Improved Prediction Model of the Friction Error of CNC Machine Tools Based on the Long Short Term Memory Method
Abstract
:1. Introduction
2. Model-Based Tracking Error Prediction
3. Prediction of the Nonlinear Friction Error
3.1. Achieving the Nonlinear Friction Error Based on the Transfer Function
3.2. Nonlinear Friction Error Prediction Model Based on the LSTM
3.2.1. Selection of Neural Network Models
3.2.2. Design of the LSTM
3.3. Accurate Prediction of the Tracking Error Based on the Combined Model of the Transfer Function and LSTM
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, Q.; Chen, Y.; Yang, J. On-line contour error estimation and control for corner smoothed five-axis tool paths. Int. J. Mech. Sci. 2019, 171, 105377. [Google Scholar] [CrossRef]
- Song, D.-N.; Ma, J.-W.; Jia, Z.-Y.; Qin, F.-Z.; Zhao, X.-X. Synergistic real-time compensation of tracking and contouring errors for precise parametric curved contour following systems. J. Mech. Eng. Sci. 2018, 232, 3367–3383. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, Y.; Chen, Y. Iterative pre-compensation scheme of tracking error for contouring error reduction. Int. J. Adv. Manuf. Technol. 2016, 87, 3279–3288. [Google Scholar] [CrossRef]
- Ruderman, M. Tracking control of motor drives using feedforward friction observer. IEEE Trans. Ind. Electron. 2014, 61, 3727–3735. [Google Scholar] [CrossRef]
- Chen, W.; Tomizuka, M. Dual-stage iterative learning control for MIMO mismatched system with application to robots with joint elasticity. IEEE Trans. Control Syst. Technol. 2014, 22, 1350–1361. [Google Scholar]
- Naso, D.; Cupertino, F.; Turchiano, B. NPID and adaptive approximation control of motion systems with friction. Control Syst. Technol. IEEE Trans. 2012, 20, 214–222. [Google Scholar] [CrossRef]
- Marques, F.; Woliński, Ł.; Wojtyra, M.; Flores, P.; Lankarani, H.M. An investigation of a novel LuGre-based friction force model. Mech. Mach. Theory 2021, 166, 104493. [Google Scholar] [CrossRef]
- Kikuuwe, R.; Takesue, N.; Sano, A.; Mochiyama, H.; Fujimoto, H. Fixed-step friction simulation: From classical coulomb model to modern continuous models. IEEE/RSJ Int. Conf. Intell. Robot. Syst. 2005, 1, 1009–1016. [Google Scholar]
- Tustin, A. The effects of backlash and of speed-dependent friction on the stability of closed-cycle control systems. J. Inst. Electr. Eng. 1947, 94, 143–151. [Google Scholar] [CrossRef]
- Dai, K.; Zhu, Z.; Shen, G.; Tang, Y.; Li, X.; Wang, W.; Wang, Q. Adaptive force tracking control of electrohydraulic systems with low load using the modified LuGre friction model. Control Eng. Pract. 2022, 125, 105213. [Google Scholar] [CrossRef]
- Xi, T.; Fujita, T.; Kehne, S.; Ikeda, R.; Fey, M.; Brecher, C. An extended LuGre model for estimating nonlinear frictions in feed drive systems of machine tools. Procedia CIRP 2022, 107, 452–457. [Google Scholar] [CrossRef]
- Armstrong-Hélouvry, B. Control of machines with friction. J. Tribol. 1992, 28, 1285–1287. [Google Scholar]
- Xu, J.; Li, Z.; Tang, H.; Zheng, W.; Yuan, X. Significant influence of nonlinear friction torque on motion performance of tracking turntables. Tribol. Int. 2019, 136, 148–154. [Google Scholar]
- Klaus, Z.; Igor, Z.; Victor, L. Mathematical model of a linear motor controlled by a periodic magnetic field considering dry and viscous friction. Appl. Math. Model. 2021, 89, 1155–1162. [Google Scholar]
- Shi, C.; Zhang, Z. Modification of friction for straightforward implementation of friction law. Multibody Syst. Dyn. 2019, 48, 239–257. [Google Scholar]
- Pennestri, P. Review and comparison of dry friction force models. Nonlinear Dyn. 2016, 83, 1785–1801. [Google Scholar] [CrossRef]
- Li, X.; Mabu, S.; Zhou, H.; Shimada, K.; Hirasawa, K. Genetic Network Programming with Estimation of Distribution Algorithms for class association rule mining in traffic prediction. J. Adv. Comput. Intell. Intell. Inform. 2010, 14, 1–8. [Google Scholar] [CrossRef]
- Li, X.; Mabu, S.; Zhou, H.; Shimada, K.; Hirasawa, K. Contour error modeling and compensation of CNC machining based on deep learning and reinforcement learning. Int. J. Adv. Manuf. Technol. 2022, 118, 551–570. [Google Scholar]
- Takacs, A.; Kovacs, L.; Rudas, I.J.; Precup, R.-E.; Haidegger, T. Models for force control in telesurgical robot systems. Acta Polytech. Hung. 2015, 12, 95–114. [Google Scholar]
- Shahriar, N.; Gerardo, W.F.; Seyedmeysam, K. Fuzzy logic inference-based pavement friction management and real-time slippery warning systems: A proof of concept study. Accid. Anal. Prev. 2016, 90, 41–49. [Google Scholar]
- Yao, J.; Deng, W. Active disturbance rejection adaptive control of uncertain nonlinear systems theory and application. Nonlinear Dyn. 2017, 89, 1611–1624. [Google Scholar] [CrossRef]
- Shang, D.; Li, X.; Yin, M.; Li, F. Dynamic modeling and control for dual-flexible servo system considering two-dimensional deformation based on neural network compensation. Mech. Mach. Theory 2022, 175, 104954. [Google Scholar] [CrossRef]
- Yin, H.; Wei, Y.; Zhang, Y.; Jing, P.; Cai, D.; Liu, X. Identification of control parameters of the permanent magnetic synchronous generator using least square method. Energy Rep. 2022, 8, 1538–1545. [Google Scholar] [CrossRef]
- Xi, X.-C.; Poo, A.N.; Hong, G.S. Tracking error-based static friction compensation for a bi-axial CNC machine. Precis. Eng. 2010, 34, 480–488. [Google Scholar] [CrossRef]
- Yang, M.; Yang, J.; Ding, H. A two-stage friction model and its application in tracking error pre-compensation of CNC machine tools. Precis. Eng. 2018, 58, 426–436. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, H.; Wang, Z.; Zhao, H.; Ding, H. Variable-parameter-model-based iterative pre-compensation method of the tracking error. Mech. Syst. Signal Process. 2021, 156, 107687. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Tomizuka, M. Neural-Network-based iterative learning control for multiple tasks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4178–4190. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhang, D. Improved Prediction Model of the Friction Error of CNC Machine Tools Based on the Long Short Term Memory Method. Machines 2023, 11, 243. https://doi.org/10.3390/machines11020243
Wang T, Zhang D. Improved Prediction Model of the Friction Error of CNC Machine Tools Based on the Long Short Term Memory Method. Machines. 2023; 11(2):243. https://doi.org/10.3390/machines11020243
Chicago/Turabian StyleWang, Tao, and Dailin Zhang. 2023. "Improved Prediction Model of the Friction Error of CNC Machine Tools Based on the Long Short Term Memory Method" Machines 11, no. 2: 243. https://doi.org/10.3390/machines11020243
APA StyleWang, T., & Zhang, D. (2023). Improved Prediction Model of the Friction Error of CNC Machine Tools Based on the Long Short Term Memory Method. Machines, 11(2), 243. https://doi.org/10.3390/machines11020243