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Abstract: In the last decade, cable-suspended parallel robots have attracted significant interest due
to their large workspaces and high dynamic performances. However, a significant drawback is that
cables must always be in tension to control the motion. Using launch motions to reach a target
can enlarge the workspace of such robots. For a spatial translational cable robot suspended by six
pairwise-parallel cables, an analytical method for planning point-to-point dynamic trajectories is
proposed. Using a second-order Bézier curve trajectory, the mechanism starts from a static condition,
passes through intermediate points, and finally launches an object towards a target. According to the
kinematic constraint conditions on the position, the velocity and acceleration of the end-effector at a
prescribed point, the parametric expressions for a dynamically-feasible trajectory can be determined.
The feasibility of the trajectory is analyzed under the constraint that cable tensions must be positive
at all times. By changing the position of the end point of the trajectory and the total motion time, the
kinematic conditions on the position and velocity as well as the feasibility constraint can be satisfied.
Finally, our point-to-point dynamic launch trajectories are verified by simulations and experiments.

Keywords: cable-suspended parallel robots; translational motion; point-to-point motion; launch
trajectory planning; dynamics

1. Introduction
1.1. Cable-Suspended Parallel Robots: Kinematics, Dynamics and Design

Cable-Suspended Parallel Robots (CSPRs) are a class of robots in which a mobile platform
is suspended from cables (attached to motorized winches) acting in parallel, and the gravity
force keeps cables taut. Compared with conventional parallel robots with rigid links, CSPRs
offer advantages such as large workspaces, high speed, simple design, and low cost [1–3].

Several designs have been proposed for CSPRs. A common modeling approach [4,5] is
to consider the end-effector (EE) as a point mass, thus disregarding its orientation coordinates
and any inertia torque acting upon the EE. The error introduced by this model is usually
small, as the EE generally has a much smaller size with respect to the robot architecture.
Nevertheless, this model is physically less realistic than considering the EE as a finite-size
rigid body moving in space, which has 6 Degrees of Freedom (DoFs) [6].

In many practical cases, one is only interested in controlling the EE position, while its
orientation must remain constant. A CSPR can then be designed using six cables, grouped in
three pairs: the two cables in each pair are kept parallel and at the same length, by attaching
them to the same winch. This way, each cable pair forms a parallelogram [7]; together,
the six cables restrict the rotations of the EE, while allowing us to control the position
with only three motors [8]. Example CSPRs with such an architecture were proposed for
rescue operations [9] or the printing of large structures using polyurethane foam [10]. It
was also found [11] that, under rather general constraints on the EE design and on the cable
arrangement, the dynamic analysis of the system becomes equivalent to that of a robot
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with a point-mass EE, thus significantly simplifying the model. Several other mechanism
designs for reduced-DoF motion (such as either purely-translational or Schönflies motion)
using flexible elements have been proposed, for instance in construction [12], motion aids
for people with disabilities [13], or 3D printing applications [14]. In most cases, however,
these designs introduce either antagonistic cables [15,16] pulling on the EE, articulated
transmission systems [17,18], or additional rigid elements [14,19,20] that help to keep the
flexible elements under tension at all times; clearly, this increases the complexity and the
cost of these designs.

In most early works on CSPRs, the robot motion was limited to the Static Equilibrium
Workspace (SEW) of the robots [4]; this workspace is defined as the set of poses at which
the EE can reach static equilibrium while maintaining all cables under tension. Later, some
authors introduced [21] the definition of the Dynamic Workspace (DW), namely, the set
of poses which can be reached by the EE for at least one kinematic state (defined as the
set of the EE position, velocity and acceleration) while keeping all cables taut; by suitably
defining motions in the DW (of which the SEW is strictly a subset), the workspace of CSPRs
can be greatly increased [5], thus presenting new applications for these robots.

Commonly, point-to-point trajectories have to be designed for a robot in practical
applications such as pick-and-place operations; usually, it is required that the EE passes
through a series of target points, reaching zero velocity at each one [22]. For instance, this is
useful to grab objects during motion (by having a gripper on the EE). In our work, we thus
mostly focus on these motions, as opposed to continuous or periodic [5,23] movements or
transition movements to connect different dynamic states [24]. Furthermore, we consider
fully-actuated robots, as having as many motors as independently controlled DoFs at the
EE; some works [22,25,26] also consider dynamic motions of under-actuated systems, but
these designs have found fewer applications in practice so far. A few works considered
point-to-point motions in the DW; for instance, in [27], a dynamic point-to-point polynomial
trajectory was proposed for a 2-DoF planar CSPR. Later, this work was extended to the
motion of a spatial robot with a point-mass EE, suspended by three cables [28], where
the authors also found geometric boundaries for the reachable target points; finally, more
general motions for this robot design were defined using a phase plane [29]. To ensure
that the cable tensions are greater than zero at each instant during the motion, a numerical
method is used, which requires the computation of a polynomial expression at each point.
In [30], the authors studied the point-to-point motion of a 3-DoF spatial CSPR, where a
cycloid curve is used as a reference trajectory. By changing the number of arcs of the cycloid
motion, cable tensions are guaranteed to be greater than zero; still, this partially analytical
approach also needs to use a numerical method.

Verifying whether each point on the trajectory satisfies the feasibility conditions makes
the planning time-consuming and computationally inefficient, since the trajectory must
be discretized at many points (otherwise, the tensions may become negative between a
point and the next one). In point-to-point tasks, where a series of target points need to
be connected, using a numerical method to verify feasibility is thus generally undesirable
(especially if the trajectory needs to be updated in real time); moreover, if a trajectory is
found to be unfeasible, alternatives must be sought through a trial-and-error approach,
since a numerical method does not offer clear insight on the trajectory design require-
ments. An analytical method can be used instead to find the limit values for the trajectory
parameters [5,31] such that all constraint conditions are satisfied. When the trajectory pa-
rameters are within the said limit values, the trajectory is guaranteed to be feasible, and
there is no need to analyze it at each time instant; thus, analytical methods have obvious
advantages in dynamic trajectory planning. For example, the authors in [32] used algebraic
inequalities to represent the cable tension constraints, proposed an equivalent geometric
approach, and designed a dynamically-feasible point-to-point dynamic trajectory for a
3-DoF spatial CSPR. However, before moving to each new target point along the path, it
is necessary to return to a fixed point in the SEW, which increases the complexity of the
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trajectory and the total motion time. Finally, general point-to-point motions were studied
for 6-DoF spatial CSPRs (with finite-size EE) [6,33].

1.2. CSPRs for Throwing Motions

Dynamic trajectory planning allows us to overcome the workspace limitations of
CSPRs. However, for tasks where a robot must work across large areas, the motion is
still limited by the size of the robot’s architecture, even if dynamic trajectories are used;
such motions can then be combined with launch motions to further increase the workspace.
Indeed, launch motions allow a robot to complete work tasks over vast areas and may thus
provide greater application possibilities for CSPRs; for example, an ideal application would
be robotic waste handling [34], where objects may be picked in a point-to-point motion
and thrown in distant bins without risk of damaging them or strict position requirements.
CSPRs capable of launching objects could also be used for entertainment purposes such as
juggling [35] or throwing a ball towards a human player.

The application of robots for casting operations, where a gripper is detached dynami-
cally from the rest of the robot architecture while a tether facilitates control of the gripper
mid-flight, was considered in previous works; for instance, Fagiolini et al. [36] designed a
manipulator capable of grasping objects at long distances by detaching a gripper from a
serial arm. The proposed application of this system was in planetary exploration missions
in order to reach objects over rugged terrain; the motion is divided into a start up stage, a
stage where the target is reached, and a return stage. Arisumi et al. [37] designed a manipu-
lator system that can be used for launch motions, where a penetrator is thrown towards
a desired position by the inertial force generated by the rotation of the manipulator arm
around a horizontal axis. Later, a prototype robot for shooting operations, which imitates
the behavior of chameleons while preying on insects, was proposed in [38].

Casting robots can quickly capture distant targets with high efficiency—but they can
only catch light-weight, small objects; thus, their application range is limited; thus, some
authors considered instead purely ballistic motions, where the launched object is released
from a robot without a tether. Thus, a throwable workspace can be defined [39] for a robot
as the set of objects that can be reached by throwing beyond the reachable workspace,
by optimizing the launch angle and speed. Zeng et al. [40] described a mixed method
based on both a deep-learning framework and a physical model of the ballistic launch
for controlling a serial robot launching objects into selected boxes. Hassan et al. [41,42]
presented a control law for throwing motions using a Delta-like parallel robot with the
EE having constant orientation. Frank et al. [43] proposed a new object transportation
method based on throwing operations, in which the object is thrown towards a distant
target and captured at that target; later [44], an application was proposed for automated
production systems with the launch and capture of cylindrical objects. At the same time, a
new robot system was proposed based on this method and the feasibility of this concept
was verified. However, the choice of the launch trajectory was limited by the throwing
device. In recent works, throwing motions were also performed by a soft serial manipulator
based on flexible chambers [45]. A global survey of methods (including throwing and
catching) to manipulate objects without direct constraining through robots can be found
in [46].

1.3. A Novel Concept of a CSPR for Throwing Operations

Based on concepts from [43], combined with the intrinsic advantages of CSPRs (such
as a relatively high flexibility in trajectory design), we propose the use of CSPRs to perform
launch motions, so that an object can reach target points far away from the robot base. In
previous works [47,48], we analyzed a case in which the robot starts from a stationary state,
slowly reaches a target elliptical motion through a transition trajectory (with gradually
increasing amplitudes), and then completes the launch while moving along the elliptical
trajectory. This choice in the trajectory design phase allowed us to directly reuse previous
results on dynamically-feasible motions [24,31]; moreover, the trajectories thus found are
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general and flexible enough for application. The schematic of such a launch motion is
shown in Figure 1, where point C is both the starting point and the center of ellipse Γ, PL is
the launch point and ṗL is the velocity at PL.

Transition
trajectory

C

Elliptical 
trajectory Γ

ṗL

PL

Figure 1. A launch motion: the EE starts at C, moves along a trajectory and launches an object at PL.

Having analyzed periodic motions for throwing in previous works, we now turn our
attention towards point-to-point motions, which are often required in practice. We thus
aim to define motions that pass through a series of target points Ti, reaching zero velocity
at each point; this way, an object may be picked up at a target point, Tj, to be later released
with a launch motion while the EE moves between two successive target points Tk − Tk+1
(with k ≥ j). While the EE keeps moving, the launched object reaches its final destination at
point PT while following a purely ballistic motion. For this task, we propose using Bézier
curves, which combine flexibility (in terms of the trajectories that can be defined) with a
relatively simple analytical definition, and find the conditions for the EE to pass through
all points Ti and to launch the object at the correct point PL (with the required velocity
to reach PT). Since the cable tensions are required to be positive at all times, we also find
constraints that guarantee the feasibility of the motion; these constraints correspond to
simple algebraic inequalities, which can be verified in milliseconds on any modern PC for
robot control.

An example of point-to-point launch motion is shown in Figure 2, where T1 and T5 are
the initial and final points; the launch occurs in the final segment T4 − T5. Point-to-point
trajectory planning is usually more flexible, so we can choose different intermediate points
Ti (to avoid obstacles in the workspace, for example) and finally reach the target point.

ṗL 

T1 

T2 

T3 

T4 

PL T5 

PT 

Figure 2. Schematic of a point-to-point motion where the CSPR has to pass through a number of
target points Ti, which may also be outside the SEW, and launch an object towards a target point PT .

Besides the kinematic constraint of passing through the targets (Ti and PT) and the
dynamic constraint on the cable tensions, other requirements need to be set for the motion to
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be feasible in practice. Throughout the trajectory, the motion control needs to be reasonably
accurate, since small errors in the launch position and velocity could be amplified during
the free-flight phase. For these reasons, we applied the architecture first studied in [11],
which allows us to control the position of the launched mass with only three actuators;
this way, we obtain a simple, fully-actuated design that only requires as many actuators
as DoFs. The orientation of the launched object, which is modeled as a point mass, can be
disregarded in practical cases, but it is necessary to keep a constant orientation of the EE
which carries the object itself; this is guaranteed by the design of our robot with no need
for extra actuators. We also verified the robustness of the design using sensitivity indexes
with respect to unavoidable control errors.

Finally, we verified our theoretical results by performing simulations, in which we
compared our trajectory design approach with alternatives found in the literature, and
found that it is both effective and simple to implement. We also present our first prototype
of a CSPR for launch motions, which was designed both to demonstrate the general concept
and to understand the advantages and limitations of our approach in experimental practice.

The structure of this paper is as follows: Section 2 describes the spatial, six-cable,
3-DoF CSPR with pairwise-parallel cables considered in this work and establishes its
dynamic model. Section 3 presents point-to-point trajectories and an analytical method for
verifying their feasibility. Section 4 studies launch trajectories for the CSPR under exam,
based on the point-to-point trajectories from Section 3. Section 5 presents results from
numerical simulations and experimental tests, which verify our method. In Section 6, we
review the results observed in our tests and discuss the advantages and limitations of our
approach. Finally, Section 7 summarizes the results in this paper and proposes directions
for future work.

2. Design, Kinematic and Dynamic Model
2.1. Robot Architecture

The schematic of our CSPR is shown in Figure 3. The fixed cable exit points Ai’s
(i = 1, . . . , 6) all lie on the same horizontal plane. The cables are connected to the EE at
points Bi (i = 1, . . . , 6). The cables are pairwise parallel to each other, defining the three
cable pairs 1–2, 3–4 and 5–6; each pair is controlled by a motorized winch, and the two
points Ai and Aj in a pair are at the same distance from the winch. This way, a winch
rotation changes the lengths of the two cables in the corresponding pair by equal amounts.
A reference (fixed) Cartesian coordinate frame OXYZ and a frame Pxyz (moving with
the EE) are defined in Figure 4; P coincides with the Center of Mass (CoM) of the EE. We
also define vectors ai = Ai − O and bi = P − Bi. The EE position is provided by vector
p = P − O = [x, y, z]T .

g

B1

P

B2
B3

B4

B5

B6

A1

A2

A3

A4

A5

A6

EE

Figure 3. Schematic of a spatial, six-cable CSPR with parallelogram actuation; P is the CoM of the EE.
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Z

x

y

z

B5

B6

A5

A6

p
e6

YO

Xa6

b6

e5

b5
P

EE

Figure 4. The parallelogram defined by cables 5 and 6; the fixed and mobile frames are also shown.

2.2. Kinematic and Dynamic Model

The inverse kinematic equations for a 6-DoF, six-cable CSPR can be written as follows:

ρi =
√
(p + Qbi − ai)T(p + Qbi − ai), i = 1, . . . , 6 (1)

(Q is the rotation matrix from Pxyz to OXYZ, and ρi is the length of the i-th cable, from Ai
to Bi). The unit vectors ei, along the i-th cable and oriented towards the EE, are as follows:

ei =
p + Qbi − ai

ρi
(2)

Neglecting the elasticity and the mass of the cables, the dynamic model is found
as follows:

6

∑
i=1

(−τiei) + mg = mp̈

6

∑
i=1

[(Qbi)× (−τiei)] = Q(Iω̇ + ω × Iω)

(3)

where m is the mass of the EE, I is its inertia tensor, ω and ω̇ are, respectively, its angular
velocity and acceleration (in frame Pxyz), and g = [0, 0,−g]T is the gravity vector (with
g = 9.80665 m/s2); the tension in the i-th cable is τi. Then, Equation (3) can be written
as follows:
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Mτ = γ (4)

where

M =

[
e1 . . . e6

e1 × Qb1 . . . e6 × Qb6

]
, γ =

[
mg − mp̈

Q(Iω̇ + ω × Iω)

]
(5)

while τ = [τ1, . . . , τ6]
T is the vector of cable tensions. From Equation (4), the cable

tensions are

τ = M−1γ (6)

The condition for dynamic feasibility is then τ ⪰ 0, where ⪰ is the element-wise in-
equality; in other words, it must hold that τi ≥ 0 for all i (at each instant during the motion).

As found in [11,49], the kinematic and dynamic analyses are much simpler under
some assumptions in the design. Consider the case where the cable attachment points are
placed on the fixed frame and on the EE such that A1 − A2 = B1 − B2 at an initial pose.
Additionally, cables 1 and 2 have the same length at all times (see Figure 4); this is achieved
by controlling both cables with one winch (see Section 2.1). Analogous relationships are
defined for cable pairs 3–4 and 5–6 and for the corresponding Ai’s and Bi’s. With this
design, each cable pair defines a parallelogram. Taken together, the pairs constrain all EE
rotations [9,19]; thus, the robot is purely translational, with 3 DoFs (along the X-, Y- and
Z-axes).

In a further specialization, P is at the intersection of segments B1B2, B3B4, and B5B6.
It has been proven [11] that the CSPR with finite-size EE under examination is then dy-
namically equivalent to a simpler, 3-DoF CSPR with point-mass EE (with cable exit points
A12, A34, and A56 on A1 A2, A3 A4, and A5 A6, respectively): the SEW is the same for both
robots, and the feasibility condition is simply that the sums of the cable tensions in each
pair must be positive. Additionally, if P is at the midpoint of A1 A2, A3 A4, and A5 A6 (see
Figure 3), then τ1 = τ2, τ3 = τ4 and τ5 = τ6, which is desirable so that the forces on a winch
balance each other out. Given its simplicity of design and analysis, this final architecture
(with b1 = −b2, b3 = −b4 and b5 = −b6) will be used in the rest of this work and in
the prototype.

2.3. Jacobian Matrix and Sensitivity Indexes

The Jacobian of a generic six-cable CSPR can be written as J = J(p, Q) = M−T . The
first-order kinematics equation is then Jρ̇ =

[
ṗT , ωT]T , where ρ̇ = [ρ̇1, . . . , ρ̇6]

T is the vector
of cable velocities; these equations are necessary for the motion control of our prototype.

From J, we derive the error sensitivities; these indexes measure the robustness of the
pose to unavoidable errors in the input joint coordinates (here, a vector dρ = [dρ1, . . . , dρ6]

T

of errors dρi in the lengths ρi). These can be due to assembly tolerances or to the tracking ac-
curacy of the control system. Several definitions of the sensitivity have been proposed [50,51];
a recurring issue is that the pose has elements in different units, namely the position error
dp, with units of length, and the orientation error dϕ, with angular units. Thus, using J to
define the sensitivities implies mixing dimensionally inconsistent values [52,53]. Several
alternatives have been proposed [54], but a standard approach has yet to be defined.

We use the definitions provided in [49], which avoid such inconsistencies and can be

computed quickly. We separate J =
[
JT

p , JT
r

]T
into 3 × 6 matrices Jp and Jr. Remarkably,

for the design in Figure 3, M can be inverted analytically; thus, Jp and Jr can be written in
closed form (see Appendix A). We can now define the sensitivities as functions of the pose:

σp(p, Q) = max
∥dρ∥∞=1

∥dp∥2 = ∥Jp∥∞,2, σr(p, Q) = max
∥dρ∥∞=1

∥dϕ∥2 = ∥Jr∥∞,2 (7)
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where ∥•∥q (q ≥ 1) is the q-norm of vector (•), and ∥◦∥q,s is the norm of matrix (◦) induced
by the q- and s-vector norms [55]. These sensitivities provide upper bounds to the pose
errors; if the errors are all within a range dρi ∈ [−dρmax, dρmax], then ∥dϕ∥2 (the rotation
angle of the EE) is at most σrdρmax, and a similar relationship holds for the maximum
position error ∥dp∥2. These concepts will be used later to verify the design of the prototype.

3. Point-to-Point Trajectory Planning
3.1. Parametric Equation of the Trajectory

In designing the trajectory, we require the EE to visit N given intermediate target
points Ti sequentially, each at a desired time t0,i (i = 1, . . . , N), in a point-to-point motion
(with zero velocity ṗ at each point Ti); the points Ti may in general be outside the SEW.

We divide the global trajectory p = p(t) into a number of segments p = pi(t′i),
t′i ∈ [0, ∆ti], where t′i = t − t0,i is the time elapsed since the beginning of the ith trajectory
segment (at time t0,i) and ∆ti = t0,i+1 − t0,i is the segment duration. To maintain the
continuity of the motion across consecutive segments, the kinematic constraints on the
trajectory are given as follows:

pi(0) = ti, pi(∆ti) = ti+1

ṗi(0) = 0, ṗi(∆ti) = 0

p̈i(∆ti) = p̈i+1(0)

(8)

where ti = Ti − O = [xi, yi, zi]
T is the position vector of the ith target point to be vis-

ited, and ṗi and p̈i are, respectively, the velocity and acceleration of point P along the
ith segment.

For simplicity, we choose to define each trajectory segment as a Bézier curve of the
second order [56]. A similar concept was also advanced in [57], using second-order Bézier
curves as a basis for planning dynamically feasible trajectories for a simpler three-cable
robot that is dynamically equivalent to the one presented here; later, in [58], this concept
was extended to B-splines (a generalization of Bézier curves) of the fifth order, which were
applied to an overconstrained, 12-cable robot with translational motion with parallelogram
actuation. We also refer to [59], which discusses a cable robot designed for artistic and
entertainment purposes, where the trajectories are described by third-order Bézier curves,
but without considering dynamic feasibility.

The shape of a Bézier curve is determined by its control points Ti. The resulting
trajectory is thus simple in its definition, yet flexible. If the start and end control points of
the curve are given, the intermediate control points can be freely selected. The parametric
equation of the Bézier curve trajectory segment can be written as follows:

pi(t′i) = (1 − si)
2ti + 2si(1 − si)tm,i + s2

i ti+1 (9)

where si = si(t′i) ∈ [0, 1] is a suitable function of time t′i (continuous up to the second
derivative) and tm,i = Tm,i − O is the position vector of the intermediate control point
Tm,i for the ith trajectory segment. We now calculate the first and second derivatives of
Equation (9) with respect to time, obtaining (respectively)

ṗi(t′i) = 2ṡi[(si − 1)ti + (1 − 2si)tm,i + siti+1] (10)

and

p̈i(t′i) = 2
[(

ṡ2
i + si s̈i − s̈i

)
ti +

(
s̈i − 2ṡ2

i − 2si s̈i

)
tm,i + (ṡ2

i + si s̈i)ti+1

]
(11)

Substituting Equations (9)–(11) into Equation (8), the constraints on si(t′i) are found as
follows:
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si(0) = 0, si(∆ti) = 1 (12a)

ṡi(0) = 0, ṡi(∆ti) = 0 (12b)

(ti+1 − tm,i)s̈i(∆ti) = (tm,i+1 − ti+1)s̈i(0) (12c)

Several motion laws known from the literature [60] could be chosen that respect the
constraints in Equations (12b) and (12c). One of the simplest choices for function si(t′i) is

si(t′i) = −1
2

cos
(

πt′i
∆ti

)
+

1
2

(13)

(compare with [57], where the path variable was defined through a differential equation).
The first and second derivatives of si(t′i) are then, respectively,

ṡi(t′i) =
π

2∆ti
sin

(
πt′i
∆ti

)
, s̈i(t′i) =

π2

2∆t2
i

cos
(

πt′i
∆ti

)
(14)

Substituting Equation (14) into Equation (12c), the condition for the continuity of
acceleration is as follows:

tm,i+1 = ti+1 + (tm,i − ti+1)

(
∆ti+1

∆ti

)2
(15)

The position vectors ti are known constraints for the trajectory design, as are the times
∆ti to move from one target point to the next one. Thus, the intermediate control points can
be found in an iterative fashion: tm,1 (for the first segment) can be chosen arbitrarily, while
tm,2 is found from tm,1 and t2; then, from tm,2, we find in turn tm,3 and so on.

3.2. Cable Tension Constraints

For convenience, we use the following shorthands:

cθ = cos
(

πt′i
∆ti

)
, sθ = sin

(
πt′i
∆ti

)
(16)

Substituting Equations (13) and (14) into Equations (9) and (11), we have

pi(t′i) =
1
4

[
(ti − 2tm,i + ti+1)c2

θ + 2(ti − ti+1)cθ + (ti + 2tm,i + ti+1)
]

(17)

and

p̈i(t′i) =
π2

2(∆ti)2

[
2(−ti + 2tm,i − ti+1)c2

θ + (−ti + ti+1)cθ + (ti − 2tm,i + ti+1)
]

(18)

We now substitute Equations (15), (17) and (18) into Equation (6) for a generic six-
cable suspended robot. We also set the orientation Q of the EE as constant; thus, the
angular velocity ω and acceleration ω̇ are both zero. We then find after simplification that
the conditions for positive cable tensions are always defined by third-order polynomials,
such as

µj(t′i) = f3jc3
θ + f2jc2

θ + f1jcθ + f0j > 0, j = 1, . . . , 6 (19)

in which the µj = mτj/ρj are auxiliary quantities with the same sign as the actual cable
tensions τj (since both the EE mass m and the cable lengths ρj are always positive) while
being easier to compute. The general expressions for coefficients fkj in Equation (19), which
depend on the architecture parameters, are not reported here for brevity.

The time derivative of Equation (19) is
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dµj(t′i)
dt′i

=
∂µj

∂cθ

dcθ

dt′i
=

(
3 f3jc2

θ + 2 f2jcθ + f1j

)
︸ ︷︷ ︸

=ζ j(cθ)

(
−sθ

π

∆ti

)
(20)

Since t′i ∈ [0, ∆ti], the second term of the right-hand side does not change sign;
therefore, the sign of Equation (20) only depends on the first term ζ j, which is a quadratic
function in the variable cθ . Setting ζ j = 0, the discriminant of the resulting second-order
equation is as follows:

∆ = 4 f 2
2j − 12 f3j f1j (21)

When verifying feasibility for the jth cable, we can then have the following cases.

1. When ∆ < 0, Equation (20) is either always positive or always negative; thus, µj is a
monotonic function. It is then sufficient to verify that Equation (19) is satisfied at the
extremes of the trajectory segment:

µj(0) > 0, µj(∆ti) > 0 (22)

2. When ∆ = 0, Equation (20) has two coincident roots, namely

n1 = n2 =
− f2i
3 f3i

(23)

Again, ζ j always has the same sign, except at the repeated root (where it becomes zero):
this corresponds to an inflection point for µj, which is otherwise monotonic. Therefore,
we fall back to case 1 above, and it is sufficient to verify that Equation (22) holds.

3. When ∆ > 0, ζ j has two distinct roots, namely

n1 =
−2 f2i +

√
∆

6 f3i
, n2 =

−2 f2i −
√

∆
6 f3i

(24)

where one root corresponds to a local minimum of µj and the other to a maximum. If
µj is positive at these two local extrema, at the beginning of the trajectory segment,
and at its end, then Equation (19) is always satisfied. The following conditions then
need to be verified:

µj(0) > 0, µj(∆ti) > 0, max[µj(n1), µj(n2)] > 0 (25)

Notice that the roots n1 and n2 can be directly calculated (in case 3) from the trajectory
parameters. We only consider roots in the interval [−1, 1], as cθ is the cosine of a real angle.

Equations (22) and (25), then, are functions in only one variable (∆ti), which is known
in the trajectory design phase. We can then easily verify the feasibility through an analytical
procedure rather than verifying that cable tensions are positive at each time step. Moreover,
if the desired trajectory is found to be unfeasible, it is also easier to find values for ∆ti (by
trial and error) that ensure feasibility. Several Bézier curve segments can then be combined
in series, while ensuring both feasibility and continuity up to the acceleration. Our method
is similar to the one in [57] but leads to conditions that are easier to verify and does not
require the intermediate control point tm,i to be in the SEW.

4. Launch Trajectory Planning

We now consider the motion of the object launched from the EE, assuming that the EE
starts moving from rest, reaches the launch point PL, and then launches an object (modeled
as a point mass) which will pass through a target point PT . In our prototype, this is achieved
by opening a gripper on the EE while the latter moves at velocity ṗL.

After launch, the object moves under the effect of gravity. Like most authors [35–38],
we assume that air resistance can be neglected; otherwise, the differential equations for the
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launch motion cannot be solved in closed form. Disregarding air drag with respect to the
gravitational force is also reasonable if the launched object is relatively small and dense.

The free-flight motion of the launched object is then a ballistic (parabolic) trajectory in
a vertical plane, given by

pb(t) =
1
2

g(t − tL)
2 + ṗL(t − tL) + pL (26a)

ṗb(t) = g(t − tL) + ṗL (26b)

Here, tL is the launch instant, which occurs during the i-th segment of the trajectory;
the time since the start of the corresponding segment is t′iL = tL − t0,i ∈ [0, ∆ti].

In a practical case, the target point position pT is known, and so is the velocity ṗT at
the target. For instance, if PT corresponds to an opening through which the object is to pass
(to be collected in a bin), ṗT should be normal to the opening, to increase the likelihood of a
successful throw; the magnitude of ṗT is then chosen from safety and speed considerations.

Setting pb = pT and ṗb = ṗT from Equations (26a) and (26b) fully defines the parabolic
trajectory. On this parabola, we pick a launch point PL: this can be chosen either arbitrarily
or through optimization, by searching the position of PL along the parabola that minimizes
objective functions, such as the total energy and time requested for the launch [47]. The
speed at the launch point is then found by solving Equation (26b) for the unknown ṗL.

With these assumptions, our goal is to design a trajectory segment in the form
of Equation (9) that passes through the launch point pL = [xL, yL, zL]

T at a set speed
ṗL = [ẋL, ẏL, żL]

T . We assume that the position of the initial point Ti of the trajectory
segment is known. From Equation (17), the position at the launch point can be obtained
as follows:

pL =
1
4

[
(ti − 2tm,i + ti+1)c2

θL + 2(ti − ti+1)cθL + (ti + 2tm,i + ti+1)
]

(27)

while, from Equations (10), (13) and (14), the launch velocity is

ṗL = − π

2∆ti
[(ti − 2tm,i + ti+1)cθL + (ti − ti+1)]sθL (28)

using the shorthands cθL = cos
(

πt′iL
∆ti

)
and sθL = sin

(
πt′iL
∆ti

)
.

In our case, we want the launched object to pass through PT at a desired time tT ; from
this and Equations (26a) and (26b), tL is easily found, from which we find t′iL and then
cθL and sθL. The motion time ∆ti for the trajectory segment is also known, as discussed in
Section 3.1.

We can then solve Equations (27) and (28) for the unknowns tm,i = [xm,i, ym,i, zm,i]
T

and ti+1 = [xi+1, yi+1, zi+1]
T , whose components are found as

xm,i =
xi(1 + cθL)− 2xL

cθL − 1
− ∆ti ẋL

πsθL
(29a)

ym,i =
yi(1 + cθL)− 2yL

cθL − 1
− ∆ti ẏL

πsθL
(29b)

zm,i =
zi(1 + cθL)− 2zL

cθL − 1
− ∆ti żL

πsθL
(29c)

xi+1 =
xi(1 + cθL)

2 − 4cθLxL

(cθL − 1)2 − 2∆ti ẋL(1 + cθL)

πsθL(cθL − 1)
(29d)

yi+1 =
yi(1 + cθL)

2 − 4cθLyL

(cθL − 1)2 − 2∆ti ẏL(1 + cθL)

πsθL(cθL − 1)
(29e)

zi+1 =
zi(1 + cθL)

2 − 4cθLzL

(cθL − 1)2 − 2∆ti żL(1 + cθL)

πsθL(cθL − 1)
(29f)
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This way, the trajectory segment is fully defined. If this launch trajectory is found to
be unfeasible, one can change the time ∆ti to reach the final point; a feasible trajectory can
then be quickly found by trial and error.

5. Simulations and Experimental Verification
5.1. Final Design

In order to verify the feasibility of the trajectory planning method, we consider a
specific robot architecture, whose dimensions are as follows: the midpoints A12, A34, and
A56 of the segments A1 A2, A3 A4, and A5 A6 are located at the three vertices of a horizontal
equilateral triangle, inscribed in a circle of radius R = 0.35 m. The mobile cable attachment
points are placed on a circle of radius r = 0.09 m on the EE, which has mass m = 1 kg.
Moreover, at the initial position, the EE is placed in such a way that A1 − A2 = B1 − B2,
A3 − A4 = B3 − B4, and A5 − A6 = B5 − B6, as discussed in Section 2.2; this ensures purely
translational motion by controlling each pair of cables, so they are kept at equal lengths.
The final architecture is shown in Figure 5.

A1

y

EE

r

P

x

A2

A12

A6

A5

A56

A3

A4

A34

B2

B1

B3

B4

B5

B6
R

Figure 5. Top view of the CDPR under exam at a reference position.

The components of vectors ai are

a1 =

[
R − r

2
, −

√
3r
2

, 0

]T

, a2 =

[
R +

r
2

,

√
3r
2

, 0

]T

, a3 =

[
r − R

2
,

√
3R
2

, 0

]T

a4 =

[
−r − R

2
,

√
3R
2

, 0

]T

, a5 =

[
−R + r

2
,

√
3(r − R)

2
, 0

]T

, a6 =

[
r − R

2
, −

√
3(r + R)

2
, 0

]T
(30)

and for vectors bi
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b1 = r

[
−1

2
, −

√
3

2
, 0

]T

, b2 = r

[
1
2

,

√
3

2
, 0

]T

, b3 = r[1, 0, 0]T

b4 = r[−1, 0, 0]T , b5 = r

[
−1

2
,

√
3

2
, 0

]T

, b6 = r

[
1
2

, −
√

3
2

, 0

]T
(31)

In the following, we present results from simulations performed in MATLAB, to
confirm the results of Sections 3 and 4; in all cases, we disregarded the cable mass and
all compliance effects (on the cables and on the rest of the structure). These assumptions
are acceptable given the lightweight, high-resistance cables used on the prototype and the
low weight of the EE. Since the architecture defined by Equations (30) and (31) falls within
the special case considered at the end of Section 2.2, we also applied the simplified results
from [11]: this way, a simpler analysis can be performed on a three-cable robot with a
point-mass EE, which is kinematically and dynamically equivalent to the actual prototype.

Using the design parameters shown above, we first ran a simple simulation to verify
whether the assumption of purely-translational motion used throughout this work is in fact
valid, even if the desired motion range is quite large. Given the available motion range of
the prototype, we thus required point P to move within a rectangular cuboid W defined by

x = [−1 m, 1 m], y = [−1 m, 1 m], z = [−1 m, 0 m] (32)

With the definitions from Section 2.3, we then computed the sensitivities σp and σr from
Equation (7), along a rectangular grid of regularly-spaced points within W at a distance of
0.001 m from each other (along the x, y and z axes). The maximum values of the sensitivities
(at any of the specified points) are found as follows:

max
p∈W

{
σp(p, E)

}
= 4.8 · 10−3 mm

mm
, max

p∈W
{σr(p, E)} = 4.5 · 10−5 rad

mm
(33)

(the orientation Q is in this case constant and equal to the identity matrix E).
The motors used for the prototype have encoders with an angular resolution of

2048 pulses per revolution, and the cables wrap on pulleys with a radius of rp = 26.75 mm:
thus, the expected maximum error in the cable lengths is dρmax = 2πrp/2048 = 0.08 mm.
Then, as noted in Section 3, we have ∥dϕ∥2 ≤ σrdρmax = 2.11 · 10−4 degrees. This confirms
that the EE rotation can indeed be disregarded.

To showcase the concepts in Section 3, we performed a simulation of the dynamics
of the robot during motion along an example trajectory, which is shown in Figure 6. Here,
only the extreme points Ti of each segment are shown for simplicity. The trajectory of P is
as follows: the robot starts from point T1 under static conditions, passes through the target
points T2 and T3, then to the initial point T4 of the designed launch trajectory segment,
then through the launch point PL. At PL, an object is launched from the EE, with launch
velocity ṗL. After the launch, the robot continues to move to point T5 and finally returns
to the start point T1. All trajectory segments Ti-Ti+1 are defined by Bézier curve segments,
except for the last one (to return from T5 to the initial point T1), where, for simplicity, we
used a trajectory defined by a fifth-order polynomial, similar to the ones proposed in [27].

The parameters of this example motion are as follows: the initial point of the trajectory
is T1, which is within the SEW. The position vectors of the intermediate target points Ti,
final target after launch PT , and launch point PL (and the velocity at PL) are, respectively,

t1 = [0, 0,−0.5]T m, t2 = [−0.05,−0.05,−0.7]T m

t3 = [0.1, 0.15,−0.8]T m, t4 = [−0.1,−0.3,−1.2]T m

t5 = [0.23, 0.07,−1.16]T m, pT = [0.15, 0.05,−1.675]T m

pL = [0,−0.15,−0.8]T m, ṗL = [0.3, 0.4, 0.7]T
m
s

(34)
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where T5 is found from Equations (29d)– (29f). The motion time from T4 to T5 is ∆T4 = 1.6
s, and the launch occurs at t′iL = 0.59 s.

Using the method presented in Section 3, it was verified that each trajectory segment
is in fact feasible. For the special architecture defined by Equations (30) and (31), the full
expressions for the coefficients fij from Equation (19) are reported in Appendix A.
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Figure 6. Example point-to-point launch trajectory defined by a series of consecutive Bézier curves.

5.2. Simulations and Comparisons

To illustrate the advantages of our approach based on Bézier curves, we also compared
it with another point-to-point trajectory design method: namely, piecewise-linear trajectory
segments between target points Ti, where the position along the segment is a fifth-order
polynomial function of time [27].

These trajectories are defined as follows:

pi(t′i) = ti + (ti+1 − ti)u(τ), τ =
t′i

∆ti
(35)

where u(τ) is given by [60]

u(τ) = 6τ5 − 15τ4 + 10τ3 (36)

In Figures 7 and 8, we report the plots of the cable tensions over time, as obtained
by simulations, for the two trajectory planning methods; in both cases, the EE follows the
example motion from Figure 6, visiting all Ti’s in the same sequence. Each plot shows the
sum τtot,ij of the tensions in the pair of cables i and j; indeed, with the special architecture
in Figure 3, it is sufficient [11] to verify that τtot,12, τtot,34 and τtot,56 are all positive when
confirming the feasibility, and the ratios between tensions τi/τtot,ij always remain the same.
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Figure 7. Plot of the cable tensions during motion for the trajectory defined by Bézier curves.
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Figure 8. As Figure 7, for the trajectory defined by fifth-order polynomial segments.

It can be seen from the plots that the cable tensions are always positive during the
motion, which shows the feasibility of the trajectories, as expected. However, unlike the
trajectory planning method in [27], with our approach, there is no need to discretize the
motion to verify its feasibility.

From Equations (4) and (5), it can be seen that the cable tensions depend on the mass
and the inertia of the EE. In our simulations, we consider the launch to be instantaneous
and disregard the inertial properties of the launched object with respect to those of the EE,
which is acceptable in most cases (for instance, in our prototype, the object being thrown
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has a mass of ≊20 g). Therefore, there are no discontinuities in the plots of the tensions; in
any case, the sudden change in the EE mass after the object is detached does not change
the sign of the tensions; therefore, the feasibility analysis provided in Section 3.2 does
not change.

Figures 9 and 10 show the plots of the velocity components (along the x-, y- and z-axes)
of point P on the EE. As required by the motion constraints (12c), the velocity at each target
point is zero for both types of trajectories; for the launch motion (Figure 9), the velocity is
ṗ at the launch point PL. Compared with the polynomial-based trajectory, the trajectory
based on Bézier curves leads to a motion that has comparable cable tensions, even if the EE
velocity has higher oscillations between T4 and T5 (to achieve the launch motion).

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6
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Figure 9. Plot of the velocity components of P, for the Bézier curve trajectory.
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Figure 10. As Figure 9, for the trajectory defined by fifth-order polynomial segments.
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The acceleration, like the velocity, is continuous during motion, as seen in
Figures 11 and 12 (for the two trajectory types considered here). Notice that, with the
polynomial-based trajectories from [27], the acceleration along the vertical direction must be
zero at the target points, while, with Bézier curves, we do not need to add such a constraint.
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Figure 11. Plot of the acceleration components of P, for the Bézier curve trajectory.
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Figure 12. As Figure 11, for the trajectory defined by fifth-order polynomial segments.
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5.3. Experiments

To further verify the correctness and effectiveness of the launch trajectories proposed
here, experiments were carried out on an experimental prototype, which was designed
according to the parameters provided in Equations (30) and (31); the final design is shown
in Figure 13. A gripper has been attached to the EE, which can be opened and closed to
grasp and launch objects.

Winch

Fixed 
frame

End-effector 

Gripper

Motor

Parallel
cables

Pulley

Figure 13. The six-cable CSPR prototype used for the launch motion tests.

Figure 14 shows an example launch motion with our prototype. The gripper opens at
launch point PL and then the launched object reaches the target point, corresponding to the
opening of a bin on the floor. An example launch is shown in the multimedia attachment
for this work (see Video Abstract). Although some cables vibrate during the motion, this
is likely due to the limitations of the prototype, and the cables still remain under tension
until the launch occurs. The loss of tension could then be due to vibrations induced by the
tension discontinuity caused by the sudden variation in the EE mass and by the errors in
tracking the ideal (feasible) motion. In any case, the target is correctly reached by the object.

Object

Target
Object

(a) (b)

Figure 14. An example launch: the gripper mounted on the EE opens and the carried object is released
(frame (a)). The object then moves towards the target along a parabolic trajectory (b).



Machines 2023, 11, 224 19 of 25

To verify the repeatability and accuracy of the launch motion, 30 launch tests were
carried out consecutively with the prototype. All these tests correspond (ideally) to the
same trajectory, which is again the one shown in Figure 6; however, due to the unavoidable
errors in the control of the cable winches and of the gripper, the results slightly differ each
time. The actual landing points were measured each time manually, by marking the point
of contact of the thrown object on a paper sheet fixed on the ground.

The results are shown in Figure 15: here, each circle represents the actual landing point
of the launched object after a launch, while the dot indicates the ideal target point. The
coordinates ∆x and ∆y are the relative position errors with respect to the target point.
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Figure 15. The actual landing points measured in 30 successive tests.

From the data in Figure 15, it can be seen that the relative position error magnitude√
∆x2 + ∆y2 has an average of 0.011 m and a standard deviation of 0.006 m. These results

can be considered satisfactory given the limitations of the prototype, which was built purely
for demonstration purposes, and confirm the feasibility of the launching CDPR concept; a
more developed design would likely achieve even better accuracy.

Finally, Figure 16 shows the plots of the tracking errors ρi,I − ρi,A along an example
launch motion from the previous tests. The ideal cable lengths ρi,I are calculated from the
desired trajectory using Equation (1), while the actual lengths ρi,A are obtained from the
feedback of the encoders on the winches. Here, again, only three plots are reported, since
the cable lengths are pairwise equal. The tracking errors reach a maximum of 32.2 mm
during the motion: this result is comparable to those found with other demonstration
prototypes [49]. In this case, however, the tracking errors reach higher values around the
launch instant, due to the highly dynamical motion required for launch.
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Figure 16. Cable length errors between the ideal cable lengths ρi,I and the actual ones ρi,A during a
launch along the trajectory in Figure 6. The launch occurs at PL.

6. Discussion

In our tests, we have verified that the concept of using throwing trajectories (releasing
an object from an EE suspended by cables) can indeed enlarge the workspace of CSPRs. The
general concept has been proposed in our previous works [47,48], which however did not
include an experimental section; additionally, those works only considered a simpler, less
realistic model with a point-mass EE, while here we introduce a practically feasible design.
To the best of our knowledge, no other works have considered CSPRs for throwing motions.
This work, then, provides a first experimental demonstration of the concept, to verify that
the main idea is indeed feasible. While our prototype has limitations, most notably in the
control of the cable lengths and of the gripper mounted on the EE, it is proposed as a first
design iteration (to be further refined and tested in future work), developed purely for
demonstration purposes at this stage.

Furthermore, we also propose a simple trajectory planning method for our platform
based on Bézier curves, which can be analytically proven to always provide trajectories
which are feasible (where the cables always remain in tension); while other trajectories for
dynamically-feasible motions of CSPRs have been proposed in the literature, for instance
based on polynomial functions of time [27] or again on Bézier curves [57], our approach
provides greater flexibility in the trajectory design while leading to comparable cable
tensions and also corresponds to relatively simple conditions for feasibility.

To summarize, our concept allows us to rapidly transport objects at very large dis-
tances with a simple, cost-effective architecture. A limitation of the current work is in the
assumptions on the launched mass. This can neither be too small, as air drag effects may
be non-negligible, nor too large, since this may introduce large discontinuities in the cable
tensions at launch. Future research may include considering more realistic (non-parabolic)
ballistic trajectories for the launched mass, including drag effects, and a trajectory design
that minimizes tension discontinuities.

7. Conclusions

In this work, we propose a point-to-point launch trajectory planning method based
on Bézier curves and apply it on a purely translational CSPR controlled by three winches;
each winch actuates two cables, which form a parallelogram. This architecture was chosen
due to the simplicity of its dynamical analysis, as proved in previous works, and because it
allows us to fully control the required positional DoFs for motion with only three motors;
the orientation of the EE, on the other hand, had to be kept constant to control the launch.

Our trajectory planning method is both simple in its definition and allows the robot to
pass by a series of target points, reaching each one at zero velocity, to perform operations
such as grabbing objects with a gripper on the EE; these points may be far away from the
robot footprint, as we take advantage of inertia forces to maintain the tautness of cables.
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To further increase the workspace, we also propose using launch motions from the EE
towards a target. We show how to define the trajectory parameters, taking into account the
desired target and the trajectory feasibility, which was also verified by simulations.

Finally, we performed repeated tests on a laboratory prototype, which showed that
the launch motions have sufficient repeatability and accuracy for industrial applications.
To the best of our knowledge, no other tests on CSPR prototypes for launch motions have
been presented in the available literature.

Our goals for future work are as follows:

1. In our tests, for simplicity, we used PD control for the cable winches. This, however,
was found to have limited performance in the compensation for external disturbances
and lower tracking accuracy. Introducing improved control algorithms may signifi-
cantly increase the repeatability of the launch motions;

2. The gripper on the EE is currently connected through a wire to the control system on
the frame; this wire, however, may interfere with the robot cables. A wireless control
system for the gripper will increase performance;

3. Improve the method used for measuring the motion of the launched object; a computer-
vision-based system will be used, to avoid interference with the ballistic motion;

4. Our tests indicate that discontinuities in the cable tensions will occur after the launch,
which may lead to losing control of the robot, especially if the mass of the launched ob-
ject is not negligible with respect to that of the EE. Optimizing the trajectory planning
to minimize said discontinuities appears to be a promising option.
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Appendix A. Mathematical Expressions

The matrices in Section 2.3 are defined as [49]

Jp = λ1

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 (A1)

and

Jr = λ2

1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 (A2)

with
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λ1 =
1
2
[e1, e3, e5]

−T

λ2 =
1
2
[α1, α3, α5]

−T

αi = ei × bi

The expressions for the coefficients fij in Equation (19) are reported below, for the archi-
tecture defined in Section 5.1; notice that these coefficients also depend on the parameters
of the ith trajectory segment.

f31 = −3π2(xizi+1 − xizm,i − xi+1zi + xi+1zm,i + xm,izi − xm,izi+1)

2∆t2
i

(A3)

f21 = −π2[(4xm,i + 2R)(zi + zi+1)− 4zm,i(xi + xi+1 + R)]
2∆t2

i
+ g(xm,i − xi − xi+1) (A4)

f11 = −π2[(xm,i − R)(zi+1 − zi) + zm,i(xi − xi+1) + 3(xi+1zi)(xizi+1)]

2∆t2
i

+ g(xi − xi+1) (A5)

f01 =
π2[(2xm,i + R)(zi + zi+1)− 2zm,i(xi + xi+1 + R)]

2∆t2
i

+
1
2
(xi + 2xm,i + xi+1 + 2R)g (A6)

f32 = − 3π2

4∆t2
i

[
(zm,i − zi)

(√
3yi+1 − xi+1

)
+ (zi+1 − zi)

(
xm,i −

√
3ym,i

)
+(zi+1 − zm,i)

(√
3yi − xi

)]
(A7)

f22 = π2
R(zi+1 − zi) + zm,i

[√
3(yi+1 + yi)− xi+1 − xi + 2R

]
∆t2

i
(A8)

+
(zi+1 + zi)

(
xm,i −

√
3ym,i

)
∆t2

i
+

√
3

4
g(yi − 2ym,i + yi+1)−

1
4

g(xi + xi+1)

f12 =
π2

4∆t2
i

{
zm,i

[
xi − xi+1 +

√
3(yi+1 − yi)

]
+ ym,i

[√
3(yi+1 − yi) + (xm,i + 2R)(zi+1 − zi) (A9)

+3zi

(
xi+1 −

√
3yi+1

)
+ 3zi+1

(√
3yi − xi

)]}
+

1
2

g
[√

3(yi − yi+1) + (xi+1 − xi)
]

f02 = π2

(
2R − xm,i +

√
3ym,i

)
(zi + zi+1) + zm,i

[
xi + xi+1 −

√
3(yi + yi+1)− 2R

]
2∆t2

i
(A10)

+
1
4

g
[√

3(yi + 2ym,i + yi+1)− (xi + 2xm,i + xi+1) + 4R
]

f33 = − 3π2

4∆t2
i

[
(zm,i − zi)

(
−
√

3yi+1 − xi+1

)
+ (zi+1 − zi)

(
xm,i +

√
3ym,i

)
+(zi+1 − zm,i)

(
−
√

3yi − xi

)]
(A11)

f23 = π2
R(zi+1 − zi) + zm,i

[
−
√

3(yi+1 + yi)− xi+1 − xi + 2R
]

∆t2
i

(A12)

+
(zi+1 + zi)

(
xm,i +

√
3ym,i

)
∆t2

i
−

√
3

4
g(yi − 2ym,i + yi+1)−

1
4

g(xi + xi+1)
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f13 =
π2

4∆t2
i

{
zm,i

[
xi − xi+1 −

√
3(yi+1 − yi)

]
+ ym,i

[√
3(yi+1 − yi)− (xm,i + 2R)(zi+1 − zi) (A13)

+3zi

(
xi+1 +

√
3yi+1

)
+ 3zi+1

(
−
√

3yi − xi

)]}
+

1
2

g
[
−
√

3(yi − yi+1) + (xi+1 − xi)
]

f03 =
π2

{(
2R − xm,i −

√
3ym,i

)
(zi + zi+1) + zm,i

[
xi + xi+1 +

√
3(yi + yi+1)− 2R

]}
2∆t2

i
(A14)

+
1
4

g(−
√

3(yi + 2ym,i + yi+1)− (xi + 2xm,i + xi+1) + 4R)
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