Effect of the Bionic Transverse Stripe on Wear Resistance and Crushing Performance of Cement Grinding Roller
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grinding Roller Design
2.2. Experiment Device
2.3. Experiment Methods
2.3.1. Wear Test
2.3.2. Crushing Test
3. Results
3.1. Wear Tests
3.2. Crushing Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistics of China. 2020 China Statistical Yearbook, 1st ed.; China Statistics Press: Beijing, China, 2020.
- Maxton, D.; Morley, C.; Bearman, R. A quantification of the benefits of high pressure rolls crushing in an operating environment. Miner. Eng. 2003, 16, 827–838. [Google Scholar] [CrossRef]
- Sesemann, Y.; Broeckmann, C.; Hofter, A. A new laboratory test for the estimation of wear in high pressure grinding rolls. Wear 2013, 302, 1088–1097. [Google Scholar] [CrossRef]
- Hosten, C.; Fidan, B. An industrial comparative study of cement clinker grinding systems regarding the specific energy consumption and cement properties. Powder Technol. 2012, 221, 183–188. [Google Scholar] [CrossRef]
- Chang, S.; Pyun, Y.S.; Amanov, A. Wear enhancement of wheel-rail interaction by ultrasonic nanocrystalline surface modification technique. Metals 2017, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.R.D.; Møller, P.; Jespersen, M. Corrosion of high chrome wear part materials used in vertical roller mills. Corros. Eng. Sci. Technol. 2011, 46, 790–795. [Google Scholar] [CrossRef]
- Vermeulen, L.A.; Howat, D.D. Theories of ball wear and the results of a marked-ball test in ball milling. J. S. Afr. Inst. Min. Metall. 1983, 83, 189–197. [Google Scholar]
- Adetunji, O.R.; Onawoga, D.T.; Adegbesan, O.O.; Dairo, O.U. Modification of steel roller composition to curb excessive wear. J. Fail. Anal. Prev. 2019, 19, 1655–1665. [Google Scholar] [CrossRef]
- Chen, H.X.; Kong, D.J. Effects of laser remelting speeds on microstructure, immersion corrosion, and electrochemical corrosion of arc-sprayed amorphous Al-Ti-Ni coatings. J. Alloys Compd. 2019, 771, 584–594. [Google Scholar] [CrossRef]
- Gao, M.H.; Lu, W.Y.; Yang, B.J.; Zhang, S.D.; Wang, J.Q. High corrosion and wear resistance of Al-based amorphous metallic coating synthesized by HVAF spraying. J. Alloys Compd. 2018, 735, 1363–1373. [Google Scholar] [CrossRef]
- Henao, J.; Concustell, A.; Cano, I.G.; Dosta, S.; Cinca, N.; Guilemany, J.M.; Suhonen, T. Novel Al-based metallic glass coatings by cold gas spray. Mater Desig. 2016, 94, 253–261. [Google Scholar] [CrossRef]
- Jensen, L.R.D.; Fundal, E.; Moller, P.; Jespersen, M. Wear mechanism of abrasion resistant wear parts in raw material vertical roller mills. Wear 2011, 271, 2707–2719. [Google Scholar] [CrossRef]
- Li, H.Z.; Tong, W.P.; Cui, J.J.; Zhang, H.; Chen, L.Q.; Zuo, L. Heat treatment of centrifugally cast high-vanadium alloy steel for high-pressure grinding roller. Acta Metall. Sin. -Engl. Lett. 2014, 27, 430–435. [Google Scholar] [CrossRef]
- Lanzutti, A.; Novak, J.S.; De Bona, F.; Bearzi, D.; Magnan, M.; Fedrizzi, L. Failure analysis of cemented carbide roller for cold rolling: Material characterization, numerical analysis, and material modeling. Eng. Fail. Anal. 2020, 116, 104755. [Google Scholar] [CrossRef]
- Suliga, M. The influence of the high drawing speed on mechanical-technological properties of high carbon steel wires. Arch. Metall. Mater. 2011, 56, 823–828. [Google Scholar] [CrossRef]
- Suliga, M.; Kruzel, R. The mechanical properties of high carbon steel wires drawn in conventional and hydrodynamic dies. Metalurgija 2013, 52, 43–46. [Google Scholar]
- Tan, C.L.; Zhu, H.M.; Kuang, T.C.; Shi, J.; Liu, H.W.; Liu, Z.W. Laser cladding Al-based amorphous-nanocrystalline composite coatings on AZ80 magnesium alloy under water cooling condition. J. Alloys Compd. 2017, 690, 108–115. [Google Scholar] [CrossRef]
- Xiao, B.T.; Yan, X.F.; Jiang, W.M.; Fan, Z.T.; Huang, Q.W.; Fang, J.; Xiang, J.H. Comparative study on the hardness and wear resistance of the remelted gradient layer on ductile iron fabricated by plasma transferred arc. Metals 2022, 12, 644. [Google Scholar] [CrossRef]
- Zhou, Z.D.; Zhang, Z.B.; Chen, Y.X.; Liang, X.B.; Shen, B.L. Composition optimization of Al-Ni-Ti alloys based on glass-forming ability and preparation of amorphous coating with good wear resistance by plasma spray. Surf. Coat. Technol. 2021, 408, 126800. [Google Scholar] [CrossRef]
- Abdel-Aal1, H.A.; Mansori, M.E. Tribological analysis of the ventral scale structure in a Python regius in relation to laser textured surfaces. Surf. Topogr.-Metrol. Prop. 2013, 1, 015001. [Google Scholar] [CrossRef]
- Cuervo, P.; Lopez, D.A.; Cano, J.P.; Sanchez, J.C.; Rudas, S.; Estupinan, H.; Toro, A.; Abdel-Aal, H.A. Development of low friction snake-inspired deterministic textured surfaces. Surf. Topogr.-Metrol. Prop. 2016, 4, 024013. [Google Scholar] [CrossRef]
- Han, Z.W.; Xu, X.X.; Qiu, Z.M.; Ren, L.Q. Investigation of micro-wear and micro-friction properties for bionic non-smooth concave components. J. Bionic Eng. 2005, 2, 63–67. [Google Scholar] [CrossRef]
- Han, Z.W.; Mu, Z.Z.; Yin, W.; Li, W.; Niu, S.C.; Zhang, J.Q.; Ren, L.Q. Biomimetic multifunctional surfaces inspired from animals. Adv. Colloid. Interface Sci. 2016, 234, 27–50. [Google Scholar] [CrossRef]
- Han, Z.W.; Zhu, B.; Yang, M.K.; Niu, S.C.; Song, H.L.; Zhang, J.Q. The effect of the micro-structures on the scorpion surface for improving the anti-erosion performance. Surf. Coat. Technol. 2017, 313, 143–150. [Google Scholar] [CrossRef]
- Ren, L.Q.; Han, Z.W.; Li, J.J.; Tong, J. Effects of non-smooth characteristics on bionic bulldozer blades in resistance reduction against soil. J. Terramech. 2002, 39, 221–230. [Google Scholar] [CrossRef]
- Ren, L.Q.; Han, Z.W.; Li, J.J.; Tong, J. Experimental investigation of bionic rough curved soil cutting blade surface to reduce soil adhesion and friction. Soil Tillage Res. 2006, 85, 1–12. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Gao, K.; Sun, Y.H.; Zhang, Z.H.; Zhang, S.Y.; Liang, Y.H.; Li, X.J.; Ren, L.Q. Effects of bionic units in different scales on the wear behavior of bionic impregnated diamond bits. J. Bionic Eng. 2016, 13, 659–668. [Google Scholar] [CrossRef]
- Yin, W.; Han, Z.W.; Feng, H.L.; Zhang, J.Q.; Cao, H.N.; Tian, Y. Gas-solid erosive wear of biomimetic pattern surface inspired from plant. Tribol. Trans. 2017, 60, 159–165. [Google Scholar] [CrossRef]
- Zhang, B.C.; Zhang, Z.Q.; Sun, J.W.; Shao, C. Design and wear resistance analysis of bionic roller for folding of automobile body cover parts based on pearl shell surface texture. Surf. Topogr.-Metrol. Prop. 2020, 8, 045027. [Google Scholar] [CrossRef]
- Ren, L.Q.; Liang, Y.H. The Introduction of Bionics, 1st ed.; Science Press: Beijing, China, 2016. [Google Scholar]
- Ren, L.Q. Regression Design and Optimization, 1st ed.; Science Press: Beijing, China, 2009. [Google Scholar]
- Chang, K.H.; Choi, K.K. Error analysis and mesh adaptation method for shape design of structural components. Comput. Struct. 1992, 44, 1275–1289. [Google Scholar] [CrossRef]
Factors | Depth of Stripe D/mm | Number of Stripes N | |
---|---|---|---|
Levels | |||
1 | 0.6 (1) | 60 (1) | |
2 | 0.8 (2) | 70 (2) | |
3 | 1.0 (3) | 80 (3) |
Test No. | D (mm) | N | Test No. | D (mm) | N |
---|---|---|---|---|---|
1 | 1 (0.6) | 1 (60) | 6 | 2 (0.8) | 3 (80) |
2 | 1 (0.6) | 2 (70) | 7 | 3 (1.0) | 1 (60) |
3 | 1 (0.6) | 3 (80) | 8 | 3 (1.0) | 2 (70) |
4 | 2 (0.8) | 1 (60) | 9 | 3 (1.0) | 3 (80) |
5 | 2 (0.8) | 2 (70) | Normal grinding roller |
Test No. | A Stripe Depth | B Number of Stripes | Average Wear Amount/g |
---|---|---|---|
1 | 1 (0.6) | 1 (60) | 3.745 |
2 | 1 (0.6) | 2 (70) | 3.53 |
3 | 1 (0.6) | 3 (80) | 2.27 |
4 | 2 (0.8) | 1 (60) | 2.41 |
5 | 2 (0.8) | 2 (70) | 3.485 |
6 | 2 (0.8) | 3 (80) | 3.97 |
7 | 3 (1.0) | 1 (60) | 2.305 |
8 | 3 (1.0) | 2 (70) | 2.41 |
9 | 3 (1.0) | 3 (80) | 3.5 |
2.65 | 3.92 | ||
3.29 | 3.18 | ||
2.74 | 2.91 | ||
Rj | 0.64 | 0.27 | |
Primary and secondary factors | A | B | |
Optimal combination | A1B3 |
X1 (Z1) | X2 (Z1) | X1 (Z2) | X2 (Z2) | X1 (Z1) * X1 (Z2) | X1 (Z1) * X2 (Z2) | X2 (Z1) * X1 (Z2) | X2 (Z1) * X2 (Z2) | |
---|---|---|---|---|---|---|---|---|
bj | −0.2217 | −0.1094 | 0.2133 | −0.0361 | 0.6675 | 0.1692 | −0.2833 | 0.0311 |
Sj | 0.2948 | 0.2156 | 0.2731 | 0.0235 | 1.7822 | 0.3434 | 0.9633 | 0.0348 |
Fj | 10.1109 | 7.3943 | 9.3650 | 0.805 | 61.1223 | 11.7774 | 33.038 | 1.195 |
αj | 0.1 | 0.25 | 0.1 | 0.25 | 0.01 | 0.1 | 0.05 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Wang, L.; Xu, J.; Qin, X.; Dong, X.; Wang, Q.; Qi, Y.; Jin, J.; Cong, Q.; Liu, C. Effect of the Bionic Transverse Stripe on Wear Resistance and Crushing Performance of Cement Grinding Roller. Machines 2023, 11, 239. https://doi.org/10.3390/machines11020239
Chen T, Wang L, Xu J, Qin X, Dong X, Wang Q, Qi Y, Jin J, Cong Q, Liu C. Effect of the Bionic Transverse Stripe on Wear Resistance and Crushing Performance of Cement Grinding Roller. Machines. 2023; 11(2):239. https://doi.org/10.3390/machines11020239
Chicago/Turabian StyleChen, Tingkun, Lin Wang, Jin Xu, Xiuzhang Qin, Xinju Dong, Qingbo Wang, Yingchun Qi, Jingfu Jin, Qian Cong, and Chaozong Liu. 2023. "Effect of the Bionic Transverse Stripe on Wear Resistance and Crushing Performance of Cement Grinding Roller" Machines 11, no. 2: 239. https://doi.org/10.3390/machines11020239
APA StyleChen, T., Wang, L., Xu, J., Qin, X., Dong, X., Wang, Q., Qi, Y., Jin, J., Cong, Q., & Liu, C. (2023). Effect of the Bionic Transverse Stripe on Wear Resistance and Crushing Performance of Cement Grinding Roller. Machines, 11(2), 239. https://doi.org/10.3390/machines11020239