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Abstract: The pantograph–catenary arc of urban rail has the characteristic of high temperature, which
directly acts on the surface of the pantograph–catenary system, will seriously ablate pantograph and
contact line, and affect the flow of the pantograph–catenary system. In this paper, based on MHD, a
mathematical model of the arcing of urban rail pantograph–catenary system is established. COMSOL
finite element software was used to simulate the arc temperature field of the pantograph–catenary arc.
Through the temperature distribution cloud diagram and related images, the relationship between
the arc central temperature, the duration, and the gap of the pantograph arc were studied. It is found
that the arc temperature increases with the increase in arc duration when the arc gap is fixed. When
the arc duration is fixed, the arc center temperature changes inversely with the increase in the arc
gap. The feasibility of the simulation model is verified by the pantograph–catenary arc experiment
platform. The research conclusion of this paper can provide a certain basis for the research of arc
erosion on the surface of the pantograph–catenary system.

Keywords: pantograph–catenary arc; COMSOL simulation; arc temperature; arc duration;
simulation model

1. Introduction

With the rapid development of China’s economy, the urbanization coverage is getting
higher and higher, and the urban traffic congestion is becoming more serious. Urban rail
transit has become the main means of transportation in the city because of its special lines,
high speed, many stations, safety and stability, and other advantages [1].

One of the main reasons to ensure the fast and stable operation of urban rail trains is
the continuous and stable power supply [2]. The close contact between the pantograph and
contact line is the key to ensure that the urban rail train can continuously and stably accept
the current. With the continuous development of urban rail trains in China, the train speed
has been increased correspondingly. At the same time, higher requirement is set for the
train to obtain current [3,4].

When the pantograph installed on the top of the train is raised by the elastic force,
the carbon slide and the contact line are in constant contact under a certain pressure, and
the loop composed of traction substation, catenary, train, and reflux is connected to make
the train obtain current continuously. The pantograph–catenary arc is a gas discharge
phenomenon caused by sudden separation of the pantograph and contact line [5,6].

When the train runs, due to the vibration between the pantograph and the contact
line, the contact line is not smooth, the wheel and rail is not smooth, and there are foreign
bodies between the pantograph–catenary and other factors, which may lead to the rapid
change of the pressure between the pantograph and contact line so that the pantograph
and the contact line are separated [7].

At the moment of offline, if the voltage added to the offline gap is greater than the
pantograph–catenary arc starting voltage, the air gap between the pantograph and contact
line will be broken down and the pantograph–catenary arc will be generated. At this
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time, the offline arc will be connected to the pantograph and the catenary and become the
weakest link in the power supply circuit [8–10].

As a high-temperature plasma, the pantograph–catenary arc will generate a large
amount of heat. When acting on the surface of the pantograph and the contact line, the
surface temperature of the material will rise rapidly, far exceeding the melting point of the
pantograph material surface, resulting in electrical ablative phenomena such as melting,
gasification, and sputtering, which will accelerate the aging of the pantograph and the contact
line and shorten the service life of materials of the pantograph–catenary system [11–13].

When the pantograph–catenary arc phenomenon is serious, it may also lead to the
break of the pantograph or contact line, interrupt the train power supply, and seriously
affect the normal operation of the train [14,15].

At present, studies on the arc temperature mainly focus on switched arc, while studies
on the pantograph arc temperature of urban railway are relatively few [16]. Hao Jing [17]
used Fluent fluid software to establish a simulation model of the pantograph arc, analyze
the arc temperature rise in the process of pantograph descent, and verify the simulation
results with a test platform. Hu Yi [18] adopted the spectral diagnosis method, infrared
imaging equipment, and the Boltzman diagram method to measure the relevant offline arc
spectral information through experiments, and then calculated the temperature change of
plasma excitation and came to the conclusion that the arc temperature would gradually
rise when the current increased. Wang Junpeng [19] found that under positive power
excitation, the pantograph–catenary arc burning time was longer than that under negative
power excitation. Lei Dong [20] improved the Cassie–Mayr series arc model, verified the
feasibility of the model through the comparison between the simulation and experiment,
and analyzed that pantograph arc voltage would increase with the offline time of the
pantograph and the speed of the locomotive.

Based on MHD, this paper first introduces the simulation and modeling process of
the pantograph–catenary arc in urban rail transit, and the hypothesis about the physical
characteristics of arc under the simulation condition is put forward, the relevant formula of
fluid heat transfer is derived, and the boundary conditions of the pantograph arc are set
up. Then, COMSOL finite element software was used to simulate the arc temperature field,
and the arc temperature distribution cloud diagram, the temperature curve of the upper
half-axis of the arc central axis, and the correlation data of the arc center temperature and
the duration were obtained. The distribution cloud diagram and the related image data
were analyzed to study the relationship between the arc temperature and duration. Finally,
the experimental data of the pantograph–catenary arc were obtained by the laboratory
platform, the corresponding relationship between the temperature and the arc duration
of the pantograph–catenary arc was analyzed, and the simulation image and data were
compared and analyzed to verify the correctness of the simulation model.

2. Establishment of Finite Element Model of Pantograph Arc
2.1. Simulation Solving Process of Pantograph Arc

The temperature field of the pantograph–catenary arc is simulated and modeled based
on COMSOL software, and the specific modeling solution process is shown in Figure 1.

2.2. Hypothesis of Related Properties of Pantograph Arc

The physical and chemical changes in the urban rail pantograph–catenary arc are
very complex. In order to approximate the actual situation as much as possible in the
simulation modeling process, facilitate the analysis of the temperature characteristics of the
arc, and simplify the calculation degree, the following assumptions are proposed for the
finite element model of the pantograph–catenary arc.

1. Only static pantograph–catenary arc is considered, that is, stable arc already exists in
the solution process.

2. The material characteristics of the pantograph–catenary system change little with
temperature, which is ignored when solving.
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3. The air solution domain in the simulation model is the ideal air domain.
4. The static pantograph arc in the model meets the requirements of local thermodynamic

equilibrium.
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Figure 1. Simulation solution flow of the pantograph arc.

2.3. Establishment of Geometric Model of Pantograph

The solution of the two-dimensional geometric model by COMSOL software is actually
the result obtained by stretching the two-dimensional model into a three-dimensional model
and then calculating.

Therefore, for the static pantograph–catenary arc, a two-dimensional geometric simpli-
fied model is adopted for simulation of the pantograph–catenary system. The arc geometry
model of pantograph and catenary is established along the contact line section, as shown in
Figure 2.
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Figure 2. Simplified model of the pantograph–catenary system.

In Figure 2, the size parameter of the contact line is set according to the contact line of
the pantograph–catenary system of the actual urban rail train. The radius is 6.5 mm. The
two grooves in the contact line are used by the wire clamp to fix the contact wire.

In the simulation model of the pantograph–catenary arc, due to the non-smooth
contact line and other factors, the pantograph will produce arc offline. It is assumed that
the maximum pantograph jitter range is 1 mm, and the maximum pantograph jitter gap is
used for simulation experiment.
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The contact wire material is set as pure copper wire, and the pantograph slide plate
material is set as pure carbon slide plate. The geometric size of the carbon slide plate is
220 ×22 mm. The specific parameters of the pantograph and catenary are shown in Table 1.

Table 1. Contact line with carbon slide parameters.

Material Density(Kg/m3)
Specific Heat

/(J/(kg·K))
Coefficient of Thermal

Conductivity /(W/(m·K))

Contact wire 8960 385 400
Carbon skateboard 2400 710 151

2.4. Heat Transfer Module Theory and Equations

In this paper, based on the heat transfer theory, the pantograph–catenary arc simu-
lation model was established. By coupling the arc-related physical field, the equations
were established and solved, and finally, the distribution of the arc temperature field was
obtained. Set the arc duration, analyze the arc temperature distribution, and get the relation-
ship between the arc duration and the arc temperature. The COMSOL simulation software
solver is set as transient in the model, which is convenient to observe the instantaneous
static arc temperature change.

During the establishment of this model, mass conservation equation, momentum
conservation equation, and energy conservation equation were followed [21,22].

1. Mass conservation equation

Mass can neither appear nor disappear, and in any physical system isolated from
its surroundings, its total mass will remain the same regardless of any change or process.
Take a micro hexahedron arbitrarily in the fluid and assume that the fluid velocity of the
hexahedron in the x, y, and z axes is u, v, and w, respectively. Mass change per unit time in
the direction of x, y and z axes:

[ρu + ∂(ρu)
∂x ∆x]∆y∆z− ρu∆y∆z = ∂(ρu)

∂x ∆x∆y∆z
[ρv + ∂(ρv)

∂y ∆y]∆x∆z− ρv∆x∆z = ∂(ρv)
∂y ∆x∆y∆z

[ρw + ∂(ρw)
∂z ∆z]∆x∆y− ρw∆x∆y = ∂(ρw)

∂z ∆x∆y∆z

(1)

The change in mass per unit volume per unit time is as follows:

∂ρ

∂t
∆x∆y∆z (2)

The mass conservation equation can be derived as follows:

∂(ρu)
∂x

∆x∆y∆z +
∂(ρv)

∂y
∆x∆y∆z +

∂(ρw)

∂z
∆x∆y∆z +

∂ρ

∂t
∆x∆y∆z = 0 (3)

To sort out:
∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (4)

The Navier–Stokes mass conservation equation is obtained as follows:

∂ρ

∂t
+∇(ρ · u) = 0 (5)

where ρ is the fluid density and u is the fluid velocity.

2. Momentum conservation equation

According to Newton’s second law, change of momentum in unit time + outgoing
momentum in unit time – incoming momentum in unit time = internal force + external force.
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Take a micro hexahedron randomly in the fluid and assume that the fluid velocity in the
three directions of the hexahedron is u, v, and w on the x, y, and z axes, respectively. Then,
the change of unit time momentum in the x, y, and z axes is shown in the equation below:

[ρu2w + ∂(ρu2w)
∂x ∆x]∆y∆z− ρu2w∆y∆z = ∂(ρu2w)

∂x ∆x∆y∆z
[ρuvw + ∂(ρuvw)

∂y ∆y]∆x∆z− ρuvw∆x∆z = ∂(ρuvw)
∂y ∆x∆y∆z

[ρuw2 + ∂(ρuw2)
∂z ∆z]∆x∆y− ρuw2∆x∆y = ∂(ρuw2)

∂z ∆x∆y∆z

(6)

The change of flow momentum per unit time per unit volume is as follows:

∂(ρu)
∂t

∆x∆y∆z (7)

The variation of force per unit time on the x, y, and z axes is shown in the equation
below: 

− ∂(σx)
∂x ∆x∆y∆z + ∂(τxy)

∂y ∆x∆y∆z + ∂(τxz)
∂z ∆x∆y∆z + X∆x∆y∆z

− ∂(σy)
∂y ∆x∆y∆z + ∂(τyx)

∂x ∆x∆y∆z + ∂(τyz)
∂z ∆x∆y∆z + Y∆x∆y∆z

− ∂(σz)
∂z ∆x∆y∆z + ∂(τzx)

∂x ∆x∆y∆z + ∂(τzy)
∂y ∆x∆y∆z + Z∆x∆y∆z

(8)

The momentum conservation equation can be written as the equation below:
ρ ∂u

∂t + u ∂u
∂x + v ∂u

∂y + w ∂u
∂z = − ∂(σx)

∂x +
∂(τxy)

∂y + ∂(τxz)
∂z + X

ρ ∂u
∂t + u ∂v

∂x + v ∂v
∂y + w ∂v

∂z = − ∂(σy)
∂y +

∂(τyx)
∂x +

∂(τyz)
∂z + Y

ρ ∂u
∂t + u ∂w

∂x + v ∂w
∂y + w ∂w

∂z = − ∂(σz)
∂z + ∂(τzx)

∂x +
∂(τzy)

∂y + Z

(9)

Navier–Stokes momentum conservation equation can be obtained by transformation
as follows:

ρ
∂u
∂t

+ ρ(u · ∇)u = ∇ · [−pI + τ] + F (10)

where ρ is the fluid density, u is the fluid velocity, p is the pressure, I is the impulse, τ is the
viscous stress, and F is the volume force.

3. Energy conservation equation

Conservation of energy is the first law of thermodynamics. It means that in a closed,
isolated system, the total energy remains the same. System energy change per unit
time = fluid transfer energy + heat transfer energy + internal heat source energy − net
work coming out of the fluid. Take a micro hexahedron in the fluid and assume that the
fluid velocity in the three directions of the hexahedron is u, v, and w on the x, y, and z axes,
respectively. Then, the change of fluid transfer energy per unit time in the x, y, and z axes is
shown in the equation below:

[ρue + ∂(ρue)
∂x ∆x]∆y∆z− ρue∆y∆z = ∂(ρue)

∂x ∆x∆y∆z
[ρve + ∂(ρve)

∂y ∆y]∆x∆z− ρve∆x∆z = ∂(ρve)
∂y ∆x∆y∆z

[ρwe + ∂(ρwe)
∂z ∆z]∆x∆y− ρwe∆x∆y = ∂(ρwe)

∂z ∆x∆y∆z

(11)

The variation of heat transfer energy per unit time in the x, y, and z axes is as follows:
[q′′x + ∂q′′x

∂x ∆x]∆y∆z− q′′x ∆y∆z = ∂q′′x
∂x ∆x∆y∆z

[q′′y +
∂q′′y
∂y ∆y]∆x∆z− q′′y ∆x∆z =

∂q′′y
∂y ∆x∆y∆z

[q′′z + ∂q′′z
∂z ∆z]∆x∆y− q′′z ∆x∆y = ∂q′′z

∂z ∆x∆y∆z

(12)
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The variation of heat source energy per unit time is as follows:

q′′′∆x∆y∆z (13)

The change in net efferent work per unit time in a fluid is as follows:{
−[σx

∂u
∂x − τxy

∂u
∂y − τxz

∂u
∂z + σy

∂v
∂y − τyx

∂v
∂x − τyz

∂v
∂z + σz

∂w
∂z − τzx

∂w
∂x − τzy

∂w
∂y ]∆x∆y∆z

−[u ∂σx
∂x − u ∂τxy

∂y − u ∂τxz
∂z + v ∂σy

∂y − v ∂τyx
∂x − v ∂τyz

∂z + w ∂σz
∂z − w ∂τzx

∂x − w ∂τzy
∂y ]∆x∆y∆z

(14)

The change in system energy per unit volume per unit time is as follows:

∂(ρe)
∂t

∆x∆y∆z (15)

The energy conservation equation can be obtained as:
∂(ρe)

∂t ∆x∆y∆z = −[ ∂(ρue)
∂x + ∂(ρve)

∂y + ∂(ρwe)
∂z ]∆x∆y∆z− [ ∂q′′x

∂x +
∂q′′y
∂y + ∂q′′z

∂z ]∆x∆y∆z+

q
′′ ′∆x∆y∆z− [σx

∂u
∂x − τxy

∂u
∂y − τxz

∂u
∂z + σy

∂v
∂y − τyx

∂v
∂x − τyz

∂v
∂z + σz

∂w
∂z − τzx

∂w
∂x − τzy

∂w
∂y ]∆x∆y∆z−

[u ∂σx
∂x − u ∂τxy

∂y − u ∂τxz
∂z + v ∂σy

∂y − v ∂τyx
∂x − v ∂τyz

∂z + w ∂σz
∂z − w ∂τzx

∂x − w ∂τzy
∂y ]∆x∆y∆z

(16)

The Navier–Stokes energy conservation equation is obtained by transformation:

ρCp
∂T
∂t

+ ρCpu · ∇T = ∇ · (k∇T) + Q + τ : S +
T
ρ
(

∂ρ

T
)

p
(

∂pa

∂t
+ u · ∇pa) (17)

where ρ is the fluid density, Cp is the specific heat capacity of the fluid at room temperature
and pressure, u is the fluid velocity, T is the temperature, k is the thermal coefficient, τ is the
viscous stress, S is the surface area, Q is the heat source term, and pa is the fluid pressure.

2.5. Setting of Initial and Boundary Conditions

In order to obtain the temperature nephogram distribution of the pantograph–catenary
arc, it is necessary to set the boundary of the arc model. The initial temperature condition
was set to 300 K, the thickness of the air solution domain was set to 50 mm, and the absolute
fluid pressure was set to 1 atm. For the surface of the pantograph–catenary system, air
convection heat transfer boundary conditions are set up because in the process of the
locomotive running faster, air flow speed is relatively fast; so, this cannot be ignored when
calculating. Choose the way to forced convection in the simulation software, the convective
heat transfer coefficient setting [23] of 100 W/m2·(K), and define the arc heat flux boundary
condition for the 1010 W/m2. In order to explore the relationship between the arc duration
and arc temperature, the arc duration was set as 0.1 s, 0.4 s, 0.7 s, and 1 s, respectively.

3. Analysis of Simulation Results

The high temperature characteristic of the pantograph–catenary arc will cause ablative
effect on the surface material of the arc system, which may cause damage to the components
of the pantograph–catenary system and affect the flow of the locomotive [24]. Therefore, it
is necessary to study the temperature distribution of the arc in the field and the relationship
between the arc temperature and duration. The arc model of the static arc was established
in COMSOL finite element software to simulate the temperature distribution of the static
arc in different duration and different gap of the arc, and then the relationship between the
arc duration and the arc temperature was analyzed.

1. In the anti-seismic software, adjust the gap between the pantograph and contact line
to 1 mm and obtain the temperature distribution cloud diagram of the pantograph–
catenary arc when t = 0.1 s, 0.4 s, 0.7 s, and 1 s, as shown in Figure 3.
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Figure 3. Temperature distribution cloud diagram of the pantograph–catenary arc (when gap is
1mm). (a) 0.1 s cloud chart of arc temperature distribution; (b) 0.4 s cloud chart of arc tempera-
ture distribution; (c) 0.7 s cloud chart of arc temperature distribution; (d) 1 s cloud chart of arc
temperature distribution.

In the simulation software, when the gap between the pantograph and contact line
is set to 1 mm, the two-dimensional transvestite is defined and the two-dimensional
transvestite is the upper half-axis of the arc central axis. The simulation software is used to
extract the temperature curves of 10 times within 0~1 s of the arc duration, as shown in
Figure 4.
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As can be seen from the temperature distribution cloud diagram of the pantograph–
catenary arc, when the gap of the arc grid is fixed at 1 mm, the arc plasma coverage area
becomes larger and the arc temperature increases with the increase in arc duration, and the
temperature in the central area of the arc is the highest, which can reach more than 8000 K.

As can be seen from the temperature curve of the axis, as the temperature of the arc
center gradually decreases from the periphery, the temperature changes the fastest between
4 mm and 12 mm.

2. When the gap is fixed at 2 mm, the temperature change of the arc duration is observed
at 0.1 s, 0.4 s, 0.7 s, and 1 s. The temperature distribution cloud diagram of the
pantograph arc is shown in Figure 5.
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When the gap of the pantograph–catenary is 2 mm, the two-dimensional transvestite
is defined in the simulation software, and the two-dimensional transvestite is defined as
the upper half-axis of the arc central axis. The simulation software is used to extract the
temperature curves for 10 durations within 0~1 s, as shown in Figure 6.

Machines 2023, 11, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 6. Temperature curve of the upper half-axis of the arc center axis (when gap is 2 mm). 

As can be seen from the temperature distribution cloud diagram in Figure 6, when 
the gap is constant at 2 mm, the arc coverage area becomes larger, and the arc temperature 
increases with the increase in the arc duration. The temperature of the arc center is the 
highest, reaching above 8000 K. As can be seen from the temperature curve of the axis, as 
the temperature of the arc center decreases gradually from the periphery, the temperature 
changes the fastest between 4 mm and 12 mm, but the maximum temperature decreases 
somewhat compared with the 1 mm gap of the pantograph–catenary arc. 
3. When the gap of the pantograph–catenary is 3 mm, the arc temperature changes 

when the arc duration is 0.1 s, 0.4 s, 0.7 s, and 1 s, and the temperature distribution 
cloud diagram is shown in Figure 7. 

  
(a) (b) 

  
(c) (d) 

Figure 7. Temperature distribution cloud diagram of the pantograph–catenary arc (when gap is 3 
mm). (a) 0.1 s cloud chart of arc temperature distribution; (b) 0.4 s cloud chart of arc temperature 
distribution; (c) 0.7 s cloud chart of arc temperature distribution; (d) 1 s cloud chart of arc 
temperature distribution. 

When the gap of the pantograph–catenary is 3 mm, two-dimensional trans sects are 
defined in the simulation software, which is defined as the upper half-axis of the arc 
central axis. The temperature curves of 10 durations within 0 s~1 s are extracted by the 
simulation software, as shown in Figure 8. 

Figure 6. Temperature curve of the upper half-axis of the arc center axis (when gap is 2 mm).

As can be seen from the temperature distribution cloud diagram in Figure 6, when
the gap is constant at 2 mm, the arc coverage area becomes larger, and the arc temperature
increases with the increase in the arc duration. The temperature of the arc center is the
highest, reaching above 8000 K. As can be seen from the temperature curve of the axis, as
the temperature of the arc center decreases gradually from the periphery, the temperature
changes the fastest between 4 mm and 12 mm, but the maximum temperature decreases
somewhat compared with the 1 mm gap of the pantograph–catenary arc.

3. When the gap of the pantograph–catenary is 3 mm, the arc temperature changes when
the arc duration is 0.1 s, 0.4 s, 0.7 s, and 1 s, and the temperature distribution cloud
diagram is shown in Figure 7.
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When the gap of the pantograph–catenary is 3 mm, two-dimensional trans sects are
defined in the simulation software, which is defined as the upper half-axis of the arc central
axis. The temperature curves of 10 durations within 0~1 s are extracted by the simulation
software, as shown in Figure 8.
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Figure 8. Temperature curve of the upper half-axis of the arc center axis (when gap is 3 mm).

As can be seen from the temperature distribution cloud diagram of the pantograph–
catenary arc, when the gap of the arch grid is 3 mm constant, the arc coverage area becomes
larger and the arc temperature rises with the increase in arc duration, and the temperature
in the central area reaches above 7000 K. As can be seen from the temperature curve, as
the temperature of the arc center decreases gradually from the periphery, the temperature
changes the fastest between 4 mm and 12 mm, but the maximum temperature decreases
somewhat compared with that between 1 mm and 2 mm of the pantograph–catenary gap.

In order to more intuitively observe the relationship between the arc duration and arc
temperature, the changes of the arc center temperature over time under the three conditions
of arc clearance of 1 mm, 2 mm, and 3 mm are listed in, Tables 2–4, respectively.
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Table 2. Simulation data of arc center temperature when pantograph gap is 1 mm.

Time(s) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Temperature(K) 4430 5570 6310 6840 7250 7590 7890 8140 8370 8580

Table 3. Simulation data of arc center temperature when pantograph gap is 2 mm.

Time(s) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Temperature(K) 3950 5030 5760 6330 6760 7100 7400 7650 7870 8080

Table 4. Simulation data of arc center temperature when pantograph gap is 3 mm.

Time(s) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Temperature(K) 3720 4750 5430 5950 6370 6710 7020 7290 7530 7740

It can be seen from the data in the table that under the condition of a certain gap of
the pantograph–catenary system, the arc temperature increases with the increase in the
duration. Under the condition of constant duration, the arc temperature decreases with the
increase in the gap.

4. Experimental Verification of Arc Simulation Model

In order to verify the reliability of the arc simulation model, the temperature charac-
teristics of the pantograph–catenary arc are studied by using the self-made pantograph–
catenary electrical contact experimental device in the laboratory. The experimental de-
vice materials and various parameter settings are consistent with the simulation model.
The schematic diagram of the pantograph–catenary arc experimental device is shown in
Figure 9. Through the rotation of the wheel and the servo motor to control the carbon
slide up and down, horizontal movement, simulate the locomotive in the operation of the
pantograph–catenary system.
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Figure 9. Schematic diagram of the pantograph–catenary arc experiment device.

The test device shown in the figure uses single-phase DC power supply. R and L are
used to simulate the load impedance of the locomotive. Current transformers and voltage
transformers are used to collect the current and voltage values of the locomotive during
operation. Because the arc temperature is very high, the spectrometer is used to collect the
arc emission spectrum to calculate the arc burning temperature, and the experimental data
of current, voltage, and arc temperature are obtained by industrial computer.

In the simulation model, it is assumed that the maximum range of pantograph jitter
of the locomotive in operation is 1 mm, 2 mm, and 3 mm. Therefore, the gap between
pantograph and catenary in the experimental device is also set as 1 mm, 2 mm, and 3 mm to
compare with the simulation data. The change of experimental arc center temperature over
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time was recorded. According to the experimental data, the computer graphics software
was used to draw the comparison curve graph between simulation and experiment, as
shown in Figure 10.
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In Figure 10, the simulation results and test results of arc temperature in different gaps
show that when the gap is fixed, the arc temperature increases with the increase in duration.
The temperature rises obviously with time between 0 s and 0.4 s, and changes slowly after
0.6 s. When the arc duration is fixed, the arc temperature decreases with the increase in
the gap.

The data comparison results show that the trend of the experimental curve is roughly
the same as that of the simulation curve, but there are slight fluctuations. This is because
the infinite setting of the air solution domain cannot be realized in the simulation process,
the change of the material characteristics of the pantograph–catenary system with the
temperature is ignored, and the influence of the joule heat generated in the contact line and
pantograph on the arc temperature is not considered. In general, it can be concluded from
both experimental and simulation data that the arc temperature increases with the increase
in arc duration. Therefore, the pantograph–catenary arc simulation model established in
this paper can reflect the actual pantograph arc temperature of urban rail.

5. Conclusions

The arc of urban rail will cause different degrees of ablative effect on the pantograph
slide and contact line. Because the arc of urban rail is accidental and the duration is short,
it is difficult to realize the on-board temperature detection. In order to investigate the
temperature distribution of arc in urban rail, the finite element software is used to establish
a simulation model of the pantograph–catenary arc in urban rail. The arc temperature
field of the arc was solved by the model, and the cloud diagram of the arc temperature
distribution, the temperature curve of the upper half-axis of the arc central axis, and the
correlation data of the arc central temperature and the arc duration were output. Then, the
relationship between arc temperature and arc duration is studied. In order to verify that
the established model can correctly reflect the temperature variation of the pantograph–
catenary arc, the temperature detection experiment of the pantograph–catenary arc in the
laboratory is carried out, and the conclusions are as follows:

1. The pantograph jigs on board, resulting in the offline of the pantograph–catenary
system. When the gap between the pantograph and contact line is fixed at 1 mm,
2 mm, and 3 mm, within 1 s, with the increase in the arc duration, the arc coverage
area increases, and the arc temperature also rises gradually. In the range of the
experimental gap, when the arc duration is constant, the larger the gap, the smaller
the arc temperature.
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2. The coverage area of the pantograph–catenary arc image obtained by the simulation
model is generally elliptical. The temperature of the arc center area is the highest,
which can reach more than 8000 K. The temperature of any point in the arc coverage
area gradually decreases with the increase in the distance from the center point, and
the temperature of the edge area is the lowest.

3. The experimental arc temperature data and the arc temperature data obtained from
the simulation model vary with the gap and duration of the arc, which verifies the
feasibility of the simulation model established in this paper for the pantograph–
catenary arc temperature analysis. However, due to the inability to realize the infinite
air solution domain in the simulation model, the failure to consider the material
characteristics of the pantograph–catenary system changing with temperature, and
the neglect of the contact line and the joule heat generated in the pantograph on the
arc impact, there are differences between the laboratory arc experimental data and the
simulation data. Therefore, there is room for further improvement of this pantograph
arc model.
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