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Abstract: Shrouds have been widely used to reduce the level of excessive vibration of blisks. However,
complicated nonlinear motion can be induced by the contact and friction between shrouds. Even
worse, harmful localization of vibration can be encountered due to nonsmooth behaviour at the
shroud contact interfaces in the tuned disk. In this paper, the nonlinear dynamics and localization of
vibration of a shrouded blisk are studied considering the spin softening. The continuous parametric
model of a shrouded blisk is established, and the transition boundaries between different status
(i.e., stick, slip and separation) of shrouds are determined based on the Coulomb friction model.
The steady-state responses of the blisk are analysed using variable rotation speed, and the primary
resonance, beat and quasi-periodic vibration are presented in connection with the non-smooth
behaviour of contact. A particular type of vibration localization initiated by the contact and friction
effect of the shrouds in the form of asymmetric vibration in the tuned blisk is discovered. It is found
that the blades-disk coupling has strong influences on the level of the localization. The effects of the
contact stiffness and localization on the blade vibration are demonstrated through the change in the
powers of the blade motions.

Keywords: shrouded blisk; spin softening; nonlinear vibration; contact and friction; localization
of vibration

1. Introduction

High-speed rotating disks are commonly used in gas turbine and steam turbines that
operate in aeroengines and power generators. Under various circumstances, excessive
vibration takes place due to the action of large aerodynamic and mechanical forces, which
may lead to the eventual fatigue of the blades [1]. Shrouds have been widely used by steam
turbines developers to dissipate energy and reduce stress of the blades, so as to improve
the life of the blade [2]. However, additional effect of structural coupling can be introduced
to adjacent shrouds through contact and friction on the mating interfaces, which leads to
nonlinear characteristics such as non-smoothness and hence makes accurate prediction of
vibration response of the disk difficult to achieve.

Extensive research has been devoted to the modeling of shrouded blisks including
structurally modeling of blisks and the corresponding contacts of adjacent shrouds. A
tuned, cyclically symmetrical blisk can be simplified as a single bladed sector [3], integrally
shrouded group blade [4,5] or blade packet [6]. To admit the dynamical characteristics of
the disk, Petrov [7,8] used the surface elements to simulate the contact between adjacent
shrouds of the full structure. Beam-like blades and a rigid disk were coupled to a continuous
parameter model of a blisk by Shadmani [9]. As for the contact model, various methods
have been proposed to characterize the impact and friction of shrouds. In early publications,
Sgn-contact, macro-slip and micro-slip models were proposed to simulate the lumped mass
model of shrouds by Iwan [10], Griffin [11] and Menq [12], respectively. In subsequent
studies, Cigeroglu et al. [13] put forward a two-dimensional distributed parameter microslip
friction model considering the change in normal pressure caused by motion in normal
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direction. Yang and Menq [14] proposed a three-dimensional contact model to predicted
the resonant response of structures having 3D frictional constraint.

It was known previously that collision and friction are in their nature nonlinear or,
at least, piecewise linear, due to the change in relative velocity of vibrating bodies on
their mating interfaces [15,16], and are attributable to complicated dynamic behaviors
such as bifurcation, chaos and switch of stability [17]. For a slender structure undergoing
impact, Liu et al. [18] proposed a model of fractal geometry and analyzed the effect of
the surface roughness and normal loads on dynamic responses of blades, Li et al. [19]
established a macro-slip friction model of the contact interfaces at the root of the beam
with a dovetail tenon to characterize the friction on the beam. As for the friction between
shrouds, He et al. [20] established an integrally shrouded blades considering impact and
friction between adjacent shrouds, and reported multi-periodic, quasi-periodic and chaotic
vibration of blade due to nonsmooth behaviour at the shroud contact surfaces. As far
as the nonlinear vibration of a full blisk is concerned, progresses have been achieved in
veering and merging analysis [21,22], localization of vibration [23,24], robust analysis [25]
and parametric sensitivity [26]. In addition, some scholars study the contact and friction of
blades based on the micro-slip contact model, Pesaresi et al. [27] presented a new modelling
approach for underplatform dampers and evaluated against the experimental data of a
recently-developed test rig, Chen et al. [28] proposed a new contact slip modeling method
which can preserve the pressure distribution of the joint’s contact surface to capture the
micro-slip phenomenon.

As for the localization of vibration, most of the existing researches were carried
out under the assumption that the vibration localization is caused by the mistuning of
blisks [29–32]. A few publications were dedicated to the vibration localization of cyclically
symmetric structures with nonlinearities. Vakakis et al. [33,34] found that nonlinear mode
localization can occur in perfectly symmetric nonlinear periodic systems, and the only
prerequisite for its existence is weak coupling between subsystems. Based on the researches
of Vakakis, Grolet and Thouverez [35] computed the free and forced response of a system
with cyclic symmetry under geometric nonlinearity, and found that some of the bifurcated
solutions correspond to localized nonlinear modes in the branching point bifurcation of the
system. In addition, Fontanela et al. [36] developed a fully numerical approach to compute
quasi-periodic vibrations bifurcating and localized oscillations from nonlinear periodic
states in cyclic and symmetric structures.

Despite many existent publications regarding vibration of rotating shrouded blisks,
there still lacks research that focused on interactions of adjacent shrouds through contact
and friction, and their possible contribution to the localization of vibration of the disk.
Such localization is usually accompanied with harmful concentration of vibration energy
in one or a few blades, and is considered one of the major inducements to the onset of
fatigue failure.

In this paper, the nonlinear dynamics and the localization of vibration of a tuned
shrouded blisk that has short blades of small installation angles are investigated con-
sidering the effect of contact and friction between adjacent shrouds. The paper is orga-
nized as follows: Firstly, the continuous parametric model of the whole shrouded blisk
is presented where the interaction between shrouds is modeled using linear spring and
velocity-dependent force. The transition of contact states (i.e., stick, slip and separation)
of adjacent shrouds are determined. Secondly, the vibration characteristic of the blades
such as primary resonance, beat phenomenon and quasi-periodic vibration are analysed
with the increase rotation speed. Finally, a particular type of vibration localization due
to nonsmooth behaviour at the shroud contact interfaces is discovered in the tuned blisk,
the effects of the blades-disk coupling on the level of localization are illustrated, and the
effects of the normal contact stiffness and the localization of vibration on the blade vibration
are demonstrated.
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2. Dynamics Modelling of Shrouded Blisk

As shown in Figure 1, a rotating shrouded blisk with short blades of small installation
angles is concerned in this study, where Ω represents rotation speed. Structurally, the blisk
is comprised of a disk and multiple identical blades that crowned with shrouds.
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Figure 1. Sketch of a rotating shrouded blisk.

One may notice that for such a blisk, the dynamical modeling can be simplified as an
in-plane dynamic model for the following reasons:

1. The torsion of the blade body in the spanwise direction is generally small in view
of turbine design for short blades. When short blades are concerned, the change in
the circumferential velocity in the blade’s spanwise direction can be assumed small.
Consequently, the directions of the relative velocity of the fluid to the blade vary
limitedly in the same direction, and thus the torsion angle is idealized to be small for
short blades.

2. The bending rigidity of the blade is generally large compared with a long blade, and
the modal couplings between in-plane and out-of-plane motions due to geometrically
nonlinearity is weak enough to be ignored.

3. When the installation angle is small, the aerodynamic force normal to the blade surface
stands mainly in the plane of blisk rotation [20], meaning the in-plane component of
the force is much larger than its out-of-plane counterpart. Under the same assumption
of small installation angle, the principal axes of the blade cross-section are arranged
in such a way that the bending rigidity in the out-of-plane direction overwhelms that
in the in-plane directions. Hence, it is reasonable not to consider the out-of-plane
motions in the present study owing to the small load and large bending rigidity in the
out-of-plane.

2.1. Dynamic Modeling

Figure 2 depicts the model of the shrouded blisk, where two cartesian frames are
established to express the blade motions. Frame XYZ is inertial cartesian coordinate, where
X-axis is parallel to the ground and Z-axis is parallel to the normal of the disk. The other
frame, xiyizi, is a body coordinate fixed at the barycentre of the i-th blade root, and rotates
synchronously with the blade. Let (I, J, K) and (ii, ji, ki) be the unit base vectors of the two
frames, respectively bounded by the following transformation ii

ji
ki

 =

 cos θi sin θi 0
− sin θi cos θi 0

0 0 1

 I
J
K

 (1)
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Figure 2. Schematic of the mechanical model of a shrouded blisk. (a) Disk model and (b) Blade
geometry in the plane of rotation.

Two degrees of freedom, xd and yd are adopted to locate the instantaneous center of
disk in the X- and Y- directions, respectively. The contribution of the shaft to the disk is
described by stiffness coefficients kx and ky, and viscous damping coefficients cx and cy,
respectively. dr is the radius of the disk. The angular orientation of the i-th blade is

θi = Ωt +
2π

n
(i− 1) (2)

where n is the total number of blades. In Figure 2b, α is the tilt angle of shrouds and L is the
length of the blade. δs and ks are the gap and the normal contact stiffness between adjacent
shrouds. Ns,i, Fs,i and Qi are forces of normal contact, friction and aerodynamic [20]. Ns,i
and Fs,i are perpendicular and parallel to the contact interfaces, respectively. Qi is parallel
to the negative direction of the yi-axis of the i-th blade.

Qi = Q0 sin(λΩt + ϕi) (3)

where Q0 is the forcing amplitude, λ the number of inlet vanes in the upstream of the
blades [20] and ϕi = iπ is the phase of Qi.

The position of the i-th blade Rb,i, shroud Rs,i and barycenter of the disk Rd at the
current moment are

Rb,i = xdI + ydJ + drii + (xi + ui)ii + viji,
Rs,i = Rb,iδ(xi − L),

Rd = xdI + ydJ
(4)

where ui and vi are spanwise and flapwise displacements of the blade. δ(xi − L) is the
Dirac-delta function.

As for the contact and friction forces between adjacent shrouds, it is noticed that
the actual friction between the adjacent shrouds lie in a 2D surface defined in the three-
dimensional space. Nonetheless, it is appropriate to model the shroud as a concentrated
mass since it is considerably smaller than the blade. With this modeling, the friction force
on the contact surface can be vectorially decomposed into two components in- and out-of-
the blisk’s rotation plane. However, the out-of-plane component of the friction force can
be effectively ignored since the out-of-plane movement has been assumed negligible in
the first place, and hence ideally there will be neither relative movement nor trends of
relative movement between two adjacent shrouds. Further, the state of contact between two
adjacent shrouds during operation one of the three: stick, slip and separation, depending
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on the relative motion of the shrouds. In this particular scenario, the normal distance
between the shrouds is expressed as

di = (ui−1 − ui) cos α + (vi−1 − vi − δs) sin α (5)

Hence, the normal force imposed on the right side of the i-th shroud is

Ns,i =

{
ksdi di > 0

0 di ≤ 0
(6)

For the friction on the solid, dry contact surface, a velocity-dependent model [37] is
adopted where friction asymptotically decreases as the relative velocity increases, as

µ(sr,i) = µm + (µs − µm)e−β|sr,i | (7)

where µm and µs are coefficients of minimum kinetic friction and maximum static friction.
β is the tuning parameter. sr,i is the relative velocity aligning with the contact surfaces of
the i-th and the (i-1)-th shrouds, which can be expressed as

sr,i = −
( .
ui−1 −

.
ui
)

sin α +
( .
vi−1 −

.
vi
)

cos α (8)

Thus, Fs,i governed by the stick-slip model can be written as

Fs,i =

{
µ(sr,i)Ns,isgn(sr,i) sr,i 6= 0

−µsNs,i ≤ Fs,i ≤ µsNs,i sr,i = 0
(9)

2.2. Governing Equations

The governing equations of the shrouded blisk can be derived through the Hamilton’s
principle. For the spanwise direction, one has

ρl

[ ..
ui +

..
xd cos θi +

..
yd sin θi − 2Ω

.
vi −Ω2ui −Ω2(xi + dr)

]
− (EAu′ i)

′ + cu
.
ui

+ms

[ ..
ui +

..
xd cos θi +

..
yd sin θi − 2Ω

.
vi −Ω2ui −Ω2(xi + dr)

]
δ(xi − L) =

(−Ns,i+1 cos α + Fs,i+1 sin α + Ns,i cos α− Fs,i sin α)δ(xi − L)

(10)

For the flapwise direction, the equation becomes

ρl

( ..
vi −

..
xd sin θi +

..
yd cos θi + 2Ω

.
ui −Ω2vi

)
+ (EIv′′ )′′ + cv

.
vi

+ms

( ..
vi −

..
xd sin θi +

..
yd cos θi + 2Ω

.
ui −Ω2vi

)
δ(xi − L) =

(−Qi − Ns,i+1 sin α− Fs,i+1 cos α + Ns,i sin α + Fs,i cos α)δ(xi − L)

(11)

One the other hand, the equations of motion for the disk are

n
∑

i=1
ρl

[ ..
xd +

..
ui cos θi −

..
vi sin θi − 2Ω

.
ui sin θi − 2Ω

.
vi cos θi

+Ω2vi sin θi −Ω2ui cos θi −Ω2(xi + dr) cos θi

]
+

n
∑

i=1
ms

[ ..
xd +

..
ui cos θi −

..
vi sin θi − 2Ω

.
ui sin θi − 2Ω

.
vi cos θi

+Ω2vi sin θi −Ω2ui cos θi −Ω2(xi + dr) cos θi

]
δ(xi − L)

+
(
md

..
xd + cx

.
xd + kxxd

)
δ(xi − 0) = 0

(12)

and
n
∑

i=1
ρl

[ ..
yd +

..
ui sin θi − 2Ω

.
vi sin θi +

..
vi cos θi + 2Ω

.
ui cos θi

−Ω2vi cos θi −Ω2ui sin θi −Ω2(xi + dr) sin θi

]
+

n
∑

i=1
ms

[ ..
yd +

..
ui sin θi − 2Ω

.
vi sin θi +

..
vi cos θi + 2Ω

.
ui cos θi

−Ω2vi cos θi −Ω2ui sin θi −Ω2(xi + dr) sin θi

]
δ(xi − L)

+
(
md

..
yd + cy

.
yd + kyyd

)
δ(xi − 0) = 0

(13)
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where ρl is the linear mass density of the blades and ms the mass of the shrouds. EA and
EI stand for tensile and bending stiffness of the blade, respectively. cu and cv are viscous
damping coefficients in the spanwise and flapwise directions, respectively.

In the followings, the Galerkin’s method is adopted to decompose the spanwise and
flapwise displacements in the modal space, as

ui(x, t) = ∑
j=1

Ψj(x)pji(t), vi(x, t) = ∑
j=1

Φj(x)qji(t) (14)

where Ψj(x) and Φj(x) are the j-th mode shapes of cantilever beam in the spanwise and
flapwise directions, respectively [38]. pji(t) and qji(t) are the j-th modal coordinates
of the i-th blade, respectively. Considering only the first mode in both two directions,
Equations (10)–(13) are reduced

mi,i
..
pi + mi,2n+1

..
xd + mi,2n+2

..
yd + ci,i

.
pi + gi,n+i

.
qi + ki,i pi

= ai − Ns,i+1 cos α + Fs,i+1 sin α + Ns,i cos α− Fs,i sin α, i = 1, 2, . . . , n,
(15)

mn+i,n+i
..
qi + mn+i,2n+1

..
xd + mn+i,2n+2

..
yd + gn+i,i

.
pi + cn+i,n+i

.
qi + kn+i,n+iqi

= −Qi − Ns,i+1 sin α− Fs,i+1 cos α + Ns,i sin α + Fs,i cos α, i = 1, 2, . . . , n,
(16)

n
∑

i=1

(
m2n+1,i

..
pi + m2n+1,n+i

..
qi
)
+ m2n+1,2n+1

..
xd +

n
∑

i=1

(
g2n+1,i

.
pi + g2n+1,n+i

.
qi
)

+c2n+1,2n+1
.
xd +

n
∑

i=1
(k2n+1,i pi + k2n+1,n+iqi) + k2n+1,2n+1xd = a2n+1,

(17)

n
∑

i=1

(
m2n+2,i

..
pi + m2n+2,n+i

..
qi
)
+ m2n+2,2n+2

..
yd +

n
∑

i=1

(
g2n+2,i

.
pi + g2n+2,n+i

.
qi
)

+c2n+2,2n+2
.
yd +

n
∑

i=1
(k2n+2,i pi + k2n+2,n+iqi) + k2n+2,2n+2yd = a2n+2

(18)

where notations m, c, g, k and a are defined in Equations (A1)–(A5), Appendix B.
The non-dimensional forms of Equations (15)–(18) can be rewritten by introducing the

following variables:

pi =
pi
δs

, qi =
qi
δs

, xd = xd
δs

, yd = yd
δs

,

ω2
i =

ki,i
mi,i

, ω2
n+i =

kn+i,n+i
mn+i,n+i

, ω2
2n+1 = k2n+1

m2n+1
, ω2

2n+2 = k2n+2
m2n+2

,

τq = ωn+it,
∗
() =

d()
dτq

,

ai =
ai

ω2
n+iδsmi,i

, ks =
ks
ki,i

, Q0 = Q0
ω2

n+iδsmn+i,n+i

(19)

Moreover, di, Ns,i and Fs,i can be rewritten as

di = Ψ(L)
(

pi−1 − pi
)

cos α +
[
Φ(L)

(
qi−1 − qi

)
− 1
]

sin α (20)

Ns,i =

{
ksdi di > 0

0 di ≤ 0
(21)

Fs,i =

{
µ(sr,i)Ns,isgn(sr,i) sr,i 6= 0

−µsNs,i ≤ Fs,i ≤ µsNs,i sr,i = 0
(22)

Using Equation (19), the non-dimensional form of the governing equations are

∗∗
p i + mi,2n+1

∗∗
x d + mi,2n+2

∗∗
y d + ci,i

∗
pi + gi,n+i

∗
qi + ω2

i,i pi = ai
+mqp

(
−Ns,i+1 cos α + Fs,i+1 sin α + Ns,i cos α− Fs,i sin α

)
, i = 1, 2, . . . , n

(23)

∗∗
q i + mn+i,2n+1

∗∗
x d + mn+i,2n+2

∗∗
y d + gn+i,i

∗
pi + cn+i,n+i

∗
qi + qi = −Qi

−Ns,i+1 sin α− Fs,i+1 cos α + Ns,i sin α + Fs,i cos α, i = 1, 2, . . . , n
(24)
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∗∗
x d +

n
∑

i=1

(
m2n+1,i

∗∗
p i + m2n+1,n+i

∗∗
q i

)
+

n
∑

i=1

(
g2n+1,i

∗
pi + g2n+1,n+i

∗
qi

)
+c2n+1,2n+1

∗
xd +

n
∑

i=1

(
k2n+1,i pi + k2n+1,n+iqi

)
+ ω2

2n+1xd = a2n+1

(25)

∗∗
y d +

n
∑

i=1

(
m2n+2,i

∗∗
p i + m2n+2,n+i

∗∗
q i

)
+

n
∑

i=1

(
g2n+2,i

∗
pi + g2n+2,n+i

∗
qi

)
+c2n+2,2n+2

∗
yd +

n
∑

i=1

(
k2n+2,i pi + k2n+2,n+iqi

)
+ ω2

2n+2yd = a2n+2

(26)

The coefficients of Equations (23)–(26) are provided in Equations (A6)–(A9), Ap-
pendix B. A numerical simulation method implementing the Runge-Kutta method with
variable steps is developed using MATLAB to solve the equations of motion of the shrouded
blades in this study considering the nonsmooth contact and friction behavior. Given the
significance of the contact behavior between adjacent shrouds on the blade dynamics, the
bisection method is used to capture the precise times where the contact switches from
one state to another in Appendix D. The transition of the contact states (i.e., stick, slip
and separation) of adjacent shrouds and corresponding friction forces are provided in
Appendix C.

3. Nonlinear Dynamics and Vibration Localization of Shrouded Blisk

This section includes the results of nonlinear dynamics study and vibration localization
analysis of a shrouded, tuned blisk. The shrouded blisk with twelve blades is used for numerical
investigation. The main parameters of the shrouded blisk [20,39] are shown in Table 1.

Table 1. Gross parameters of the shrouded blisk.

Notation Value Notation Value

cu, cv 1·N·s·m−1 cx, cy 5 N·s·m−1

dr 0.5 m EI 1.45 × 103 N·m2

EA 1.74 × 108 N kx, ky 1.0 × 107 N·m−1

L 0.5 m md 14.04 kg
ms 0.135 kg Q0 50 N
α π

3 rad β 5 s·m−1

δs 2.0 × 10−5 m λ 1
µs 0.5 µm 0.3
ρl 6.75 kg·m−1 Ω 6000 r·min−1

A finite element analysis containing two shrouded blades was carried out using AN-
SYS software to determine the normal contact stiffness (ks, caused by the elastic deformation
of the shroud) [5] at various rotation speed in this paper. As shown in Figure 3a, contact
pair was used to simulate the connecting force between adjacent shrouds, the solid185-type
elements were used to model the structural parts of the blades and shrouds. The parameters
of the model are presented in Appendix E. Then, the contact stiffness was calculated based
on the elastic deformations of the shrouds with respect to the reaction forces of the blades in
the normal direction of the shroud. Afterwards, the contact stiffness was fitted to generate
ks as a function of Ω, which is depicted in Figure 3b.

The vibration response can be solved once the normal contact stiffness determined. The
steady-state responses with different rotation speeds are illustrated. Then, the localization
of vibration due to the contact and friction of shrouds is studied.

3.1. Steady-State Response, Primary Resonance and Beat

The rotation of the disk creates centrifugal force and subsequently the effect of spin soft-
ening through which the blade’s axial stiffness is reduced, as well as changes the state of con-
tact between adjacent shrouds as shown in Figure 3b. In the following, Equations (23)–(26)
are solved with various rotation speeds to demonstrate how steady-state response is af-
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fected by these effects. Since the disk is structurally tuned, the response will be presented
hereafter with only one sector including the first shrouded blade (i.e., i = 1 in Figure 2b).
To facilitate the discussion in next subsections, two forcing parameters are introduced to
represent the “net” contact and friction:

N1 = Ns,1 − Ns,2, F1 = Fs,1 − Fs,2.

The frequency spectrum of the flapwise motion q1 is presented in Figure 4 where peaks
A, B and C mark the frequency of the aerodynamic excitation ( fQ) and the frequencies
of the first flapwise mode ( fq) and the first spanwise mode ( fp). When Ω escalates to
4300 r/min, primary resonance (point D) in the blade motion occurs as fQ approaches fq.
This demonstrates the significant influence of the aerodynamic force through the flapwise
movement of the blade. The magnitude of the resonance decays as the two frequencies
departs, which in turn reduces the effect of contact and friction on the blade shroud.
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Figure 3. Calculation and fitting of normal contact stiffness. (a) Finite element model and (b) Fitted
curve of the contact stiffness.
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Figure 4. Waterfall plot of the frequency spectra of q1 under variable Ω. Peaks A, B and C mark
the frequency of the aerodynamic excitation, the first flapwise mode and the first spanwise mode,
respectively. Peak D marks Ω at which primary resonance occurs.

Further examinations are carried out focusing on the vibration response under four
selected rotation speeds, i.e., 4300, 4750 and 9000 r/min, and the results are presented
in Figure 5. As shown in Figure 5a–d, the spanwise motion p1 appears close to periodic,
whereas the flapwise q1 is not. Further, the primary resonance in the flapwise direction
occurs when Ω = 4300 r/min. Based on the fast Fourier transform analysis, p1 is dominated
by fp in term of amplitude, and is slightly modulated by weak disturbances that carry
low frequencies such as fq and fQ. For the flapwise motion q1, all of the frequencies are
incommensurable whose amplitudes are in the same scale, Figure 5f. It should be noted that
free vibration will be produced by the initial disturbance during each contact along with
the forced response resulted from the aerodynamic force on the blade. To be specific fp and
fq are frequencies of the free vibration, whereas fQ and its odd multiples are frequencies
related to the forced vibration.
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Phase diagram of 1p ; (c) Time history and (d) Phase diagram of 1q ; Frequency spectra of (e) 1p  
Figure 5. Steady-state responses of the first blade when Ω = 4300 r/min. (a) Time history and
(b) Phase diagram of p1; (c) Time history and (d) Phase diagram of q1; Frequency spectra of (e) p1
and (f) q1; (g) Frequency spectra and (h) Time histories of N1 and F1. fQ = 0.16, fq = 0.16 and
fp = 2.72 Hz.
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As far as the contact and friction on the shroud are concerned, both N1 and F1 are
non-smooth periodic and spectrally governed by fQ and its odd multiples (e.g., 3 fQ and
5 fQ) that can be identified in Figure 5g. Further, the direction of the friction force reverses
every time the normal force reaches its maximum value, Figure 5h. Both N1 and F1 change
periodically and vanish when the shroud is completely separated from the other shroud, or
the forces by the two adjacent shrouds cancel with each other during contact.

As Ω arrives at 4750 r/min, a slight difference of 0.02 Hz between fQ and fq is found
in Figure 6a, and the phenomenon of beat is observed from Figure 6b. The peak-to-peak
amplitude of q1 enlarges owing to the presence of beat, and so do the contact and friction
forces between adjacent shrouds. Further, the net contact and friction forces appear periodic
as shown in Figure 6c,d. Moreover, localization of vibration is likely to take places in this
case which will be presented in the next subsection.
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Figure 6. Steady-state responses of the first blade when Ω = 4750 r/min. (a) Frequency spectrum and
(b) Time history of q1; (c) Frequency spectra and (d) Time histories of N1 and F1. fq = 0.16, fQ = 0.18
and fp = 2.79 Hz.

Finally, when the blade is accelerated to Ω = 9000 r/min, both p1 and q1 become
quasi-periodic, Figure 7a–d. The frequency fQ can hardly be identified from Figure 7e,f.
As a matter of fact, the normal contact stiffness becomes smaller at high rotation speed
(c.f. Figure 3) and the actions of contact and friction are both weak, which explains the
amplitudes associated with fQ are minor in the spectra of p1 and q1. Further, as shown
in Figure 7g, the spectra of normal and friction forces both contain the identified fN,
the aerodynamic frequency fQ and its odd multiples as well as combined frequencies of
3 fN + fQ, 5 fN + fQ, 3 fN + 3 fQ and 5 fN + 3 fQ, etc. This clearly shows the nonlinear yet
complicated nature of the vibration induced by the action of the normal and friction forces.

In this study it is found that the primary resonance, beat and quasi-periodic vibration
appear successively due to the contact and friction between shrouds with the increase of
rotation speed. On the whole, the blisk structures can be designed more reasonably based
on the in-depth understandings of these phenomena and are more likely to perform better
under the circumstance of vibration localization.
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Figure 7. Steady-state responses of the first blade when Ω = 9000 r/min. (a) Time history and
(b) Phase diagram of p1; (c) Time history and (d) Phase diagram of q1; Frequency spectra of (e) p1
and (f) q1; (g) Frequency spectra and (h) Time histories of N1 and F1. fq = 0.16, fN = 0.21, fQ = 0.85
and fp = 6.92 Hz.
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3.2. Localization of Vibration of Blades

Factor of Localization of Vibration
In this section, different form existing publications, we discover a particular type of

vibration localization initiated by the contact and friction effect of the shrouds in the form
of asymmetric vibration in the tuned bladed, cyclically symmetric disk, then reveal and
discuss its influence on the vibration of the blisk. To demonstrate the unevenness in the
blade deformations, the maximal displacements of each blade are selected over the period of
the vibration and compared individually with their arithmetic means. One may define the
following factors of localizations of vibration in the flapwise and spanwise directions, i.e.,

Lp =
n

∑
i=1

max(pi(t))− pave
pave

, Lq =
n

∑
i=1

max(qi(t))− qave
qave

, ∀t > 0 (27)

where

pave =
1
n

n

∑
i=1

max(pi(t)), qave =
1
n

n

∑
i=1

max(qi(t)) (28)

Note that these factors will be zero if the displacements are constant or circumferen-
tially periodic among the blades.

Next, the maximum displacements are presented in Figure 8 for three cases: the general
vibration when Ω = 6000 r/min, the case of beat when Ω = 4750 r/min and the case of
blades free of contact and friction when Ω = 4750 r/min. The factors of the localization
of vibration are tabulated in Table 2. Factors of localization of vibration in different cases
for these three cases. Through examining Figure 8a–c one can see the uneven distribution
of maximum displacements as the result of the localization of vibration resulted from the
beat, as well as the contact and friction between the perfectly tuned blades. The level of
localization is found much stronger in the flapwise direction than in the spanwise direction
due to the high tensile stiffness of the blades.
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case with Ω = 4750 r/min and (c) Contact- and friction free with Ω = 4750 r/min.
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Table 2. Factors of localization of vibration in different cases.

ξ Lp Lq

General case, Ω = 6000 r/min 0.0 0.0
The beat case, Ω = 4750 r/min −3.902 × 10−5 −1.197 × 10−4

Contact- and friction free, Ω = 4750 r/min 0.0 0.0

3.3. Effect of Coupling Stiffness on the Localization of Vibration

The interaction among the blades enables the transfer of energy across the disk parts,
and influence the contact and friction on the shroud. In the present investigation, such
actions can be considered through adopting the cross-coupling stiffness k2n+1,i, k2n+1,n+i,
k2n+2,i, k2n+2,n+i in Equations (25) and (26). To demonstrate how the localization is affected
by the cross coupling, Equations (23) through (26) are solved with various cross-coupling
stiffness. For convenience of comparison, these coefficients are amplified by the identical
factor denoted by ξ.

The maximum displacements of the blades are shown in Figure 9 with varying ξ, and
the factors of localization are tabulated in Table 3. Based on these results, the factors of
localization increase significantly relative to ξ = 1 when the cross-coupling is strong, with
Lq being more sensitive than Lp. This can be explained by the fact that Lp is closely related
to the spanwise displacements which are governed mainly by the centrifugal force, and
hence is insensitive to the cross-coupling effect. Conversely, Lq is affected primarily by the
contact forces, and hence more prone to the change of the cross-coupling effect.
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Table 3. Factors of the localization of vibration. Ω = 4750 r/min.

ξ Lp Lq

0.01 −5.024 × 10−5 1.190 × 10−5

0.1 2.003 × 10−5 −3.704 × 10−5

1 −3.902 × 10−5 −1.197 × 10−5

10 2.429 × 10−5 0.0017
100 6.471 × 10−5 0.0063

Meanwhile, as shown in Figure 10, the increasing ξ enlarges the normal and tangen-
tial disk-blade interactions at the root of the i-th blade (defined as FN,i(t) and FT,i(t) in
Equations (A10) and (A11)), which boosts the energy transferal from the disk to the blades.
Consequently, the normal and friction forces on the shroud interfaces will be enhanced, as
well as the localization of vibration caused by these forces.
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3.4. Power of Blade Vibration under Localization of Vibration

Next, the effect of the localization of vibration on the blade vibration is studied
considering varying normal contact stiffness and gap between the adjacent shrouds. To
measure the level of the blade motions, a generalized, average power over a period of
steady-state vibration is defined

Ei =
1
T
∫ T

0

[
p2

i (t) + q2
i (t)

]
dt, i = 1, 2, . . . , n (29)

Using various normal contact stiffness between adjacent shrouds (ks), the generalized
powers of all twelve blade motions are depicted in Figure 11a,b under the localization
of vibration and compared to the ones from regular, non-localized vibration. As shown
in Figure 11a,b, Ei appear confined to two belts of narrowly spaced curves. These belts
are separated under the localization of vibration throughout the entire range of ks, which
is attributable to the distorted pattern of maximum displacements of the blades (c.f.,
Figure 8b). When it happens, the localization of vibration tends to produce larger difference
in displacements among the blades, thus creating a unique pattern of two groups of Ei, each
carrying nearly identical powers of vibration. Moreover, it is observed in Figure 11a that
they both decrease with ks. As shown previously in Table 3, the localization of vibration
can be enhanced by the increase of the normal contact stiffness, which further enlarges the
difference in displacements as well as those Ei among the blades.

1 

 

Figure 11a,b, iE  appear confined to two belts of narrowly spaced 

curves. These belts are separated under the localization of vibration 

throughout the entire range of sk , which is attributable to the distorted 

pattern of maximum displacements of the blades (c.f., Figure 8b). When 

it happens, the localization of vibration tends to produce larger 

difference in displacements among the blades, thus creating a unique 

pattern of two groups of iE , each carrying nearly identical powers of 

vibration. Moreover, it is observed in Figure 11a that they both decrease 

with sk . As shown previously in Table 3, the localization of vibration 

can be enhanced by the increase of the normal contact stiffness, which 

further enlarges the difference in displacements as well as those iE  

among the blades. 

  
(a) (b) 

  
(c) (d) 

Figure 11. Generalized powers and maximum of the steady-state responses of 

blade motions versus sk . (a) With localization of vibration ( 4750=  

r/min) and (b) without localization of vibration ( 6000=  r/min); (c) normal 

distance between the shrouds and (d) friction force when 6000=  r/min. 

 

Figure 11. Generalized powers and maximum of the steady-state responses of blade motions ver-
sus ks. (a) With localization of vibration (Ω = 4750 r/min) and (b) without localization of vi-
bration (Ω = 6000 r/min); (c) normal distance between the shrouds and (d) friction force when
Ω = 6000 r/min.

In the non-localization case, the Ei drop at first and then escalate when ks increases,
Figure 11b. On one hand, more energies are dissipated as friction on the shroud interface
grows with the increasing contact forces, which reduces Ei. On the other hand, the distance
between the adjacent shrouds decreases when ks is large enough (see Figure 11c), which
reduces the friction force (see Figure 11d) and consequently, increases the level of Ei.
Thus, the powers Ei decreases unanimously with the increasing normal contact stiffness,
Figure 11a. In contrast, these distances are amplified when the localization of vibration
is encountered.
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4. Conclusions

The nonlinear dynamics and the vibration localization of a whole rotating blisk with
the shrouded friction contacts are presented in this paper. A continuous parametric model
of a shrouded blisk with short blades of small installation angles is established, and the
transition boundaries between different contact statuses (i.e., stick, slip and separation)
of the whole shrouded blisk are determined based on the relative motion status of the
blades. Using this model, the nonlinear vibration responses with variable rotation speed are
analyzed, the particular type of vibration localization initiated by the contact and friction
effect of the shrouds is discovered, and its influence on the vibration of the blisk is revealed
and discussed. The followings summarize the present study:

(1) With the increase of rotation speed, the primary resonance, beat and quasi-periodic
vibration appear successively due to the contact and friction between shrouds.

(2) The localization of vibration occurs in tuned shrouded blisks only when the beat
exists, i.e., frequency of free vibration slightly differs from the frequency of the forced
vibration caused by the contact and friction of shrouds. Further, the level of such
localization increases as the blade-disk coupling becomes strong.

(3) The power of the blade motion drops consistently with the contact stiffness of the
shrouds in the localization of vibration, which is different from the non-localization case.
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Appendix A Nomenclature of the Most Important Quantities

Table A1. Nomenclature of the most important quantities.

Symbol Parameter Names Symbol Parameter Names

cu,cv
Viscous damping coefficients in the spanwise and

flapwise directions Qi Aerodynamic force

cx,cy Viscous damping coefficients of the disk Q0 Forcing amplitude of Qi

di Normal distance between the shrouds ui,vi Spanwise and flapwise displacements of the blade

dr Radius of the disk vr,i
Relative velocity aligning with the contact surfaces

of the i-th and (i-1)-th shrouds

EA, EI Tensile and bending stiffness of the blade xd,yd Instantaneous center of disk in the X-, Y-directions

Fs,i Friction force of the i-th shroud α Tilt angle of shrouds

ks Normal contact stiffness between adjacent shrouds β Tuning parameter

kx,ky Stiffness coefficients of the shaft to the disk δs Gap between adjacent shrouds

L Length of the blade λ Number of inlet vanes in the upstream of the blades
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Table A1. Cont.

Symbol Parameter Names Symbol Parameter Names

md mass of the disk µm,µs
Coefficients of minimum kinetic friction and

maximum static friction

ms mass of the shrouds ρl Linear mass density of the blades

Ns,i Normal force of the i-th shroud Ω Rotation speed

n Total number of blades (∗) Variate after nondimensionalize

pji,qji The j-th modal coordinates of the i-th blade

Appendix B Coefficients in Governing Equations

The coefficients adopted in Equations (15)–(18) are defined as

ai =
∫ L

0 Ω2ρlΨ(xi + dr)dxi + Ω2msΨ(L)(L + dr),

a2n+1 =
n
∑

i=1
Ω2
[
ρl

(
L2

2 + drL
)
+ ms(L + dr)

]
cos θi,

a2n+2 =
n
∑

i=1
Ω2
[
ρl

(
L2

2 + drL
)
+ ms(L + dr)

]
sin θi

(A1)

mi,i =
∫ L

0 ρlΨΨdxi + msΨ(L)Ψ(L),
mi,2n+1 =

∫ L
0 ρlΨ cos θidxi + msΨ(L) cos θi,

mi,2n+2 =
∫ L

0 ρlΨ sin θidxi + msΨ(L) sin θi,
mn+i,n+i =

∫ L
0 ρlΦΦdxi + msΦ(L)Φ(L),

mn+i,2n+1 = −
∫ L

0 ρlΦ sin θidxi −msΦ(L) sin θi,
mn+i,2n+2 =

∫ L
0 ρlΦ cos θidxi + msΦ(L) cos θi,

m2n+1,i =
∫ L

0 ρlΨ cos θidxi + msΨ(L) cos θi,
m2n+1,n+i = −

∫ L
0 ρlΦ sin θidxi −msΦ(L) sin θi,

m2n+1,2n+1 = m2n+2,2n+2 = md + nms + nρlL,
m2n+2,i =

∫ L
0 ρlΨ sin θidxi + msΨ(L) sin θi,

m2n+2,n+i =
∫ L

0 ρlΦ cos θidxi + msΦ(L) cos θi

(A2)

ki,i =
∫ L

0 EAΨ′Ψ′dxi −
∫ L

0 Ω2ρlΨΨdxi −Ω2msΨ(L)Ψ(L),
kn+i,n+i =

∫ L
0 EIΦ′′Φ′′ dxi −

∫ L
0 Ω2ρlΦΦdxi −Ω2msΦ(L)Φ(L),

k2n+1,i = −
∫ L

0 ρlΩ
2Ψ cos θidxi −msΩ2Ψ(L) cos θi,

k2n+1,n+i =
∫ L

0 ρlΩ
2Φ sin θidxi + msΩ2Φ(L) sin θi,

k2n+1,2n+1 = kx, k2n+2,2n+2 = ky,
k2n+2,i = −

∫ L
0 ρlΩ

2Ψ sin θidxi −msΩ2Ψ(L) sin θi,
k2n+2,n+i = −

∫ L
0 ρlΩ

2Φ cos θidxi −msΩ2Φ(L) cos θi

(A3)

gi,n+i = −
∫ L

0 2ΩρlΨΦdxi − 2ΩmsΨ(L)Φ(L),
gn+i,i =

∫ L
0 2ΩρlΨΦdxi + 2ΩmsΨ(L)Φ(L),

g2n+1,i = −
∫ L

0 2ΩρlΨ sin θidxi − 2ΩmsΨ(L) sin θi,
g2n+1,n+i = −

∫ L
0 2ΩρlΦ cos θidxi − 2ΩmsΦ(L) cos θi,

g2n+2,i =
∫ L

0 2ΩρlΨ cos θidxi + 2ΩmsΨ(L) cos θi,
g2n+2,n+i = −

∫ L
0 2ΩρlΦ sin θidxi − 2ΩmsΦ(L) sin θi

(A4)

ci,i =
∫ L

0 cuΨΨdxi, cn+i,n+i =
∫ L

0 cvΦΦdxi,
c2n+1,2n+1 = cx, c2n+2,2n+2 = cy

(A5)

where i = 1, 2, . . . , n.
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The coefficients adopted in Equations (23)–(26) are defined in the followings, respectively,

mi,2n+1 =
mi,2n+1

mi,i
, mi,2n+2 =

mi,2n+2
mi,i

, ci,i =
ci,i

ωn+imi,i
, gi,n+i =

gi,n+i
ωn+imi,i

,

ω2
i =

ω2
i

ω2
n+i

, mqp =
mn+i,n+i

mi,i

(A6)

mn+i,2n+1 =
mn+i,2n+1

mn+i
, mn+i,2n+2 =

mn+i,2n+2

mn+i
, gn+i,i =

gn+i,i

ωn+imn+i,n+i
, cn+i,n+i =

cn+i,n+i

ωn+imn+i,n+i
(A7)

m2n+1,i =
m2n+1,i

m2n+1,2n+1
, m2n+1,n+i =

m2n+1,n+i
m2n+1,2n+1

, c2n+1,2n+1 =
c2n+1,2n+1

ωn+im2n+1,2n+1
,

g2n+1,i =
g2n+1,i

ωqm2n+1,2n+1
, g2n+1,n+i =

g2n+1,n+i
ωqm2n+1,2n+1

,

k2n+1,i =
k2n+1,i

ω2
n+im2n+1,2n+1

, k2n+1,n+i =
k2n+1,n+i

ω2
n+im2n+1,2n+1

, ω2
2n+1 =

ω2
2n+1

ω2
n+i

,

(A8)

m2n+2,i =
m2n+2,i

m2n+2,2n+2
, m2n+2,n+i =

m2n+2,n+i
m2n+2,2n+2

, c2n+2,2n+2 =
c2n+2,2n+2

ωn+im2n+2,2n+2
,

g2n+2,i =
g2n+2,i

ωn+im2n+2,2n+2
, g2n+2,n+i =

g2n+2,n+i
ωn+im2n+2,2n+2

,

k2n+2,i =
k2n+2,i

ω2
n+im2n+2,2n+2

, k2n+2,n+i =
k2n+2,n+i

ω2
n+im2n+2,2n+2

, ω2
2n+2 =

ω2
2n+2

ω2
n+i

(A9)

The reaction forces in the normal and tangential directions are defined as

FN,i(t) = −
∫ L

0 ρl

(∗∗
x d cos θi +

∗∗
y d sin θi +

∗∗
u i − 2Ω

∗
vi −Ω2ui

)
dxi

−ms

(∗∗
x d cos θi +

∗∗
y d sin θi +

∗∗
u i − 2Ω

∗
vi −Ω2ui

)
+Ω2ρlL

(
L
2 + dr

)
+ Ω2ms(L + dr)

−Ns,i+1 cos α + Fs,i+1 sin α + Ns,i cos α− Fs,i sin α

(A10)

and

FT,i(t) = −
∫ L

0 ρl

(
−
∗∗
x d sin θi +

∗∗
y d cos θi +

∗∗
v i + 2Ω

∗
ui −Ω2vi

)
dxi

−ms

(
−
∗∗
x d sin θi +

∗∗
y d cos θi +

∗∗
v i + 2Ω

∗
ui −Ω2vi

)
−Qi − Ns,i+1 sin α− Fs,i+1 cos α + Ns,i sin α + Fs,i cos α

(A11)

Appendix C Friction Force with Different Contact States

Three states of contact can exist on shroud interfaces during vibration:

1. There is no contact between adjacent shrouds. In this case, one has di ≤ 0(i = 1, 2, . . . , n),
and the value of the friction force on the shroud interface is zero.

2. Contact exists between the i-th (i = 1, 2, . . . , n) and (i-1)-th shrouds. In this case, one
has di > 0, and three scenarios can happen as follows.

(a) If the i-th shroud is slipping relatively to the (i-1)-th shroud, sr,i 6= 0. The
sliding friction of the i-th blade is expressed as

Fs,i = µ(sr,i)Ns,isgn(sr,i) (A12)

(b) If the i-th shroud is sticking relatively to the (i-1)-th shroud, one has sr,i = 0,
∗∗
q i =

∗∗
q i−1,

∗
pi =

∗
pi−1,

∗
qi =

∗
qi−1. In the flapwise direction the equation becomes

∗∗
q i + mn+i,2n+1

∗∗
x d + mn+i,2n+2

∗∗
y d + gn+i,i

∗
pi + cn+i,n+i

∗
qi

+qi = −Qi + Ns,i sin α + Fs,i cos α
(A13)
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The flapwise equation of the (i-1)-th blade is expressed as

∗∗
q i−1 + mn+i−1,2n+1

∗∗
x d + mn+i−1,2n+2

∗∗
y d + gn+i−1,i−1

∗
pi−1 + cn+i−1,n+i−1

∗
qi−1

+qi−1 = −Qi−1 − Ns,i sin α− Fs,i cos α
(A14)

Further, one has

qi − qi−1 = −Qi + Qi−1 + 2Ns,i sin α + 2Fs,i cos α (A15)

The static friction forces Fs,i is written as

Fs,i =
1

2 cos α

[
qi − qi−1 + Qi −Qi−1 − 2Ns,i sin α

]
(A16)

(c) If sr,i = 0 but
∣∣Fs,i

∣∣ > µ(sr,i)Ns,i, the friction force reverses its direction. At this
moment, the i-th shroud is slipping relatively to the (i-1)-th shroud.

3. There is contact between nc(nc ≥ 3) consecutive shrouds. It is assumed that the j-th
(j = i, . . . , i + nc − 2) shroud is connected to its adjacent shrouds, and thus dj > 0.
Two different statuses are differentiated in this situation.
(a) If both the j-th shrouds are sticking relatively to adjacent shrouds, sr,j = 0,

∗∗
q i−1 =

∗∗
q i = . . . =

∗∗
q i+nc−2,

∗
pi−1 =

∗
pi = . . . =

∗
pi+nc−2,

∗
qi−1 =

∗
qi = . . . =

∗
qi+nc−2. In flapwise direction of the (i + nc − 2)-th shroud, the equation of
motion reads

∗∗
q i+nc−2 + mn+i+nc−2,2n+1

∗∗
x d + mn+i+nc−2,2n+2

∗∗
y d + gn+i+nc−2,i+nc−2

∗
pi+nc−2

+ci+nc−2,i+nc−2
∗
qi+nc−2 + qi+nc−2 = −Qi+nc−2 + Ns,i+nc−2 sin α + Fs,i+nc−2 cos α

(A17)

The flapwise equation of the l-th (l = i, . . . , i + nc − 3) blade reads

∗∗
q l + mn+l,2n+1

∗∗
x d + mn+l,2n+2

∗∗
y d + gn+l,l

∗
pl + cl,l

∗
ql + ql = −Ql

−Ns,l+1 sin α− Fs,l+1 cos α + Ns,l sin α + Fs,l cos α
(A18)

The flapwise equation of the (i-1)-th blade reads

∗∗
q i−1 + mn+i−1,2n+1

∗∗
x d + mn+i−1,2n+2

∗∗
y d + gn+i−1,i−1

∗
pi−1 + ci−1,i−1

∗
qi−1

+qi−1 = −Qi−1 − Ns,i sin α− Fs,i cos α
(A19)

Based on Equations (A17)–(A19). The sticking friction force of the (i + nc − 2)-
th blade is derived, as

Fs,i+nc−2 =
1

nc cos α

{
(nc − 1)

(
qi+nc−2 + Qi+nc−2

)
−

i+nc−3

∑
j=i−1

(
qj + Qj

)
− ncNs,i+nc−2 sin α

}
. (A20)

Similarly, the static friction force of the r-th blade (r = i, . . . , i + nc − 3) is

Fs,r =
1

(r− i + 2) cos α

(r− i + 1)
(
qr + Qr

)
−

r−1
∑

j=i−1

(
qj + Qj

)
− (r− i + 2)

Ns,r sin α + (r− i + 1)
(

Ns,r sin α + Fs,r+1 cos α
)
 (A21)

(b) If the m-th shroud is slipping relatively to the (m-1)-th shroud whole other
shrouds are sticking relatively to adjacent shrouds, sr,m 6= 0. Different from
Equations (A20) and (A21), the sliding friction force of the m-th blade becomes

Fs,m = µ(sr,m)Ns,msgn(sr,m) (A22)



Machines 2023, 11, 238 20 of 21

Appendix D Process of the Dichotomy Method

The dichotomy method is used to solve the actual change moment of the contact state
of the shroud. Before solving governing Equations (23)–(26) in the paper, the state variables
of the equations at the initial moment (t0) and the current moment (tend) are given, thus,
the range (t0, tend) is the initial range of the dichotomy method. The state variable of the
equations at tend can be obtained though the Runge-Kutta method. If the contact states
at t0 and tn are different, the dichotomy method should be used to find out the actual
changing moment of the contact state, otherwise, it is not necessary. The process can be
summarized as follows:

Firstly, one defines t0,0 = t0, tend,0 = tend, dt1 = (tend − t0)/21 and tmid,1 = t0,0 + dt1,
where subscript 1 represents the first cycle of the dichotomy method.

Then, one decides whether the contact state changes on the left or right side of tmid,1. If
the state changes on the left side of tmid,1, continue to denote that t0,1 = t0,0 and tend,1 = tmid,1.
Otherwise, denote that t0,1 = tmid,1 and tend,1 = tend,0. Therefore, the range of the dichotomy
method is updated to (t0,1, tend,1).

Finally, one repeats the above process with t0,1 and tend,1 as the initial value until the
error between t0,i and tend,i is less than the specified tolerance, then tend,i is taken as the
actual change moment of the contact state.

Appendix E Parameters of the Finite Element Model

The blades and shrouds are made of the same material in ANSYS, and the gross
parameters of the finite element model are as follows:

Table A2. Gross parameters of the finite element model.

Parameter Names Value

The length and width of the blade cross section 0.01, 0.15 m
The length, width and thickness of the shroud 0.01, 0.15, 0.02 m

Density 4500 kg/m3

Young’s modulus 116 GPa
Poisson’s ratio 0.3
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