovative regulation concept

1. Introduction

Hydraulic energy remains the most diffused among the renewable energy sources [1]
due to the good availability of the conversion fluid employed, water, the lowest life cycle
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environmental impact in the case of small power plants, and the highest specific energy
conversion system among the renewables. Large hydraulic power plants under low heads
(below 40 m, approximately) employ Kaplan turbines, which present an incomparable
quality in regulating the flow rate over a wide range of operating conditions (usually from
30% to 110% of the nominal flow rate) due to the simultaneous “on cam” regulation of guide
vanes and rotor blades. However, nowadays, with the tendency to exploit any available
hydraulic energy source, very low net heads (below 6 m) have started to be taken in
consideration for the hydraulic energy conversion in small scale [2]. In this case, the Kaplan
turbine architecture with its double regulation may not be economically sustainable without
simplifications of the mechanical components and turbine architecture, also involving the
regulation mechanisms.

Tubular axial turbines (TAT), with a simplified regulation based on a single guide
vane variable opening angle or, as an alternative, a runner blade variable opening angle,
are being widely employed. In this case, the main drawback is a significant reduction
in the operating range. Over the past decade, several turbines that target the sub 1-MW
in-conduit hydroelectric market have been developed and studied [3]. However, adoption
of small hydropower technologies remains limited in the water and wastewater utility
sector, possibly due to a lack of market penetration and exposure. When possible, because
of the permanence over the year of the available flow rate, ultra-compact, simplified,
and low-cost hydraulic turbines without regulation have been developed [4] by the main
hydraulic turbine manufacturers. See, for instance, the turbine series StreamDiver® from
Voith, Heidenheim an der Brenz, Germany [5] and the turbine series Hydromatrix® from
Andritz Hydro, Graz, Austria [6]. These turbine modular series are characterized by
high-specific-speed axial propeller rotors with fixed runner blades and a fixed distribution,
which impose, for a fixed rotational speed, a single-operating point under the available
net head.

The turbine rotor is directly coupled with a permanent magnet synchronous electric
generator enclosed in a waterproof cylindrical front-end bulb, located at the turbine intake.
The rotational speed is set in relation to the net head (which determines the corresponding
optimum flow rate and consequently the water velocities within the turbine) and can be
varied if the head changes during the operation. The electronic converter and control
system keep the electric current at the correct grid frequency.

Starting from this concept, the authors have recently developed an optimized design
procedure for compact hydraulic propeller turbines with low heads [7,8].

However, also at ultra-low heads, the power plant flow duration curves may generally
present significant variations over the year, and, in this case, an effective turbine regulation
possibility becomes mandatory.

The present research is aimed at providing and discussing the aerodynamic basis of
an efficient regulation concept for low-head hydraulic propeller turbines directly coupled
to permanent magnet synchronous electric generators equipped with electronic frequency
converters. The regulation concept is based on a single guide vane opening angle variation
to follow the required flow rate at a constant head and the use of a combined turbine
rotational speed variation. The rotational speed variation allows compensating the exit
swirling flow generation, which occurs at off-design conditions for fixed blade opening
angle rotors; this represents a significant loss source.

In addition to recent examples of large reversible pump-turbines studied for operating
with combined guide vane and rotational speed variations, such as the about 700 MW Nant
de Drance project in Switzerland and two of the demonstrator projects proposed for the
European research consortium XFLEX, there are examples of installations of low-head,
small-size hydraulic turbines that implement this regulation concept [9,10]. Furthermore,
a number of technical papers are present in the literature that deal with this combined
regulation concept from the control system point of view, for example [11,12].

Although the Kaplan double regulation is more effective because of its capability to
compensate both the two main off-design loss generation mechanisms—swirling flow at
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the rotor blade exit and wrong incidence at the rotor blade inlet—this simplified, lower-cost
regulation approach, which is capable of compensating only the exit swirling flow, may be
valuable and effective when a low-cost solution is required for mini hydro applications at
low heads.

The present research is based on two steps, namely:

- The mean-line off-design analysis of the hydraulic axial turbine to explain and sub-
stantiate the regulation concept;

- The 3D Navier Stokes off-design simulation of a hydraulic tubular axial turbine for low
heads to demonstrate and quantify the concept in a realistic 3D turbomachinery environment.

2. Hydraulic Turbine Regulation Concept and Off-Design Losses

We assume that the turbine is operating at constant net head Hn. Regulation of the
turbine is assumed as the capability to change the operating flow rate in connection with
the river’s seasonal or day-by-day flow rate variation or the necessity to vary rapidly the
required turbine output power at constant net head.

In Kaplan turbines, this is accomplished by stagger angle variations of both guide
vanes and runner blades. To obtain the maximum flow rate range at high hydraulic
efficiency, the regulation is based on “on cam” or “conjugate” vane and blade openings.

Usually, the range of acceptable hydraulic efficiency of a double-regulating Kaplan
turbine varies between 30% and 110% of the flow rate operating point, with 100% being the
nominal operating point. If we assume the design point (which is also the maximum or
best efficiency point, BEP) is conventionally set at 80% of the nominal operating point, the
range varies approximately between 40% and 140% of BEP.

In the case of single guide vane regulation, the rotor blade stagger angle is fixed,
and the flow rate range of acceptable hydraulic efficiency values is significantly reduced
(approximately from 70% to 120% of BEP) because of larger off-design loss generation.

In the technical literature, several classic loss models are available for axial turbines ([13,14],
for example) to be applied for mean line design and analysis methods, non-isentropic radial
equilibrium equations [15], and flow analysis methods [16].

Classic loss theories often consider design and off-design losses separately. By defi-
nition, off-design losses are not present in design conditions. They are mainly incidence
losses and kinetic energy losses associated with residual tangential velocity at rotor exit. In
the present mean-line analysis, these two types of off-design losses are considered.

In 3D Navier Stokes simulations, loss models are not necessary as well as irreversible
entropy production (or total pressure loss and relative total pressure loss distributions), and
therefore turbine hydraulic efficiency can be directly evaluated. In this case, the off-design
effect is directly highlighted by the comparison between off-design operating points and
design operating point efficiencies.

When flow rate increases with respect to the design condition, the total lost head
increases not only because of incidence and tangential velocity kinetic energy losses but
also because, with increasing flow rate, the flow velocities increase approximately in
proportion and both friction losses and kinetic energy losses (associated with axial velocity)
increase in square proportion with the flow velocity.

3. A New Hydraulic Axial Turbine for Low Heads

The turbine regulation concept based on the combined variation of guide vane angle
and rotational speed is applied and demonstrated for a small tubular axial flow hydraulic
turbine with very low heads recently developed by the authors [7,8].

This new high-specific speed hydraulic propeller turbine for low and ultra-low heads
has been developed in cooperation with the University of Genova by SEMI Industrial,
which is a high-technology, mid-size Brazilian hydraulic turbine manufacturer. The pre-
vious papers have described the new turbine optimized design, starting from 1D and 2D
preliminary design procedures and design criteria reported in detail in [7], which provide
the initial geometry as the starting point of an organized sequence of 3D CFD advanced
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simulations featuring a design optimizing method aimed to obtain the targeted operating
conditions with the maximum turbine hydraulic efficiency and minimum kinetic energy
losses at the turbine exit section [8]. A 3D rendering of the reference turbine with fixed
geometry (a single-point operating turbine) is reported in Figure 1.
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Figure 1. A 3D rendering of the low-head axial flow hydraulic turbine of ref. [7].

The main design operating parameters of the turbine at its design operating point are
reported in Table 1:

Table 1. Propeller turbine design operating parameters.

Operating Parameter Optimized Configuration Results

nq = nQ0.5/H0.75
n 212

ϕTIP = cx/uTIP = 4Q/
(
πD2

TIP uTIP
)

0.324
ψTIP = 2gHn/u2

TIP 0.318
η [−] 0.913

The reported efficiency is defined as:

η =
ρωT

.
m
[

ptIN −
(

ptOUT − ρ
c2

θOUT
2

)]
where T is the torque, and c2

θOUT/2 is the term related to lost tangential kinetic energy
at draft tube outlet. In order to make possible the turbine flow rate regulation, the
above-described propeller turbine (single point operating turbine) has been modified
by introducing regulating guide vanes (Figure 2) and the possibility of electronic control of
the rotational speed in proportion to the flow rate variations. The shape of the meridional
channel was kept unchanged, but it was necessary to axially extend the initial cylindrical
part of the channel to house the two stator rows.

Machines 2023, 11, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 2. A 3D rendering of the regulating low-head axial flow hydraulic turbine. 

4. Turbine Meanline Design and Off-Design Analysis 
Keeping the design operating point of the regulating turbine at the same conditions 

of the non-regulating turbine, for a rotor tip diameter 𝐷ଵ்ூ௉ = 1500 mm the design data 
are: net head 𝐻௡ = 4 m, flow rate 𝑄 = 9 mଷ s⁄  and rotational speed 𝑛 =  200 rpm. 

The design and off-design analysis are based on the use of 1D turbomachinery equa-
tions of the balance of flow rate, energy, and moment of momentum (the Euler equation 
of turbomachinery for work exchange) and the turbomachinery fundamental kinematic 
equation, which correlates absolute and relative flow velocities in the sections upstream 
and downstream of the rotor at the meanline (indicated as 1 and 2, respectively). 

4.1. Meanline Basic Equations 
The meanline blade velocity is 𝒖𝒎𝒆𝒂𝒏 = 𝝎 ൈ 𝑹𝒎𝒆𝒂𝒏 = 𝑢௠௘௔௡𝒊𝝑 , with 𝑢௠௘௔௡ =10.99 𝑚 𝑠⁄  indicated in the following as 𝑢௠௘௔௡ = 𝑢 for simplicity. 𝜑௠௘௔௡ is the flow coefficient that will be indicated in the following as 𝜑, for simplic-

ity: 𝜑௠௘௔௡ = 𝑐௫/𝑢  (1)

where 𝑐௫ is the axial velocity component. 𝜓௠௘௔௡ is the head or work coefficient in the 
following indicated as 𝜓, for simplicity: 𝜓௠௘௔௡ = 2𝑔𝐻௡𝜂 𝑢ଶ⁄ = 2𝑊 𝑢ଶ⁄   (2)

The Eulerian work exchanged by the turbine rotor is: 𝑊 = 𝑔𝐻௡𝜂 = 𝑢(𝑐ఏଵ − 𝑐ఏଶ)  (3)

with 𝜂 hydraulic turbine efficiency, assumed equal to 0.9. Therefore: 𝑐ఏଵ − 𝑐ఏଶ = 𝑊𝑢 = 𝜓𝑢2  (4)

𝑐ఏଵ = (𝑐ఏଵ − 𝑐ఏଶ) + 𝑐ఏଶ = 𝜓𝑢2 + 𝑐ఏଶ (5)

With reference to the flow velocity triangles of Figure 3: 𝑐ఏଶ = 𝑤ఏଶ + 𝑢 = 𝑐௫ tan 𝛽ଶ + 𝑢  (6)

𝑡𝑎𝑛 𝛼ଵ = 𝑐ఏଵ𝑐௫  (7)

Figure 2. A 3D rendering of the regulating low-head axial flow hydraulic turbine.



Machines 2023, 11, 202 5 of 21

4. Turbine Meanline Design and Off-Design Analysis

Keeping the design operating point of the regulating turbine at the same conditions of
the non-regulating turbine, for a rotor tip diameter D1TIP = 1500 mm the design data are:
net head Hn = 4 m, flow rate Q = 9m3/s and rotational speed n = 200 rpm.

The design and off-design analysis are based on the use of 1D turbomachinery equa-
tions of the balance of flow rate, energy, and moment of momentum (the Euler equation
of turbomachinery for work exchange) and the turbomachinery fundamental kinematic
equation, which correlates absolute and relative flow velocities in the sections upstream
and downstream of the rotor at the meanline (indicated as 1 and 2, respectively).

4.1. Meanline Basic Equations

The meanline blade velocity is umean = ω × Rmean = umeaniϑ , with umean = 10.99 m/s
indicated in the following as umean = u for simplicity.

ϕmean is the flow coefficient that will be indicated in the following as ϕ, for simplicity:

ϕmean = cx/u (1)

where cx is the axial velocity component. ψmean is the head or work coefficient in the
following indicated as ψ, for simplicity:

ψmean = 2gHnη/u2 = 2W/u2 (2)

The Eulerian work exchanged by the turbine rotor is:

W = gHnη = u(cθ1 − cθ2) (3)

with η hydraulic turbine efficiency, assumed equal to 0.9. Therefore:

cθ1 − cθ2 =
W
u

=
ψu
2

(4)

cθ1 = (cθ1 − cθ2) + cθ2 =
ψu
2

+ cθ2 (5)

With reference to the flow velocity triangles of Figure 3:

cθ2 = wθ2 + u = cx tan β2 + u (6)

tan α1 =
cθ1

cx
(7)

tan β1 =
wθ1

cx
=

cθ1 − u
cx

= tan α1 −
1
ϕ

(8)

tan β2 =
wθ2

cx
(9)

tan α2 =
cθ2

cx
=

wθ2 + u
cx

= tan β2 +
1
ϕ

(10)

tan α1 =
cθ1

cx
=

ψ

2ϕ
+ tan β2 +

1
ϕ
=

ψ

2ϕ
+ tan α2 f rom Equations (5) and (6) (11)

tan β2 = − 1
ϕ
+ tan α2 f rom Equation (11) (12)

tan β1 = tan α1 −
1
ϕ
=

ψ

2ϕ
+ tan β2 f rom Equations (8) and (11) (13)



Machines 2023, 11, 202 6 of 21

Machines 2023, 11, x FOR PEER REVIEW 6 of 22 
 

 

tan 𝛽ଵ = 𝑤ఏଵ𝑐௫ = 𝑐ఏଵ − 𝑢𝑐௫ = 𝑡𝑎𝑛 𝛼ଵ − 1𝜑 (8)

tan 𝛽ଶ = 𝑤ఏଶ𝑐௫  (9)

tan 𝛼ଶ = 𝑐ఏଶ𝑐௫ = 𝑤ఏଶ + 𝑢𝑐௫ = tan 𝛽ଶ + 1𝜑 (10)

tan 𝛼ଵ = 𝑐ఏଵ𝑐௫ = 𝜓2𝜑 + tan 𝛽ଶ + 1𝜑 = 𝜓2𝜑 + tan 𝛼ଶ  𝑓𝑟𝑜𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (5) 𝑎𝑛𝑑 (6) (11)

tan 𝛽ଶ = − 1𝜑 + tan 𝛼ଶ  𝑓𝑟𝑜𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛  (11) (12)

tan 𝛽ଵ = tan 𝛼ଵ − 1𝜑 = 𝜓2𝜑 + tan 𝛽ଶ  𝑓𝑟𝑜𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (8) 𝑎𝑛𝑑 (11) (13)

Additionally: tan 𝛼ଵ − tan 𝛽ଵ = tan 𝛼ଶ − tan 𝛽ଶ  (14)

 
Figure 3. Guide vane and rotor blade profiles in the meanline blade-to-blade plane and flow velocity 
triangles at the design condition. 

4.2. Design Meanline Analysis 
At the design condition, the axial velocity, evaluated with the continuity equation 

from the design flow rate, is 𝑐௫ = 𝑤௫ = 6.065 m/s and it is constant from the inlet to the 
exit of the rotor blade. At the design conditions: 𝜑 = 𝑐௫𝑢 = 0.552 

𝜓 = 2𝑔𝐻௡ 𝜂 𝑢ଶ =⁄ 2𝑊/𝑢ଶ = 0.585 

Figure 3. Guide vane and rotor blade profiles in the meanline blade-to-blade plane and flow velocity
triangles at the design condition.

Additionally:
tan α1 − tan β1 = tan α2 − tan β2 (14)

4.2. Design Meanline Analysis

At the design condition, the axial velocity, evaluated with the continuity equation
from the design flow rate, is cx = wx = 6.065 m/s and it is constant from the inlet to the
exit of the rotor blade. At the design conditions:

ϕ =
cx

u
= 0.552

ψ = 2gHnη/u2 = 2W/u2 = 0.585

Furthermore, at the design condition, the tangential absolute velocity is imposed
null to minimize the kinetic energy loss at the turbine exit and then α2design = 0 deg. By
applying in sequence Equations (11), (12), and (14), we obtain:

β2design = −61.11 deg

α1design = 27.92 deg

β1design = −52.04 deg

For meanline simplified and off-design analyses, we assume that the rotor blade profile
angles coincide with the flow angles at the design conditions: β1design and β2design, that
corresponds to the assumption that the exit flow deviation angle δ is null and the incidence
angle i is null at the design condition. Figure 3 shows the vane and blade profiles and the
velocity triangles at the design condition in the meanline blade to blade plane.

4.3. Off-Design Meanline Analysis

The off-design meanline conditions at the constant net head are represented by the
reduction or increase of flow rate operated by the guide vane opening angle variation. For
simplicity, we assume that Qo f f design = kxQdesign , with 0.6 < kx < 1.4. Therefore, since cx
is proportional to Q, cx,o f f design = kxcx design, for simplicity denoted as kxcx.
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If we assume that the rotational speed and, therefore, the blade velocity u can be
varied respect to the design condition, we can write uo f f design = ku udesign, for simplicity
denoted as kuu.

Asaconsequence ϕo f f design = kx/ ku ϕdesign forsimplicity ϕo f f design = kx/ ku ϕ (Equation
(15)) and ψo f f design = ψdesign/ k2

u, for simplicity ψo f f design = ψ/ k2
u (Equation (16)).

For ku = 1, the rotational speed is not varied with respect to the design condition; this
condition represents the simple guide vane regulation. If ku= kx, a strict proportionality
between the axial velocity component and blade velocity is established via the frequency
electronic regulator that completely suppresses the tangential velocity component at the
rotor exit induced by the off-design conditions in case of constant rotational speed u, but
unfortunately enhances incidence angle variation at the rotor blade inlet. An intermediate
regulation strategy with ku = (1 + kx)/2, is also considered.

Furthermore, for the off-design meanline analysis, we assume that β1 blade = β1 design
and β2 blade = β2 design.

From the analysis of Figures 4 and 5, one important feature is evident. Operating
under the constant net head, if the power regulation is performed only by the guide vane
opening variation, a reduction in flow rate (Figure 5) induces a significant co-rotating
tangential velocity component at the blade exit, and an increase in flow rate induces a
counter-rotating tangential component. Both positive and negative tangential velocity
components may cause important energy conversion losses.
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triangles at off-design conditions (ku = 1, simple guide vane regulation)—flow rate increased.

As a second consequence, at nominally constant work conversion, the residual tangen-
tial velocities at the exit need to be compensated by an increase of the tangential velocity
component at the rotor inlet in the case of co-rotating exit swirl and a decrease of the inlet
tangential velocity in the case of counter-rotating exit swirl, and this needs to be obtained
by overclosing and overopening the guide vanes.

This concept is clearly shown in Figure 6, which reports the flow tangential velocity
components at the rotor inlet and exit. It is worth observing that, when operating at con-
stant net head, the simplifying assumption of constant hydraulic efficiency in Equation (3)
(Eulerian work exchanged by the turbine rotor) imposes a constant tangential velocity
variation all over the flow rate range.
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Figure 6. Tangential velocity components cθ1, cθ2. Case ku = 1 (simple guide vane regulation).
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One further observation about Figure 6 is that the practical impossibility of applying a
vane stagger angle larger than 90◦ (respecting the tangential direction) imposes a direct
limitation to the operating range at a large flow rate, which in the present case is 130/100
of the design operating point.

Figure 7 shows the positive effect of the rotational speed variation, ku = (1 + kx)/2, in
reducing the amplitude of the residual tangential velocity components at the rotor exit, cθ2.
This also results in a consequent reduction of the amplitude of the inlet tangential velocity
component, cθ1, which is necessary to provide the rotor work exchange compatible with
the available net head. Therefore, the rotor inlet absolute flow angle is reduced, with a
positive consequent reduction of the vane opening variation with respect to the design vane
opening condition. The operating range at large flow rate is increased, as a consequence,
towards 150/100 of the design operating point.
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Figure 7. Tangential velocity components cθ1, cθ2. Case ku = (1 + kx)/2, (combined guide vane and
rotational speed regulation).

4.4. Off-Design Losses

Off-design losses are the losses that originate at off-design conditions. They are,
traditionally, rotor blade incidence losses and kinetic energy losses associated with the
tangential velocity at the rotor exit c2ϑ. At the design condition, in fact, the incidence angle
is i = β1 − β1blade = 0 and c2ϑ = 0.

Several incidence loss correlations are available in the literature; for instance, the
Galvas correlation [17], which can be utilized for its simplicity. However, for the present
analysis, we have decided to use the most classical correlation for axial turbines profile
losses; the Ainley–Mathieson correlation [18], also employed in more sophisticated loss
models, such as the one proposed by Dunam–Came [19], and successively by the one
proposed by Kacker–Okapuu [14].

In the present paper, profile losses are defined as lost head in percentage of the net
head as:

hp,pro f ile

2gHn
(15)

where

hp,pro f ile = YpY
w2

2
(16)

Yp is the Ainley–Mathieson profile loss coefficient at design condition, evaluated as
0.03 from Figure 4 of the Ainley–Mathieson paper, and Y is the incidence angle coefficient
calculated with a grade 6 polynomial fitting the curve of Figure 6 of the same paper. Figure 8
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shows the trends of the angles of incidence deduced from the 1D meanline analysis for the
various regulation strategies.
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Figure 8. Incidence angle overflow rate range. Cases ku = 1, ku = kx, ku = (1 + kx)/2.

It is interesting to note how the values of the incidence angle are of limited entity
and negative for values of kx greater than unity. On the contrary, for low values of kx, the
incidence angle shows a strong increase, mostly for ku = kx.

The off-design kinetic energy loss can be simply evaluated by its definition as:

hp,kin

Hn
=

c2
θ2

2gHn
=

η(kx ϕ tan β2 + ku)
2

ψ
(17)

where:
c2

ϑ2 = (kx ϕ tan β2 + ku)
2u2

Additionally, β2 is the exit rotor blade angle and in case of regulation without blade
angle opening variation as in the present case it coincides with the design exit relative flow
angle and η is the turbine efficiency at design point. Now:

tanβ2 = tanβ2design = − 1
ϕ

f rom Equation (12)

Therefore, the off-design kinetic energy losses can be written in compact form as:

hp,kin

Hn
=

η(ku − kx)
2

ψ
(18)

Therefore, in case we assume ku = kx the off-design kinetic energy losses due to
residual tangential velocity at the rotor exit are null by definition. However, the effect
of ku = kx over the incidence angle, at reduced flow rate conditions, is strong and may
increase the profile losses excessively.

In the present simplified concept analysis, for the sake of simplicity and due to the
inherent limitations of the meanline model, the evaluation of the quality of the different
regulation strategies is based only on the level of the sum of the profile losses and tangential
kinetic energy losses that will be indicated as “rotor overall meanline losses”. The simplified
analysis cannot consider other significant turbine losses, namely distribution losses, rotor
secondary losses, and mixing losses, which, on the contrary, are inherently taken into
consideration in the 3D CFD analysis that will follow in the next paragraph.

Figure 9 reports the distribution of the overall meanline rotor losses normalized with
the available net specific energy to be converted (net head Hn) over the turbine flow rate
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range for the 3 examined cases (ku = 1, ku = kx, ku = (1 + kx)/2). The loss distribution
analysis clearly indicates that a combined regulation strategy based on a different law of
variable rotational speed (namely ku = (1 + kx)/2 for kx < 1 and ku = kx for kx > 1)
reduces significantly the rotor overall losses respect to the case with simple guide vane
regulation (ku = 1) and extends the range where the losses are lower than 20% from
0.7 < kx < 1.3 to 0.6 < kx < 1.6.
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Figure 9. Normalized rotor overall meanline loss distributions overflow rate range. Cases ku = 1,
ku = kx, ku = (1 + kx)/2.

5. Turbine 3D CFD Simulation

In order to overcome the inherent limitations and approximations of the 1D meanline
approach in evaluating and validating the new flow rate regulation concept, a fully 3D
CFD simulation procedure based on the RANS approach has been applied for the complete
off-design analysis of the turbine operating with the 3 different regulating conditions
(ku = 1, ku = kx, ku = (1 + kx)/2).

The turbine 3D steady state RANS analysis has been carried out utilizing the Cadence
CFD software [20], which is widely used in turbomachinery applications.

Similarly to the 3D turbine design analyses reported in [7,8], the definition of the
turbine geometry was carried out through the generation of a file defining the geometry of
the turbine meridional channel and the coordinates of the three blade rows constituting
the turbine (stay vanes, guide vanes, and rotor). However, differently from the above
references, since in the present study different operating conditions and thus different
distributor geometries need to be simulated, the shape of the guide vane row was managed
by means of a simple calculation software capable of providing the position of the points
that define the guide vane row once the correct stagger angle was defined and imposed by
the operating condition of the turbine.

The computational mesh was prepared in Autogrid 5 by Cadence and consists of about
5 million nodes. A multi-block approach with O-4-H mesh topology for stay vane, guide
vane, and rotor rows was adopted (Figure 10), while for the downstream axial draft tube, a
suitable mesh capable of managing the condition of singularity on the axis was employed.
A single blade passage per row has been simulated, and the passage of information from
the stator frame to the rotor frame is managed by a mixing plane approach.
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Grid independency was checked by employing three different mesh densities for
the nominal configuration case and evaluating the two main operating parameters of the
turbine, i.e., the net head and the turbine hydraulic efficiency η. The results of the analysis
are presented in Table 2.

Table 2. Grid dependency results.

Grid 1 Grid 2 Grid 3

Elements [millions] 3.2 4.7 7.8
Hn[m] 3.89 4.02 4.04
η [−] 0.881 0.895 0.897

The intermediate grid configuration (Grid 2) is used for all the simulations presented
below since it presents overall values comparable with those of the finer grid (Grid 3).
Figure 11 shows the surface mesh configuration.
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The discretization of the equations in space is based on a cell-centered control volume
approach, while a multistage Runge–Kutta scheme with local time stepping is adopted for
time discretization and is associated with the multigrid technique [20].

For turbulence modeling, the one equation Spalart–Allmaras [21] model is employed,
which has been proven capable of providing a simple yet reliable turbulence effects eval-
uation in hydraulic applications [22–24]. The height of the first cell near the solid walls
is chosen for each row so that the value of the non-dimensional wall coordinate y+ is
around 1.

As boundary conditions at the inlet section, the mass flow rate, static temperature, and
flow direction are assigned, while at the outlet section, the averaged static pressure due
to the hydrostatic head at the exit is specified. A turbulent viscosity boundary condition
at the inlet has been imposed starting from turbulence intensity and characteristic length
scale values, assumed to be 3% and the rotor blade chord, respectively, by means of classic
formulae [20].

Since the solver employs a density-based approach, the Hakimi [25] preconditioning
model is adopted for treating the incompressible flow condition.

The different operating conditions were simulated in sequence. The simulation process
consists of a series of steps:

1. The guide vane stagger angle and the rotational speed, related to a selected operating
condition, are imposed;

2. The calculation proceeds until convergence is reached. The value of total pressure
drop across the machine is employed to evaluate the net head value;

3. If the obtained net head is different from the one chosen for the actual application
(Hn = 4 m) the inlet mass flow rate is adjusted: in particular, if the obtained net
head is lower than the design value, the inlet mass flow rate is increased, while if the
obtained net head is higher than design value, the inlet mass flow rate is reduced;

4. The process is repeated iteratively until obtaining the value of the net head equal to
the value chosen for the actual operating condition.

6. Off-Design CFD Simulation Results

Results from the extensive off-design 3D CFD simulation of the low-head turbine
prototype are shown in Figures 12 and 13. The results are given for the case of simple
guide vane regulation of the flow rate under a fixed head and for the case of the new
regulation approach based on the conjugate variation of the guide vane opening and
turbine rotational speed.
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Figure 12. Normalized efficiency curves versus the fraction of the design flow rate under the constant
design net head. Numbers in the squares represent the ratio between actual and design guide vane
stagger angles.
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Figure 13. Normalized power curves versus the fraction of the design flow rate under the constant
design net head. Numbers in the squares represent the normalized turbine hydraulic efficiency in
agreement with Figure 12.

Figure 12 reports the normalized efficiency curves in function of the fraction of flow
rate with respect to the design flow rate under constant design net head. Nominal rotational
speed corresponds to the red line, while the number indicated in the squares represent the
ratio between actual and nominal guide vane stagger angles. It should be noted that the
quantities Q/Qdesign and n/ndesign correspond, respectively, to the parameters kx and ku,
used in the 1D analysis.

The validity of the combined regulation in enlarging the flow rate operation range,
already inferred from 1D results, is confirmed by the 3D CFD RANS results.

However, it is worth to observe that the control strategy deduced from the 1D theory
is only partially correct. In fact, observing, for example, the condition Q/Qdesign = 0.67, the
maximum efficiency is obtained in the case with ku = kx (and therefore n/ndesign = 0.67,
black curve), contrary to what was obtained from the preliminary 1D calculation. Therefore,
contrary to the 1D meanline analysis with loss evaluation based only on rotor profile
loss correlation, for the fully 3D CFD RANS analysis the best strategy is ku = kx (or
n/ndesign = Q/Qdesign) and also for the reduced flow rate

(
Q /Qdesign < 1

)
.

Figure 13 shows the power curves, normalized with respect to the design power value,
for the different flow rate values and for the different rotation speeds. In this case, the
numbers in the rectangles indicate the corresponding efficiency value normalized with
respect to the design condition, according to the curves of Figure 12.

Figure 13 indicates that the proposed flow rate regulation concept, thanks to the
increase of the efficiency respect to the single regulation, allows to increase the turbine
output power respect to the single guide vane regulation approach in the operating ranges
with Q/Qdesign below 0.80 and above 1.10.

To highlight the positive effect of the combined control strategy in terms of enlargement
of the turbine operating range with acceptable hydraulic efficiency levels, the envelop
curve of the points with the highest efficiencies obtained from the CFD calculation has been
evaluated and shown in Figure 14. Comparing the efficiency envelop curve of Figure 14 and
the efficiency curve of Figure 12 for n/ndesign = 1 (single guide vane regulation), the flow
rate range of acceptable off-design operation, assumed as the range where the hydraulic
efficiency remains above or equal to 0.9 of the design efficiency, has been clearly enlarged
from 0.725 < Q/Qdesign < 1.17 to 0.6 < Q/Qdesign < 1.27.
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Figure 14. Normalized efficiency curves versus the fraction of the design flow rate under the constant
design net head: the 1D theory results compared with the CFD envelope curve.

In order to provide a qualitative comparison between the results of the 1D theory,
albeit with its limitations, and those of the CFD calculation, Figure 14 also shows the
normalized efficiency curves from the 1D theory, obtained as a complement to 1 of the
losses shown in Figure 9.

However, it should be emphasized once more that, apart from the residual tangen-
tial kinetic energy evaluation that is similar for the two approaches, the loss evaluation
procedures for 1D theory and CFD 3D analysis are intrinsically different, and the results
cannot be directly compared. The 1D theory loss evaluation considered is based only on
rotor profile loss correlations, and it is useful mainly to understand and explain the concept,
while the 3D CFD analysis takes into consideration all the loss mechanisms that occur
between the inlet and outlet sections of the turbine, and, therefore, only the efficiency
envelope curve of the 3D CFD analysis can be considered a reliable approximation for
evaluating the regulation strategy.

As a further analysis step of the CFD results, Figure 15a shows the guide vane opening
angle laws as a function of the fraction of the design flow rate for the case with only guide
vane regulation and for the case with combined guide vane opening angle and rotational
speed variation, having considered, for this latter case, the points corresponding to the
efficiency envelope curve. An important advantage of the combined control strategy is
the significant reduction, especially at large flow rates, of the guide vane opening angle
variation required to obtain the desired flow rate variation with respect to the single guide
vane regulation. Figure 15b reports, as the final step of this analysis of the CFD results, the
conjugation curve of the two regulation parameters, i.e., the guide vane opening in function
of the rotational speed variation, that allows the flow rate variation with the optimum
efficiency conditions.
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Figure 15. Guide vane opening angle law as a function of Q/Qdesign (a), and the conjugation curve (b).

To better compare the effects of the different loss contributions, two loss parameters,
related to the generation of entropy and to the residual tangential kinetic energy at the exit
of the rotor row, are defined:

hp,s

Hn
=

T∆s
gHn

(19)

where ∆s is the entropy local variation with respect to the turbine inlet section value;

hp,kin

Hn
=

c2
θ2

2gHn
(20)

This latter contribution, although defined in a similar way to Equation (19), differs
from that since it is calculated from the local value of the tangential velocity component
obtained from the CFD calculation. Figure 16 shows the maps of the normalized entropy
loss contribution for three different flow rates at a nominal rotational speed. The operating
condition variation generates rather moderate variations in the maps with an expected
clear tendency of increasing the entropy loss parameter as the flow rate increases.



Machines 2023, 11, 202 17 of 21

Machines 2023, 11, x FOR PEER REVIEW 17 of 22 
 

 

 
(b) 

Figure 15. Guide vane opening angle law as a function of 𝑄 𝑄ௗ௘௦௜௚௡⁄  (a), and the conjugation curve 
(b). 

To better compare the effects of the different loss contributions, two loss parameters, 
related to the generation of entropy and to the residual tangential kinetic energy at the 
exit of the rotor row, are defined: ℎ௣,௦𝐻௡ = 𝑇∆𝑠𝑔𝐻௡ (19)

where ∆𝑠 is the entropy local variation with respect to the turbine inlet section value; ℎ௣,௞௜௡𝐻௡ = 𝑐ఏଶଶ2𝑔𝐻௡ (20)

This latter contribution, although defined in a similar way to Equation (19), differs 
from that since it is calculated from the local value of the tangential velocity component 
obtained from the CFD calculation. Figure 16 shows the maps of the normalized entropy 
loss contribution for three different flow rates at a nominal rotational speed. The operating 
condition variation generates rather moderate variations in the maps with an expected 
clear tendency of increasing the entropy loss parameter as the flow rate increases. 

 
Figure 16. Normalized entropy loss contribution at a design rotational speed for three different flow 
rates at design rotational speed—𝐻௡ = 𝑐𝑜𝑛𝑠𝑡. 

20

30

40

50

60

70

80

90

100

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

α G
V

[d
eg

]

n/ndesign [-]

Figure 16. Normalized entropy loss contribution at a design rotational speed for three different flow
rates at design rotational speed—Hn = const.

Figure 17 shows the normalized tangential kinetic energy contribution for the same
three operating conditions previously reported. This contribution shows an increase if the
flow rate differs from the design value, for which this contribution is everywhere close
to zero.
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By calculating the global values of these contributions, obtained through the mass
weighted average of local values, it is possible to obtain the histograms presented in
Figure 18, where the efficiency also appears as a complement to 1 of the 2 main loss
contributions. The diagrams make clear how the variation of the flow rate from the design
conditions involves limited variations in the normalized entropy loss contribution and
significant variations in the normalized tangential kinetic energy loss contribution.

To highlight how the loss contributions change by implementing the combined regula-
tion of guide vane stagger angle and rotation speed, Figure 19 shows the comparison of
loss contributions and efficiency for 2 operating conditions at reduced flow rate 0.67Qdesign,
but different rotational speeds.

The reduction of the rotation speed leads to a considerable decrease in the normalized
tangential kinetic energy loss contribution, which corresponds to an increase in efficiency,
although the entropy contribution to losses increases.

Similarly, Figure 20 shows the comparison of loss contributions and efficiency for two
different rotational speeds at Q = 1.17Qdesign. Additionally, at this flow rate, the proper
variation (in this case the increase) of the rotation speed leads to a considerable decrease
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in the normalized tangential kinetic energy loss contribution, which corresponds to an
increase in efficiency.
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Figure 18. Comparison of main loss contributions and efficiency for three different flow rates at
design rotational speed—Hn = const.
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7. Conclusions

Kaplan turbines can operate under low heads and large flow rates, allowing a wide
range of high-efficiency operating points thanks to the conjugate double regulation of
guide vane and rotor blade stagger angles. For very low heads (typically below 6 m) and
small units (typically of power below 1 MW), a more economical solution is represented
by tubular axial turbines with a simpler flow rate regulation operated by a single (only
guide vane or rotor blade) variable stagger angle mechanism. The consequent drawback of
this more economical solution is the significant reduction in the operating range due to the
increase in off-design losses.

Nowadays, new possibilities for the design of simpler and more efficient low-head
hydraulic turbines are opened by the adoption of new architectures based on a turbine
direct-driven synchronous permanent magnet generator, equipped with a full electronic
converter unit to decouple the turbine rotational speed, which shall be low for low heads,
and the grid frequency, which is fixed and large.

The possibility of separating grid frequency and turbine rotational speed paves the
way to an efficient concept of regulation of propeller hydraulic turbines for low heads,
analyzed in this paper, based on the variation of the guide vane aperture, and on the
simultaneous regulation of the rotational speed of the rotor.

First, a simple 1D meanline approach was carried out to demonstrate the concept
through the application of the basic turbomachinery equations and classical loss correlations
for axial flow turbines and to identify, as a first guess, the operating range limits of the new
regulating concept.

Assuming as off-design losses the overall meanline rotor losses due to the residual
tangential kinetic energy losses at the rotor exit and the profile losses, the first ones are by far
larger than the latter in the case of simple guide vane regulation. The analyzed regulation
system is capable of canceling or reducing significantly the tangential kinetic energy losses
thanks to the variation of the rotational speed, while the effect on the profile losses is
moderate with a tendency to increase with respect to the single guide vane regulation.
However, considering the rotor overall meanline losses as the indicator of the regulation
capabilities, the analyzed approach is clearly superior in enlarging the range of operation
of the turbine under constant head both in terms of efficiency and reduced range of guide
vane openings necessary to reach the desired flow rate variations.

With the aim of confirming what was deduced from the simple 1D theory and remov-
ing its inherent approximations, a complete 3D RANS analysis of the turbine off-design
operation with single guide vane regulation and a regulation solution based on combined
guide vane opening and rotational speed variations was developed. By means of the
RANS approach, the turbine’s overall losses are calculated by summing the overall entropy
production losses and the tangential kinetic energy losses. At some significant operating
conditions, the local maps of entropy and consequent tangential kinetic energy losses were
compared, and the main loss contributions and hydraulic efficiency were evaluated.

The RANS analysis confirms that, with the flow rate control based on combined
guide vane opening and rotational speed variations, the range of operating flow rate
is widened. In fact, the flow rate range of acceptable off-design operation, assumed as
the range where the hydraulic efficiency remains above or equal to 0.9 of the design
efficiency, was enlarged from 0.725 < Q/Qdesign < 1.17 for only guide vane regulation, to
0.6 < Q/Qdesign < 1.27 for combined guide vane opening and rotational speed variation
with n/ndesign = Q/Qdesign control strategy.
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Nomenclature

c Absolute velocity Subscripts
D Diameter 0 Referred to distributor inlet section
g Gravitational acceleration 1 Referred to rotor inlet section
hp Lost head 2 Referred to rotor outlet section
Hn Net head blade Referred to rotor blade
i Incidence angle design Reference design value
iθ Tangential unit vector IN Referred to turbine inlet section
ku Rotational speed coefficient kin Referred to tangential kinetic energy
kx Flow rate coefficient mean At meanline
n Rotational speed OUT Referred to draft tube outlet section
nq Specific speed pro f ile Referred to profile
pt Total pressure s Referred to entropy
P Turbine hydraulic power TIP Referred to blade tip
Q Volumetric flow rate tot Total
R Radius x Axial
s Entropy θ Tangential
T Temperature or torque
u Peripheral velocity
w Relative velocity
W Work exchange
y+ Non dimensional wall coordinate
Y Incidence angle coefficient
Greeks Acronyms
α Absolute flow angle CFD Computational Fluid Dynamics
αGV Guide vane opening angle BEP Best Efficiency Point
β Relative flow angle RANS Reynolds Averaged Navier Stokes
ϕ Flow coefficient TAT Tubular Axial Turbine
ψ Work coefficient
η Turbine hydraulic efficiency
ρ Density
ω Angular velocity
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