
Citation: Chen, Y.-H.; Yang, W.-T.;

Chen, B.-H.; Lin, P.-C. Manipulator

Trajectory Optimization Using

Reinforcement Learning on a

Reduced-Order Dynamic Model with

Deep Neural Network Compensation.

Machines 2023, 11, 350. https://

doi.org/10.3390/machines11030350

Academic Editor: Zheng Chen

Received: 11 January 2023

Revised: 25 February 2023

Accepted: 27 February 2023

Published: 3 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Manipulator Trajectory Optimization Using Reinforcement
Learning on a Reduced-Order Dynamic Model with Deep
Neural Network Compensation
Yung-Hsiu Chen, Wu-Te Yang †, Bo-Hsun Chen ‡ and Pei-Chun Lin *

Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
* Correspondence: peichunlin@ntu.edu.tw
† Current address: Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA.
‡ Current address: Department of Computer Sciences, University of Wisconsin-Madison,

Madison, WI 53706, USA.

Abstract: This article reports the construction of an articulated manipulator’s hybrid dynamic model
and trajectory planning and optimization of the manipulator using deep reinforcement learning (RL)
on the dynamic model. The hybrid model was composed of a physical-based reduced-order dynamic
model, linear friction and damping terms, and a deep neural network model to compensate for the
nonlinear characteristics of the manipulator. The hybrid model then served as the digital twin of
the manipulator for trajectory planning to optimize energy efficiency and operation speed by using
RL while taking obstacle avoidance into consideration. The proposed strategy was simulated and
experimentally validated. The energy consumption along paths was reduced and the speed was
increased so the manipulator could achieve more efficient motion.

Keywords: trajectory planning; deep reinforcement learning; energy/speed optimization;
obstacle avoidance

1. Introduction

The fourth industrial revolution is strongly promoted by governments around the
world. Although industrial robots have already been widely deployed in factories for
repetitive tasks, such as loading/unloading and pick-and-place, there are many tasks in
factories that still require human operators. The use of manipulators is highly likely to
increase, and the intelligence of the manipulator will therefore become increasingly impor-
tant. For example, the smart and automatic generation of efficient or fast motion trajectories
for a manipulator is needed. Trajectory planning has been an important issue for several
decades because it strongly determines the effectiveness and cost of factory operations.
Although the issue is classic, solutions continue to evolve due to the development of new
technologies, such as artificial intelligence (AI). In the following section, related works
on the trajectory optimization of robot arms are listed, including the traditional and the
machine-learning methods.

The trajectory optimization of manipulators has been reported using the classic
method, especially for energetic optimization. Singh and Leu used dynamic program-
ming to optimize the trajectory to improve the energy efficiency and speed of one and
two degrees of freedom (DOF) manipulators [1]. Field and Stepanenko adopted itera-
tive dynamic programming for the trajectory energy optimization of a six-DOF industrial
robot [2]. Hirakawa and Kawamura optimized the trajectory energy of a three-DOF robot
arm using the cost function method [3]. Gregory et al. studied trajectory planning prob-
lems for a selective compliance articulated robot arm (SCARA) using an optimal control
method [4]. Hansen et al. optimized the trajectory for an industrial robot; they considered a
dynamic model of the robot, friction losses, and losses related to the servo and inverter [5].

Machines 2023, 11, 350. https://doi.org/10.3390/machines11030350 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11030350
https://doi.org/10.3390/machines11030350
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-9146-3817
https://doi.org/10.3390/machines11030350
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11030350?type=check_update&version=3

Machines 2023, 11, 350 2 of 24

Wigström et al. used a dynamic planning method to reduce the energy consumption of
a robot arm by 10–20% [6]. Along with some works aiming for joint torque optimiza-
tion [7,8], speed and time optimization are other popular targets. Sahar and Hollerbach
used a graph search to optimize the time-minimum path for a two-DOF robot [9]. Gas-
paretto and Zanotto optimized a trajectory by considering the integral of jerk and execution
time [10]. Rubio et al. proposed a computationally efficient algorithm to generate a time
optimal and collision-free trajectory by evolving the trajectories in a discretization space
and considering the physical constraints of industrial robots in industrial environments [11].
Ghasemi et al. translated the control problem into a nonlinear two-point boundary value
problem to calculate the time-optimal trajectories of robot arms [12]. Schulman et al. de-
veloped trajectory optimization based on the sequential convex optimization procedure
and efficient formulation of constraints to apply to various collision-free robot tasks in
simulation [13]. On the other hand, some papers dealt with the control optimization for ma-
nipulators based on dynamic models. For instance, Krivošej and Šika actuated a three-DOF
manipulator by the auxiliary cable mechanism and optimized the cable force distribution
by using the simplex and genetic algorithm (GA) based on dynamic model analysis [14].

The typical trajectory optimization problem can also be approached by
AI. Choi et al. proposed a two-phase learning algorithm to achieve global and local
trajectory optimization and obstacle avoidance for more energy-efficient aircraft naviga-
tion [15]. Garg and Kumar used a GA and simulated annealing to find the optimal trajectory
with minimum torque [16]. Tian and Collins used a GA to plan the trajectory with obstacle
avoidance [17]. Števo et al. used the GA to optimize trajectory planning for an ABB robot
arm [18]. Abu-Dakka et al. planned time-optimal trajectories for an industrial robot using
an evolutionary algorithm [19]. Among research studies on AI, machine learning with deep
neural network (DNN) models, aiding its versatility, has been utilized for the trajectory
planning problem. Glasius et al. used the neural network method to generate trajectories
with obstacle avoidance for a two-DOF robot arm [20]. Martín and Millán also utilized
DNN to calculate the inverse kinematics for a robot manipulator, which enabled the robot
to avoid obstacles [21]. Imajo et al. applied a recurrent neural network to generate obstacle-
avoidance trajectories [22]. Levine et al. used deep learning for a robot arm to perform
hand–eye coordinated grasping tasks [23]. Qiao et al. designed constraint equations for
various physical limitations and self-collision avoidance for a mobile manipulator, defined
the trajectory tracking as an optimization problem, and proposed the differential evolution
algorithm to solve it [24].

To tackle the implicit relationship between the goal and complex dynamics, rein-
forcement learning (RL) has recently become a popular method in robotics [25] and task-
oriented research. Stulp et al. used RL to generate motions for a robot manipulator for
pick-and-place tasks [26]. Cheng and Zhang used deep reinforcement learning to develop
obstacle avoidance control strategies and applied them to an unmanned marine vessel [27].
Cao et al. utilized Q-learning to construct a scalable and applicable method that can max-
imize the probability of arriving on time for vehicles in transportation systems [28]. For
trajectory optimization, Kollar and Roy used RL for dynamic programming and a sup-
port vector machine to optimize the trajectory efficiency of robot campus exploration [29].
Akrour et al. developed a model-free trajectory optimization algorithm, which back-
propagated a local Q-function, achieved a policy update in a closed form, and was deployed
for two trajectory optimization tasks in simulations [30]. Li et al. used RL based on the
path integral of dynamic movement primitive in joint space, and trained a manipulator
with visual feedback to grasp objects under external perturbations [31]. Bucinskas et al.
deployed online deep Q-learning to improve the positioning accuracy for an industrial
manipulator with various operation times, speed, and load [32].

While the energy consumption of trajectory planning algorithms largely depends on
the dynamic model of robot arms, the reported works rarely investigated physical models
and trajectory optimization simultaneously. However, many industrial tasks require the
precise estimation of the energy consumption and joint torque of the manipulator. For

Machines 2023, 11, 350 3 of 24

example, if a factory must use a manipulator to move very heavy loads, it needs to estimate
and minimize energy consumption through trajectory optimization to save on electricity
costs. In addition, the manipulator utilized in this paper was designed to carry sensors to
examine patients lying in a hospital bed. More specifically, the proposed application is a
postoperative free-flap registration and tracking system [33,34]. The goal of the application
is to monitor the condition of the free flap on the face, head, or neck after surgery. The
robot arm is set up beside the bed, and attached is an infrared camera and an RGB camera.
The image system periodically calculates the condition of the free flap. The cameras need
to keep a specific distance and angle from the free flap to obtain valid images, but the
patient might move slightly or roll over unconsciously. Therefore, the image system will
calculate where the cameras should be placed, and then the robot arm will move the
cameras to that position. Some monitors or instruments placed around the bed to measure
the patient’s health condition constitute obstacles, so the robot arm must avoid collisions
with these objects. In such scenarios, the torque values of the manipulator should be
precisely determined to meet medical safety standards and mitigate severe injuries that
could result from accidents.

To precisely know the joint torques and calculate energy consumption, the precise
dynamic model has to be figured out. Among research of robot arm dynamic model
calibration, scarce reported work combined a physical-based model with a black-box
(like DNN) model, while there exist many empirical factors in the dynamic model of
manipulators other than analytic parts. For this paper, this approach was adopted, and
the results are reported in two serial parts. The first is the development of a hybrid
dynamic model, and the second is using the deep RL method to optimize the collision-free
trajectory for energy and time consumption based on the developed dynamic model. The
contributions are summarized as follows:

• A hybrid dynamic model of the manipulator was constructed, which was composed of
an analytic three-DOF reduced-order dynamic model, linear non-idealized terms for
mechanical energy loss, and a DNN model to calibrate other non-measurable and high-
order empirical factors. While the hybrid model can largely decrease the computation
complexity of the analytic model and reduce the training load and dataset size for
DNN, it maintained high similarity to the real robot arm.

• To achieve energy efficiency with obstacle avoidance, the trajectory optimization of
the manipulator was treated as a bandit problem. A trajectory planner initialized
by a bi-directional rapidly-exploring random tree (Bi-RRT) and optimized by deep
RL was introduced to spare complex mathematical deduction and calculations of the
compound-goaled problem.

• Simulations and experiments were thoroughly conducted. In addition, performance
comparisons to GA, human-taught trajectories, and the time compression method
were executed as well. The results show that the proposed optimization method yields
better performance.

The remainder of the paper is organized as follows. Section 2 describes the hybrid
model and bounding box model of the manipulator, and Section 3 introduces the trajectory
planning and optimization using RL. Section 4 reports the results of the simulation and
experiments, and Section 5 concludes the work.

2. The Manipulator Models

The main method proposed in this paper is divided into two stages. First, the improved
dynamic model of the manipulator was proposed by using the physical and data-driven
sub-models. Then, the stateless deep reinforcement learning was utilized to optimize the
trajectory and achieve obstacle avoidance based on the improved manipulator dynamic
model. In this section, the construction of the hybrid dynamic model and the bounding box
model for collision-free trajectory planning is demonstrated. Parameters were set according
to those of the experimental validation platform, the six-DOF manipulator (TM5-900,
Techman Robot, Inc., Taoyuan City, Taiwan), as shown in Figure 1a.

Machines 2023, 11, 350 4 of 24

Machines 2023, 11, x FOR PEER REVIEW 4 of 25

bounding box model for collision-free trajectory planning is demonstrated. Parameters
were set according to those of the experimental validation platform, the six-DOF manip-
ulator (TM5-900, Techman Robot, Inc., Taoyuan City, Taiwan), as shown in Figure 1a.

Figure 1. The manipulator and the model: (a) a photograph of the manipulator for experimental
validation, (b) schematic diagram and coordinate systems of the manipulator, and (c) the three-DOF
reduced-order model of the manipulator.

2.1. The Hybrid Dynamic Model of The Manipulator
The schematic diagram and the reduced-order dynamic model of the manipulator

are shown in Figure 1b,c, respectively. The configuration design in Figure 1b is in contrast
to the conventional industrial manipulator, which features a symmetrical mechanical de-
sign for dynamic balance. Furthermore, the last three DOFs intersect at a point to avoid
singularity. Such a configuration, which supposedly offers more maneuverability, flexi-
bility, and agility, is becoming increasingly common in modern collaborative robots, such
as Sawyer [35], UR5e [36], and Panda [37]. The dynamics of the six-DOF articulated ma-
nipulator is approximated to a three-DOF reduced-order model to reduce the computa-
tion complexity. In more detail, in the general six-DOF dynamic model, the first and last
three DOFs of the manipulator are mainly used for translational and rotational motions,
respectively. To ease the process of solving the inverse kinematics, the axes of the last
three DOFs in general design of articulated manipulators are intersected with one another,
and the physical space of the manipulator that hosts these three DOFs (i.e., the waist) is
usually compact and lightweight. Thus, when the manipulator performs tasks with an
extended arm posture and large displacement, the rotational motion of the last three DOFs
has little effect on the overall dynamics. Thus, the analysis of the overall six-DOF dynam-
ics of the manipulator can be approximated by using a reduced-order three-DOF manip-
ulator model that maintains the three translational DOFs and approximates the three ro-
tational DOFs as a point mass mounted at the end of the third link. In this way, the com-
putation cost of the reduced-order model is much lower than that of the original model,
yet maintains the ability to extract the dynamic characteristics of the original manipulator.
This approximation is achievable because the manipulator in general has less mass, a
smaller size, and small motors that output less power in the last three joints compared to
the first three DOFs. Thus, the manipulator’s energy consumption is mainly the result of
the first three DOFs. Note that the mass and inertia effects of the last three DOFs with
respect to the base frame are still maintained in the reduced-order model because the mass
of the last three DOFs are preserved by the modeling of the joints as a point mass; only

Figure 1. The manipulator and the model: (a) a photograph of the manipulator for experimental
validation, (b) schematic diagram and coordinate systems of the manipulator, and (c) the three-DOF
reduced-order model of the manipulator.

2.1. The Hybrid Dynamic Model of The Manipulator

The schematic diagram and the reduced-order dynamic model of the manipulator are
shown in Figure 1b,c, respectively. The configuration design in Figure 1b is in contrast to the
conventional industrial manipulator, which features a symmetrical mechanical design for
dynamic balance. Furthermore, the last three DOFs intersect at a point to avoid singularity.
Such a configuration, which supposedly offers more maneuverability, flexibility, and agility,
is becoming increasingly common in modern collaborative robots, such as Sawyer [35],
UR5e [36], and Panda [37]. The dynamics of the six-DOF articulated manipulator is
approximated to a three-DOF reduced-order model to reduce the computation complexity.
In more detail, in the general six-DOF dynamic model, the first and last three DOFs of
the manipulator are mainly used for translational and rotational motions, respectively.
To ease the process of solving the inverse kinematics, the axes of the last three DOFs
in general design of articulated manipulators are intersected with one another, and the
physical space of the manipulator that hosts these three DOFs (i.e., the waist) is usually
compact and lightweight. Thus, when the manipulator performs tasks with an extended
arm posture and large displacement, the rotational motion of the last three DOFs has little
effect on the overall dynamics. Thus, the analysis of the overall six-DOF dynamics of the
manipulator can be approximated by using a reduced-order three-DOF manipulator model
that maintains the three translational DOFs and approximates the three rotational DOFs as
a point mass mounted at the end of the third link. In this way, the computation cost of the
reduced-order model is much lower than that of the original model, yet maintains the ability
to extract the dynamic characteristics of the original manipulator. This approximation is
achievable because the manipulator in general has less mass, a smaller size, and small
motors that output less power in the last three joints compared to the first three DOFs.
Thus, the manipulator’s energy consumption is mainly the result of the first three DOFs.
Note that the mass and inertia effects of the last three DOFs with respect to the base frame
are still maintained in the reduced-order model because the mass of the last three DOFs
are preserved by the modeling of the joints as a point mass; only the rotational kinematic
energy of the last three DOFs are ignored. This reduced-order model assumption restricts
the solution to systems similar to the application proposed in [33,34], in which the author
participated. The manipulator carries cameras at the endpoint and never changes the load
during the task, so the last three joints could be considered a lump of mass. Meanwhile,

Machines 2023, 11, 350 5 of 24

the last joints do allow relatively small rotations during the task. In addition, the proposed
algorithm can be extended to a six-DOF dynamic model as well, but the learning algorithm
requires many more computational resources and a longer training time.

The hybrid dynamic model is composed of three sub-models:

τhybrid = τanalytic + τloss + τDNN (1)

where
τanalytic = M(θ)

..
θ+ C

(
θ,

.
θ
)
+ G(θ) (2)

τloss = Bm
..
θ+ Cm

.
θ+ fc

(
sign

(.
θ
))

(3)

τDNN = DNN
(

θ,
.
θ,

..
θ
)

(4)

The vector θ is the joint angles of the first three DOFs.
The first sub-model τanalytic represents the analytic reduced-order dynamic model of

the manipulator. The model was derived using the Lagrangian method, and the symbols
M(·), C(·), and G(·) represent the inertial, centrifugal and Coriolis, and gravitational terms,
respectively. The derivation and the expanded form of the model are described in Appendix A.
The values of the associated parameters are set according to those of the TM5-900.

The second sub-model τloss compensates for the empirical energy loss caused by
the mechanical transition system, including motor rotation, damping, and friction. The
coefficients Bm, Cm, and fc are the motor inertia, the equivalent damping coefficient, and the
dynamic friction coefficient, respectively. Because these coefficients are generally implicit
and dependent on individuals, the linear regression method was utilized to determine the
coefficient values by minimizing the difference between the torques of the dynamic model
and the measured torques of the realistic manipulator τactual . That is:

[
Bm Cm fc

]
=
[..
θ

.
θ sign

(.
θ
)]+(

τactual − τanalytic

)
(5)

where + means pseudo inverse. The data on the right side were experimentally collected,
and the experiment part is described in Section 4.1.

In addition to the two sub-models based on physical dynamics, the sub-model τDNN
based on DNN was added to cover other nonlinear and higher-order dynamic behaviors
of the manipulator, such as lubricant viscosity in the bearings, the dead zone of motor
activation, and static friction. The DNN overweighs other methods for such nonlinear
and arcane problems, and it can run faster with suitable equipment. The DNN model was
trained using supervised learning. The inputs of the model include angle θ, velocity

.
θ,

and acceleration
..
θ of the first three joints of the manipulator. The labeled outputs of the

model are the residual torques τresidual between the torques of the manipulator τactual and
the torques of the physical models τanalytic + τloss. The τ̂residual represents the estimates of
the DNN model after training. τactual −

(
τanalytic + τloss

)
= τresidual

τDNN = DNN
(

θ,
.
θ,

..
θ
)
= τ̂residual

(6)

The DNN model has five hidden layers, with 256, 512, 1024, 512, and 256 neurons in
each layer, respectively. The activation functions in the hidden layers are tanh, and those of
the output layer are linear. These hyper-parameters and model structures were determined
by heuristics and experience. During the training process, the dropout rate of each hidden
layer was set to 0.5, and the Adam optimizer was utilized to minimize the mean square
error between the actual torque and the torque value generated from the DNN model.

Figure 2 depicts the overall construction flow of the hybrid dynamic model. First,
the three-DOF analytic reduced-order dynamic model was constructed given the me-

Machines 2023, 11, 350 6 of 24

chanical parameters of the manipulator from the manufacturer. Then, the joint states(
θ,

.
θ,

..
θ
)

and the torques τactual of the manipulator at each instant during motion were
collected. The torques of the analytic model τanalytic were correspondingly computed using
Equation (2). The time-series of τactual and τanalytic were utilized to calculate the coefficients

in Equation (3) by using Equation (5). Then, given the time series of joint states
(

θ,
.
θ,

..
θ
)

,
the torques of the loss model τloss were computed by using Equation (3). Next, the time
series of

(
θ,

.
θ,

..
θ
)

, τactual , τanalytic, and τloss were utilized to train the DNN model using
Equation (6). Finally, the hybrid dynamic model was constructed, as shown in Equation (1).

Machines 2023, 11, x FOR PEER REVIEW 6 of 25

square error between the actual torque and the torque value generated from the DNN
model.

Figure 2 depicts the overall construction flow of the hybrid dynamic model. First, the
three-DOF analytic reduced-order dynamic model was constructed given the mechanical
parameters of the manipulator from the manufacturer. Then, the joint states ൫𝜽, 𝜽ሶ , 𝜽ሷ ൯ and
the torques 𝝉௧௨ of the manipulator at each instant during motion were collected. The
torques of the analytic model 𝝉௬௧ were correspondingly computed using Equation
(2). The time-series of 𝝉௧௨ and 𝝉௬௧ were utilized to calculate the coefficients in
Equation (3) by using Equation (5). Then, given the time series of joint states ൫𝜽, 𝜽ሶ , 𝜽ሷ ൯, the
torques of the loss model 𝝉௦௦ were computed by using Equation (3). Next, the time series
of ൫𝜽, 𝜽ሶ , 𝜽ሷ ൯, 𝝉௧௨, 𝝉௬௧, and 𝝉௦௦ were utilized to train the DNN model using Equa-
tion (6). Finally, the hybrid dynamic model was constructed, as shown in Equation (1).

Figure 2. The overall construction framework of the hybrid dynamic model.

2.2. The Bounding Box Model and Singularity Penalty
To generate collision-free motion trajectories, the actual geometric shape of the ma-

nipulator and obstacles should be considered; however, the actual shape of each manipu-
lator link is too complicated to calculate collision in a reasonable time. Thus, oriented
bounding box techniques [38] were utilized.

Each object in the simulation environment, including the manipulator links and sur-
rounding obstacles, was enclosed by a compact oriented rectangular bounding box. The
separating axis theorem (SAT) [39] was then applied to check for dynamic collisions be-
tween any two bounding boxes [40]. In the three-dimensional case, if there was no colli-
sion of two cuboids, such as bounding boxes A and B for example, there was at least one
separating plane between them. In considering the planes spanning two edges of the two
boxes and the planes spanning two edges of the same box, there are three axes that con-
stitute the face normal from A and three axes as the face normal from B. Furthermore,

Figure 2. The overall construction framework of the hybrid dynamic model.

2.2. The Bounding Box Model and Singularity Penalty

To generate collision-free motion trajectories, the actual geometric shape of the manip-
ulator and obstacles should be considered; however, the actual shape of each manipulator
link is too complicated to calculate collision in a reasonable time. Thus, oriented bounding
box techniques [38] were utilized.

Each object in the simulation environment, including the manipulator links and
surrounding obstacles, was enclosed by a compact oriented rectangular bounding box.
The separating axis theorem (SAT) [39] was then applied to check for dynamic collisions
between any two bounding boxes [40]. In the three-dimensional case, if there was no
collision of two cuboids, such as bounding boxes A and B for example, there was at least
one separating plane between them. In considering the planes spanning two edges of the
two boxes and the planes spanning two edges of the same box, there are three axes that
constitute the face normal from A and three axes as the face normal from B. Furthermore,
there are nine axes from all the pairs of edges of A and B, with Edge 1 of A crossing Edge
1 of B, Edge 1 of A crossing Edge 2 of B, Edge 2 of A crossing Edge 1 of B, and so on.
Therefore, there were a total of 3 + 3 + 9 = 15 possible separating planes and axes that
should be checked. The flow chart showing self-collision detection is shown in Figure 3.

Machines 2023, 11, 350 7 of 24

Machines 2023, 11, x FOR PEER REVIEW 7 of 25

there are nine axes from all the pairs of edges of A and B, with Edge 1 of A crossing Edge
1 of B, Edge 1 of A crossing Edge 2 of B, Edge 2 of A crossing Edge 1 of B, and so on.
Therefore, there were a total of 3 + 3 + 9 = 15 possible separating planes and axes that
should be checked. The flow chart showing self-collision detection is shown in Figure 3.

Figure 3. The flow chart of the self-collision detection.

In the empirical implementation, the position and orientation of each link along with
the bounding box can be derived in real time using forward kinematics with known joint
angles. The position and orientation of other static or moving obstacles should be prede-
fined or detected using other sensory systems. Once the status of all the objects is known,
the link-to-link or link-to-obstacle collisions can be detected. Figure 4 illustrates a simula-
tion environment, where the manipulator and obstacles are covered by the bounding
boxes ready to check the collision status.

.

Figure 4. The manipulator covered by the bounding boxes ready to check collision, where the green
box is Link 1, the blue box is Link 2, the red box is Link 3, and the gray boxes are the combination
of Links 4 to 6.

Figure 3. The flow chart of the self-collision detection.

In the empirical implementation, the position and orientation of each link along
with the bounding box can be derived in real time using forward kinematics with known
joint angles. The position and orientation of other static or moving obstacles should be
predefined or detected using other sensory systems. Once the status of all the objects is
known, the link-to-link or link-to-obstacle collisions can be detected. Figure 4 illustrates a
simulation environment, where the manipulator and obstacles are covered by the bounding
boxes ready to check the collision status.

Machines 2023, 11, x FOR PEER REVIEW 7 of 25

there are nine axes from all the pairs of edges of A and B, with Edge 1 of A crossing Edge
1 of B, Edge 1 of A crossing Edge 2 of B, Edge 2 of A crossing Edge 1 of B, and so on.
Therefore, there were a total of 3 + 3 + 9 = 15 possible separating planes and axes that
should be checked. The flow chart showing self-collision detection is shown in Figure 3.

Figure 3. The flow chart of the self-collision detection.

In the empirical implementation, the position and orientation of each link along with
the bounding box can be derived in real time using forward kinematics with known joint
angles. The position and orientation of other static or moving obstacles should be prede-
fined or detected using other sensory systems. Once the status of all the objects is known,
the link-to-link or link-to-obstacle collisions can be detected. Figure 4 illustrates a simula-
tion environment, where the manipulator and obstacles are covered by the bounding
boxes ready to check the collision status.

.

Figure 4. The manipulator covered by the bounding boxes ready to check collision, where the green
box is Link 1, the blue box is Link 2, the red box is Link 3, and the gray boxes are the combination
of Links 4 to 6.

Figure 4. The manipulator covered by the bounding boxes ready to check collision, where the green
box is Link 1, the blue box is Link 2, the red box is Link 3, and the gray boxes are the combination of
Links 4 to 6.

Notice that the process to deal with singularities of the manipulator is similar to that
for collision avoidance. When a singularity happens, a penalty score will be given so that
the learning process knows that it is not a good trajectory. In addition, no other restrictions

Machines 2023, 11, 350 8 of 24

are placed for the lumped joints because the joints are fixed, and they also have separated
bounding boxes when calculating the collision.

3. Trajectory Optimization by Reinforcement Learning

After the model was constructed and the collision avoidance strategy was set up,
the next step was trajectory optimization for energy efficiency or motion speed, which
improves the performance of the manipulator in an empirical factory utilization.

The general motion trajectory of the manipulator is composed of key positions, in-
cluding a start point, via points, and an end point. While the start and end points are
usually known a priori, the variation of the trajectory lies in the position and time stamp
of the via points, which are the optimization variables. In between the start, via, and
end points, a cubic spline trajectory was adopted [41]. The speed limitation of the first
three joints of the manipulator was also considered and set to 180 [deg/ sec] according to
the manipulator’s operation manual [42]. In this case, a smooth trajectory (i.e., position and
velocity continuity) prevents the manipulator from wasting energy with abrupt motions
that easily reach joint torque limits; thus, the generated trajectory can be optimized for the
overall motion requirement, but it is not constrained by undesired abrupt movements.

Deep reinforcement learning was utilized for trajectory optimization because it can
spare complicated constraint setting and analytics while achieving comparably good results,
which is user-friendly for industrial users. The algorithm used here was proximal policy
optimization (PPO), proposed by OpenAI in 2017 [43]. The PPO is based on the actor-critic
structure. The actor, which is gradually optimized regarding its performance during the
training process, takes actions by changing the positions or time stamps of via points in
this case. This is followed by the critic, which gives the actor a score according to the action
it takes and guides the actor to change its action to achieve a higher score. The reward here
was set for energy or speed optimization, and the reward of the trajectory was higher if
its energy consumption or elapsed time was lower. Different trajectories have different
rewards, and the trajectory with the highest reward is the desired one. The actor-critic
structure in PPO is illustrated in Figure 5.

Machines 2023, 11, x FOR PEER REVIEW 8 of 25

Notice that the process to deal with singularities of the manipulator is similar to that
for collision avoidance. When a singularity happens, a penalty score will be given so that
the learning process knows that it is not a good trajectory. In addition, no other restrictions
are placed for the lumped joints because the joints are fixed, and they also have separated
bounding boxes when calculating the collision.

3. Trajectory Optimization by Reinforcement Learning
After the model was constructed and the collision avoidance strategy was set up, the

next step was trajectory optimization for energy efficiency or motion speed, which im-
proves the performance of the manipulator in an empirical factory utilization.

The general motion trajectory of the manipulator is composed of key positions, in-
cluding a start point, via points, and an end point. While the start and end points are
usually known a priori, the variation of the trajectory lies in the position and time stamp
of the via points, which are the optimization variables. In between the start, via, and end
points, a cubic spline trajectory was adopted [41]. The speed limitation of the first three
joints of the manipulator was also considered and set to 180 [deg/sec] according to the
manipulator’s operation manual [42]. In this case, a smooth trajectory (i.e., position and
velocity continuity) prevents the manipulator from wasting energy with abrupt motions
that easily reach joint torque limits; thus, the generated trajectory can be optimized for the
overall motion requirement, but it is not constrained by undesired abrupt movements.

Deep reinforcement learning was utilized for trajectory optimization because it can
spare complicated constraint setting and analytics while achieving comparably good re-
sults, which is user-friendly for industrial users. The algorithm used here was proximal
policy optimization (PPO), proposed by OpenAI in 2017 [43]. The PPO is based on the
actor-critic structure. The actor, which is gradually optimized regarding its performance
during the training process, takes actions by changing the positions or time stamps of via
points in this case. This is followed by the critic, which gives the actor a score according
to the action it takes and guides the actor to change its action to achieve a higher score.
The reward here was set for energy or speed optimization, and the reward of the trajectory
was higher if its energy consumption or elapsed time was lower. Different trajectories
have different rewards, and the trajectory with the highest reward is the desired one. The
actor-critic structure in PPO is illustrated in Figure 5.

Figure 5. The actor-critic structure in the proximal policy optimization (PPO).

The optimization was treated as a bandit problem or a stateless problem since the
arrangement of object position in industrial factories changes once in a long time; there-
fore, the state, containing the start point, end point, and obstacles, almost maintains con-
stant. The classic RL problem generates action data corresponding to various state data.
In contrast, each case of the trajectory planning was trained and optimized separately
without any state data inputting to the DNN. During this process, it is not necessary to
consider transition models as well. In the actor space, the algorithm adjusted the positions
of the via points for energy optimization or adjusted the timestamps of the via points for

Figure 5. The actor-critic structure in the proximal policy optimization (PPO).

The optimization was treated as a bandit problem or a stateless problem since the
arrangement of object position in industrial factories changes once in a long time; therefore,
the state, containing the start point, end point, and obstacles, almost maintains constant.
The classic RL problem generates action data corresponding to various state data. In
contrast, each case of the trajectory planning was trained and optimized separately without
any state data inputting to the DNN. During this process, it is not necessary to consider
transition models as well. In the actor space, the algorithm adjusted the positions of the
via points for energy optimization or adjusted the timestamps of the via points for speed
optimization. Then, the value function was updated by collecting action and reward data.
Finally, the data were used to update the parameters of the actor and the critic.

The DNN models in the learning algorithm contain an actor network and a critic
network. There is no input layer in the networks. Although they were tuned slightly using

Machines 2023, 11, 350 9 of 24

heuristics, the following network configurations referenced the model structure in the
original PPO paper [43]. The two networks both have two fully-connected hidden layers
based on rectified linear unit (ReLU) neurons. Both networks have 512 neurons in the
first layer and 256 neurons in the second layer. The critic network only has one neuron
in the output layer, and the action data from the actor network contain angles of the first
three manipulator joints for all via points. The output layer of the actor network parallel
includes the mean layer µ and the covariance layer σ, both as the same dimensions as
the number of action data, passing through a Gaussian probability function to increase
exploration when training [44]. In this study, RL was used to solve this optimization
problem, and the goal was to find the best via points connected by cubic equations. That
is, once the via points were determined, the trajectory was also determined. As shown in
Figure 5, the action output from the actor network led to adjustments to the via points,
and the reward given back by the dynamic model considered the collision and energy
consumption. Here, the principle was that the more serious the collision was, the more
negative the reward would be; if there was no collision, less total energy consumed by the
entire trajectory could obtain a more positive reward. The total algorithm to optimize the
via points based on PPO is depicted in Figure 6.

Machines 2023, 11, x FOR PEER REVIEW 9 of 25

speed optimization. Then, the value function was updated by collecting action and reward
data. Finally, the data were used to update the parameters of the actor and the critic.

The DNN models in the learning algorithm contain an actor network and a critic net-
work. There is no input layer in the networks. Although they were tuned slightly using
heuristics, the following network configurations referenced the model structure in the
original PPO paper [43]. The two networks both have two fully-connected hidden layers
based on rectified linear unit (ReLU) neurons. Both networks have 512 neurons in the first
layer and 256 neurons in the second layer. The critic network only has one neuron in the
output layer, and the action data from the actor network contain angles of the first three
manipulator joints for all via points. The output layer of the actor network parallel in-
cludes the mean layer 𝜇 and the covariance layer 𝜎, both as the same dimensions as the
number of action data, passing through a Gaussian probability function to increase explo-
ration when training [44]. In this study, RL was used to solve this optimization problem,
and the goal was to find the best via points connected by cubic equations. That is, once
the via points were determined, the trajectory was also determined. As shown in Figure
5, the action output from the actor network led to adjustments to the via points, and the
reward given back by the dynamic model considered the collision and energy consump-
tion. Here, the principle was that the more serious the collision was, the more negative the
reward would be; if there was no collision, less total energy consumed by the entire tra-
jectory could obtain a more positive reward. The total algorithm to optimize the via points
based on PPO is depicted in Figure 6.

Figure 6. The optimization algorithm for via points.

Figure 6. The optimization algorithm for via points.

3.1. Determination of The Initial Via Points

If there is no obstacle, the determination of the initial via points is not critical because
the follow-up optimization will adjust the position and time stamp of the via points. In
contrast, when obstacles do exist, the initially selected via points should be outside and
away from the obstacles to speed the optimization convergence. The bi-directional rapidly-
exploring random tree (Bi-RRT) [45] was utilized to find the initial via points.

Machines 2023, 11, 350 10 of 24

The details of the implementation of the Bi-RRT are described as follows. First, the
physical spaces taken by the manipulator and the obstacles were modeled as bounding
boxes, as described in Section 2.2, which were to be avoided by the Bi-RRT. Second, points
on the midplane were selected as goals for the Bi-RRT to search from the start and end
points. The midplane was defined as the plane that was normal to and intersected with
the midpoint of the line segment between the start and end points. Third, the convex hull
formed by the projected vertices of the obstacles on the midplane was computed. Then,
eight points with an equal angular distribution (i.e., 45

◦
apart) and on the boundary of

the convex hull were chosen as the initial via points. In addition, the midpoint of the line
segment between the start and end points was chosen. Finally, the Bi-RRT was utilized to
find collision-free paths that connected the start and end points to the eight goal points,
i.e., at most nine Bi-RRT paths if all searches were successful.

Because the nodes generated by the Bi-RRT were determined by the length of each
search step, not all the nodes should be the initial via points, and the node was removed if
the path without it was shorter and still collision-free. The nodes from the start point were
sequentially and individually checked and iterated until no node could be removed. The
remaining nodes were set as the initial via points.

3.2. Energy Optimization

For energy optimization, the reward was set as:

rewardE =

{
− 1

distmin
, i f collision detected

104

∑ Energy , i f collision f ree
(7)

The symbol distmin indicates the minimum distance between the two nearest bounding
boxes in the whole trajectory. The symbol ∑ Energy is the total energy consumption of the
model, which is defined as:

∑ Energy = ∑3
j=1

∫ t f =t

ti=0
τj(t)

.
θ j(t)dt (8)

where
[
ti t f

]
are the start and final time stamps of the trajectory, and

(
τj, θj

)
are the jth

joint torque and joint angle, respectively. The main idea of the reward setting shown in
Equation (7) is that if the collision occurs, then the reward is negative, and the reward
is lower if the collision is more severe. In contrast, if there is no collision, the reward is
positive, and the score is higher when the energy consumption is lower. Equation (7) can
be utilized regardless of the number of obstacles.

3.3. Speed Optimization

The speed optimization process is similar to the energy optimization process, but the
goal is to reduce the elapsed time from the start point to the end point while avoiding an
overloaded operation. The reward was set as:

rewardS =

{
−
∣∣∣τlimit − τpeak

∣∣∣, i f torque over limit
103 × timereduction, otherwise

(9)

where timereduction is the difference of time consumption before and after optimization. The
main idea of the reward setting shown in Equation (9) is that if the computed torque exceeds
the limit, the reward is negative, and the more the torque exceeds, the lower the reward. In
contrast, the reward is positive and higher if the time reduction is more significant.

Note that the energy-optimized trajectory was utilized as the initial trajectory for speed
optimization because it is collision-free, and the motion profile is relatively smooth. In this
case, the optimization aims at maintaining the same profile while increasing the magnitudes
of the motion states and torques until the manipulator achieves its torque limit [46,47].

Machines 2023, 11, 350 11 of 24

In this work, the energy and speed optimizations were executed separately because the
optimization of these two goals is generally oriented toward different optimized sets.
Therefore, rather than using a reward composed of both energy consumption and speed
objectives, energy and speed were optimized separately with different reward functions.

3.4. Genetic Algorithm

Furthermore, to compare the performance of the proposed method with classic arti-
ficial intelligence methods, GA was adopted for evaluation as well. GA mimics natural
genetic exchange rules and follows the idea of the “survival of the fittest” to generate
increasingly better offspring over several generations. In each generation loop, a set of
children, of which each consists of six lines of binary values as genes, would first be con-
verted to decimal values as six via angles, and the energy cost based on Equation (8) would
be calculated corresponding to each child. Then, the same number of children would be
randomly selected as parents of the next generation in the children set, following the rule
that the child with a lower energy cost was assigned a higher probability to be chosen.

After that, each parent would have a high probability to exchange some of their binary
elements with one of the children (selected randomly) at random element places, generating
offspring as the next generation. Through the process, parents with a lower energy cost
would generate more offspring, and finally the optimal set of via angles would appear in
the last generation. The illustration depicting the GA procedure is shown in Figure 7.

Machines 2023, 11, x FOR PEER REVIEW 11 of 25

reward. In contrast, the reward is positive and higher if the time reduction is more signif-
icant.

Note that the energy-optimized trajectory was utilized as the initial trajectory for
speed optimization because it is collision-free, and the motion profile is relatively smooth.
In this case, the optimization aims at maintaining the same profile while increasing the
magnitudes of the motion states and torques until the manipulator achieves its torque
limit [46,47]. In this work, the energy and speed optimizations were executed separately
because the optimization of these two goals is generally oriented toward different opti-
mized sets. Therefore, rather than using a reward composed of both energy consumption
and speed objectives, energy and speed were optimized separately with different reward
functions.

3.4. Genetic Algorithm
Furthermore, to compare the performance of the proposed method with classic arti-

ficial intelligence methods, GA was adopted for evaluation as well. GA mimics natural
genetic exchange rules and follows the idea of the “survival of the fittest” to generate in-
creasingly better offspring over several generations. In each generation loop, a set of chil-
dren, of which each consists of six lines of binary values as genes, would first be converted
to decimal values as six via angles, and the energy cost based on Equation (8) would be
calculated corresponding to each child. Then, the same number of children would be ran-
domly selected as parents of the next generation in the children set, following the rule that
the child with a lower energy cost was assigned a higher probability to be chosen.

After that, each parent would have a high probability to exchange some of their bi-
nary elements with one of the children (selected randomly) at random element places,
generating offspring as the next generation. Through the process, parents with a lower
energy cost would generate more offspring, and finally the optimal set of via angles would
appear in the last generation. The illustration depicting the GA procedure is shown in
Figure 7.

Figure 7. The genetic algorithm (GA) procedure as the compared baseline. More detailed concepts
of GA can refer to [48].

4. Simulation and Experiment Results
In this section, the experiment results related to the hybrid dynamic model described

in Section 2 are first demonstrated. Then, the simulation and experiment results related to
the trajectory optimization described in Section 3 are reported.

Figure 7. The genetic algorithm (GA) procedure as the compared baseline. More detailed concepts of
GA can refer to [48].

4. Simulation and Experiment Results

In this section, the experiment results related to the hybrid dynamic model described
in Section 2 are first demonstrated. Then, the simulation and experiment results related to
the trajectory optimization described in Section 3 are reported.

4.1. Performance of The Hybrid Dynamic Model

The construction of the hybrid dynamic model requires measurements of various states
of the manipulator as described in Section 2, including joint angles, velocities, accelerations,
and torques. Due to the necessity for motion data (i.e., velocity and acceleration), it
was efficient to collect the required data while the manipulator was moving according
to preset trajectories containing variations of joint orientation, velocity, and acceleration.
The trajectories were randomly chosen within the robot’s workspace, and the trajectories
were set bidirectionally and with various speeds to cover a wide range of joint motions.

Machines 2023, 11, 350 12 of 24

Figure 8a,b, drawn using Python and Matplotlib, show the training trajectory data groups,
T1 and T2, each with five trajectories. The collected data at each instant (i.e., time stamp)
were considered as one data set, and each trajectory contained 50 to 150 data sets. In total,
10,306 data sets were collected, of which 70% and 30% were used for training and validation
in the DNN model training, respectively. The model was trained for 100 epochs, and the
loss stabilized after the 15th epoch.

Machines 2023, 11, x FOR PEER REVIEW 12 of 25

4.1. Performance of The Hybrid Dynamic Model
The construction of the hybrid dynamic model requires measurements of various

states of the manipulator as described in Section 2, including joint angles, velocities, ac-
celerations, and torques. Due to the necessity for motion data (i.e., velocity and accelera-
tion), it was efficient to collect the required data while the manipulator was moving ac-
cording to preset trajectories containing variations of joint orientation, velocity, and accel-
eration. The trajectories were randomly chosen within the robot’s workspace, and the tra-
jectories were set bidirectionally and with various speeds to cover a wide range of joint
motions. Figure 8a,b, drawn using Python and Matplotlib, show the training trajectory
data groups, T1 and T2, each with five trajectories. The collected data at each instant (i.e.,
time stamp) were considered as one data set, and each trajectory contained 50 to 150 data
sets. In total, 10,306 data sets were collected, of which 70% and 30% were used for training
and validation in the DNN model training, respectively. The model was trained for 100
epochs, and the loss stabilized after the 15th epoch.

Figure 8. The trajectory data groups used for constructing the DNN model of the manipulator. The
training trajectories T1 shown in (a) and T2 shown in (b). The evaluation trajectories E1 shown in
(c) and E2 shown in (d).

The performance of the DNN sub-model was evaluated using the ten different tra-
jectories, as shown in Figure 8c,d drawn using Python and Matplotlib. The means and
standard deviations (STD) of the energy errors between the dynamic model and the ma-
nipulator were utilized for comparison, and the experiment results are shown in Table 1.
Three scenarios were compared: the analytic reduced-order model without any fitting
(i.e., 𝜏௬௧), the analytic model with energy compensation (i.e., 𝜏௬௧ + 𝜏௦௦), and
the hybrid dynamic model with energy compensation and the DNN model (i.e., 𝜏௬ௗ =𝜏௬௧ + 𝜏௦௦ + 𝜏ேே). Using 𝜏௬௧ as the baseline, the averaged energy error of Joints
1 to 3 of the model 𝜏௬௧ + 𝜏௦௦ conceivably reduced by 100%, 69.8%, and 23.4%, re-
spectively, and the overall energy error was reduced by 90.6%. The reduction of Joint 1 is
most significant, because the joint supports the heaviest weight and inertia of the manip-
ulator, so it ameliorates the most by 𝜏௦௦. Next, with the added DNN term, the averaged
energy error of Joints 2 and 3 of the complete model further decreased by 68.6% and 98.4%,

Figure 8. The trajectory data groups used for constructing the DNN model of the manipulator. The
training trajectories T1 shown in (a) and T2 shown in (b). The evaluation trajectories E1 shown in (c)
and E2 shown in (d).

The performance of the DNN sub-model was evaluated using the ten different trajecto-
ries, as shown in Figure 8c,d drawn using Python and Matplotlib. The means and standard
deviations (STD) of the energy errors between the dynamic model and the manipulator were
utilized for comparison, and the experiment results are shown in Table 1. Three scenarios
were compared: the analytic reduced-order model without any fitting (i.e., τanalytic), the ana-
lytic model with energy compensation (i.e., τanalytic + τloss), and the hybrid dynamic model
with energy compensation and the DNN model (i.e., τhybrid = τanalytic + τloss + τDNN).
Using τanalytic as the baseline, the averaged energy error of Joints 1 to 3 of the model
τanalytic + τloss conceivably reduced by 100%, 69.8%, and 23.4%, respectively, and the over-
all energy error was reduced by 90.6%. The reduction of Joint 1 is most significant, because
the joint supports the heaviest weight and inertia of the manipulator, so it ameliorates the
most by τloss. Next, with the added DNN term, the averaged energy error of Joints 2 and
3 of the complete model further decreased by 68.6% and 98.4%, respectively. The overall
energy error was further reduced by 89.0%. In short, both the loss model and the DNN
model significantly improved the accuracy of the dynamic model of the manipulator.

Furthermore, to examine the influence of the quantity of training data sets on the
performance of the DNN model, the training and evaluating trajectory data groups, T1, T2,
E1, and E2, shown in Figure 4, were separately utilized. Figure 9, drawn using Python and
Matplotlib, depicts the errors of the manipulator energy consumption (Eerror) and the root
mean square errors (RMSE) of the joint torques (τRMSE) between the manipulator and the
dynamic model. The results show that the model trained by a larger training set, T1+T2,
has smaller total energy error means and STDs than those trained by a smaller set, T1 or T2,

Machines 2023, 11, 350 13 of 24

because the larger data set covers a larger variation for training. This also can be roughly
observed in the RMSE of torques. There is no obvious trend to make conclusions among
different evaluation data sets.

Table 1. The energy consumption discrepancy between the empirical manipulator and the models
with different compensation terms.

Error [J] Joint 1 Joint 2 Joint 3 Total

τanalytic
mean −18.20 −2.32 −1.67 −22.20
STD 8.89 5.13 10.10 14.00

τanalytic + τloss
mean 0.00 −0.70 −1.28 −2.09
STD 1.09 1.13 0.97 1.76

τhybrid
mean −0.03 −0.22 0.02 −0.23
STD 0.87 1.01 0.48 1.42

Machines 2023, 11, x FOR PEER REVIEW 13 of 25

respectively. The overall energy error was further reduced by 89.0%. In short, both the
loss model and the DNN model significantly improved the accuracy of the dynamic
model of the manipulator.

Table 1. The energy consumption discrepancy between the empirical manipulator and the models
with different compensation terms.

 Error [J] Joint 1 Joint 2 Joint 3 Total 𝜏௬௧ mean −18.20 −2.32 −1.67 −22.20
STD 8.89 5.13 10.10 14.00 𝜏௬௧+ 𝜏௦௦

mean 0.00 −0.70 −1.28 −2.09
STD 1.09 1.13 0.97 1.76 𝜏௬ௗ mean −0.03 −0.22 0.02 −0.23
STD 0.87 1.01 0.48 1.42

Furthermore, to examine the influence of the quantity of training data sets on the
performance of the DNN model, the training and evaluating trajectory data groups, T1,
T2, E1, and E2, shown in Figure 4, were separately utilized. Figure 9, drawn using Python
and Matplotlib, depicts the errors of the manipulator energy consumption (𝐸) and the
root mean square errors (RMSE) of the joint torques (𝜏ோெௌா) between the manipulator and
the dynamic model. The results show that the model trained by a larger training set,
T1+T2, has smaller total energy error means and STDs than those trained by a smaller set,
T1 or T2, because the larger data set covers a larger variation for training. This also can be
roughly observed in the RMSE of torques. There is no obvious trend to make conclusions
among different evaluation data sets.

Figure 9. The errors of the manipulator energy consumption and the RMSE of the joint torques.
Subfigures (a–c) are the results using the evaluating trajectory data groups, E1, E2, and E1 + E2,
respectively. In each subfigure, three bars represent the performance of the hybrid model by training
data groups T1, T2, and T1 + T2, where black lines are plus and minus one STD and colored bars are
mean values.

In this work, the DNN training process did not include variations in payload, but the
experiments did evaluate the manipulator with various payloads. The results are shown
in Table 2. The similarity of the results across tests with different payloads indicates that
no matter how the payload increases, the added sub-models, 𝜏௦௦ and 𝜏ேே, can reduce
the energy and torque errors. This further indicates that the regression and the DNN train-
ing process successfully learned the intrinsic mechanical and dynamic characteristics of
the manipulator rather than overfitting to the characteristics of free motion without any

Figure 9. The errors of the manipulator energy consumption and the RMSE of the joint torques.
Subfigures (a–c) are the results using the evaluating trajectory data groups, E1, E2, and E1 + E2,
respectively. In each subfigure, three bars represent the performance of the hybrid model by training
data groups T1, T2, and T1 + T2, where black lines are plus and minus one STD and colored bars are
mean values.

In this work, the DNN training process did not include variations in payload, but the
experiments did evaluate the manipulator with various payloads. The results are shown
in Table 2. The similarity of the results across tests with different payloads indicates that
no matter how the payload increases, the added sub-models, τloss and τDNN , can reduce
the energy and torque errors. This further indicates that the regression and the DNN
training process successfully learned the intrinsic mechanical and dynamic characteristics
of the manipulator rather than overfitting to the characteristics of free motion without any
payload. The results also show that as the payload increases, the errors also increase, which
indicates that the payloads do affect the dynamic model. If the payloads are known a priori,
the motion of the manipulator subjected to these specific payloads can be included in the
DNN model training to improve model accuracy.

Machines 2023, 11, 350 14 of 24

Table 2. The energy consumption discrepancy and joint root mean square error (RMSE) torque
between the empirical manipulator and the models with different payloads.

Error
Payload 516 gw 1029 gw 1544 gw

τanalytic τanalytic+τloss τhybrid τanalytic τanalytic+τloss τhybrid τanalytic τanalytic+τloss τhybrid

Eerror
[J]

mean −18.60 −5.54 −1.98 −19.50 −6.54 −2.96 −19.70 −6.89 −3.31
STD 5.62 2.44 0.93 5.54 2.69 1.17 5.21 3.11 1.54

τRMSE
[Nm]

mean 10.50 5.01 4.21 10.90 5.43 4.48 11.10 5.72 4.68
STD 1.00 1.28 0.35 1.15 1.43 0.47 1.29 1.58 0.51

4.2. Simulation Results of Trajectory Optimization

Before the empirical implementation on the manipulator, the performance of RL
for energy and speed optimization was evaluated in a simulation environment. The
computer used here had an Intel® CoreTM i9-9900K processor, NVIDIA GeForce RTX-2070
8 GB, and 32 GB RAM. The joint angles of the model at the start and final positions were(
50.0

◦
, 0.0

◦
,−120.0

◦)
and

(
80.0

◦
, 30.0

◦
,−90.0

◦)
, respectively, with setting the trajectory

elapsed time at 0.65 s. The classic optimization methods in robotics [49], GA, and brute
force search were used for comparison. The generation number in GA was set to 200,
and each generation contained 100 offspring, with mapping decimal values to 10 bits
of binary representation as the genes. Notice that GA here could not be implemented
through parallel computing, such as PyCUDA, since when calculating the torque values
from the NN for each child in the stage of computing fitness, it occupied a large number of
threads on the graphic card. Therefore, the graphic card could compute the fitness for only
one child once. The resolution in the brute force search is 1.5◦, with the via point values
ranging among the start and final positions. Equally divided segments between the initial
and final points were set as initial conditions for the RL method and as a baseline for all
optimization algorithms, and each algorithm, except for brute force, was run three times
with different random seeds to obtain averaged values.

Table 3 shows the simulation comparison results for energy optimization in tasks
with two via points and without obstacles. Unsurprisingly, the brute force search yielded
the best energy consumption of 45.46 J. The GA and the proposed algorithm yields were
45.73 J and 46.68 J, respectively, which are 0.6% and 2.7% more than the brute force method;
however, considering computation time, the brute force method took about 100 times of GA,
and GA took about 10 times of RL, even though RL had 2.5 times the iteration number of
GA. By taking computing the energy for one trajectory as one step, and analyzing the time
complexity for each algorithm, the brute force method took 116 = 1,771,561 steps. In GA,
since each generation had 100 offspring to compute energy, and had 200 generations, it took
20,000 steps. RL only took one step for each episode with 500 episodes because it optimized
the policy based on the gradient descent method, leveraging a fast calculation of GPU.

Table 3. Simulation results of the energy optimization task.

Via Points Energy [J] Time [s] Energy
Improvement

Initial
(
60.0

◦
, 10.0

◦
,−110.0

◦)(
70.0

◦
, 20.0

◦
,−100.0

◦) 51.11

Brute Force
(
59.0

◦
, 10.5

◦
,−112.5

◦)(
72.5

◦
, 22.5

◦
,−99.0

◦) 45.46 40656 11.05%

GA
(
59.7

◦
, 10.7

◦
,−112.4

◦)(
72.4

◦
, 22.9

◦
,−98.6

◦) 45.73 417 10.53%

RL
(
59.2

◦
, 12.4

◦
,−115.2

◦)(
72.6

◦
, 24.1

◦
,−99.9

◦) 46.68 33 8.67%

Machines 2023, 11, 350 15 of 24

Energy optimization in tasks with one obstacle, which was placed to interfere with
the initial trajectory, was also conducted. In this case, the Bi-RRT initially generated seven
sets of via points to build initial trajectories, and all seven trajectories were optimized for
100 epochs first. Afterwards, for each following 100 epochs, only one of the trajectories
was randomly selected for optimization, where the likelihood of selection depended on
the learning performance of the previous 100 epochs. There were 2100 epochs in total. For
comparison, the GA was used with the target function shown in Equation (7), 100 offspring
in each generation, and a total of 2000 generations. Figure 10, drawn using MATLAB,
shows the simulation results. For the GA method, the offspring initially had diverse energy
consumptions and then mostly converged to lower energy values in the final generation.
In the final generation, the energy of the trajectory that could circumvent the obstacle
was 54.08 J, and the total computing time was about two hours. For the proposed RL
method, Trajectory 3 yielded the least energy at 58.08 J, and it was chosen to optimize for
three multiples of 100 epochs. The total computation time was about five minutes. Similarly,
although the energy result of RL was slightly larger than that of GA by 7%, the computing
time was only 1/24 of the GA under the same generation number.

Machines 2023, 11, x FOR PEER REVIEW 15 of 25

GA (59.7°, 10.7°, −112.4°) (72.4°, 22.9°, −98.6°) 45.73 417 10.53%

RL (59.2°, 12.4°, −115.2°) (72.6°, 24.1°, −99.9°) 46.68 33 8.67%

Energy optimization in tasks with one obstacle, which was placed to interfere with
the initial trajectory, was also conducted. In this case, the Bi-RRT initially generated seven
sets of via points to build initial trajectories, and all seven trajectories were optimized for
100 epochs first. Afterwards, for each following 100 epochs, only one of the trajectories
was randomly selected for optimization, where the likelihood of selection depended on
the learning performance of the previous 100 epochs. There were 2100 epochs in total. For
comparison, the GA was used with the target function shown in Equation (7), 100 off-
spring in each generation, and a total of 2000 generations. Figure 10, drawn using
MATLAB, shows the simulation results. For the GA method, the offspring initially had
diverse energy consumptions and then mostly converged to lower energy values in the
final generation. In the final generation, the energy of the trajectory that could circumvent
the obstacle was 54.08 J, and the total computing time was about two hours. For the pro-
posed RL method, Trajectory 3 yielded the least energy at 58.08 J, and it was chosen to
optimize for three multiples of 100 epochs. The total computation time was about five
minutes. Similarly, although the energy result of RL was slightly larger than that of GA
by 7%, the computing time was only 1/24 of the GA under the same generation number.

Figure 10. The total energy consumption of the model versus the computation epoch using the RL
algorithm and GA. The proposed RL learning algorithm utilizes seven initial trajectories found by
Bi-RRT.

Based on Section 3.3, the performance of RL for speed optimization was also evalu-
ated in the simulated task with one obstacle, and Figure 11, drawn using Python and Mat-
plotlib, shows the simulation results with three trials under the same condition. The initial
elapsed time was one second, and time consumption after optimization was reduced to
0.62, 0.64, and 0.63 s, respectively, because the torques after learning were apparently
closer to the torque limits and were distributed appropriately to speed up the task as much
as possible.

Figure 10. The total energy consumption of the model versus the computation epoch using the
RL algorithm and GA. The proposed RL learning algorithm utilizes seven initial trajectories found
by Bi-RRT.

Based on Section 3.3, the performance of RL for speed optimization was also evaluated
in the simulated task with one obstacle, and Figure 11, drawn using Python and Matplotlib,
shows the simulation results with three trials under the same condition. The initial elapsed
time was one second, and time consumption after optimization was reduced to 0.62, 0.64,
and 0.63 s, respectively, because the torques after learning were apparently closer to the
torque limits and were distributed appropriately to speed up the task as much as possible.

4.3. Experimental Results of Energy Optimization

After simulation, an experimental task on the realistic platform was set up to evaluate
the performance of the proposed strategy, wherein the robot needed to move from the
start position to the end position while avoiding one obstacle placed on top of a desk.
The start and end configurations of the manipulator are shown in Figure 12. For the
purpose of comparison, in addition to the trajectory generated by the proposed strategy,
three testers were invited, and each designed five collision-free and intuitively energy-
saving trajectories using the built-in teaching mode of the manipulator. Then, the five sets
of via points selected by each tester were utilized to generate trajectories using cubic spline

Machines 2023, 11, 350 16 of 24

interpolation. The elapsed time for each trajectory was set to four seconds. At the same
time, the kinematics data of the manipulator were also collected as input of the hybrid
dynamic model to verify the model’s accuracy by comparing the energy consumption of
the dynamic model with the manipulator.

Machines 2023, 11, x FOR PEER REVIEW 16 of 25

Figure 11. The joint torque profiles of the model (a) before and (b) after speed optimization. The
rows represent three different trials. The black solid lines represent the torque limits.

4.3. Experimental Results of Energy Optimization
After simulation, an experimental task on the realistic platform was set up to evaluate

the performance of the proposed strategy, wherein the robot needed to move from the
start position to the end position while avoiding one obstacle placed on top of a desk. The
start and end configurations of the manipulator are shown in Figure 12. For the purpose
of comparison, in addition to the trajectory generated by the proposed strategy, three test-
ers were invited, and each designed five collision-free and intuitively energy-saving tra-
jectories using the built-in teaching mode of the manipulator. Then, the five sets of via
points selected by each tester were utilized to generate trajectories using cubic spline in-
terpolation. The elapsed time for each trajectory was set to four seconds. At the same time,
the kinematics data of the manipulator were also collected as input of the hybrid dynamic
model to verify the model’s accuracy by comparing the energy consumption of the dy-
namic model with the manipulator.

Figure 11. The joint torque profiles of the model (a) before and (b) after speed optimization. The
rows represent three different trials. The black solid lines represent the torque limits.

Table 4, where Act. indicates values from the real manipulator and Mo. means values
from the hybrid dynamic model, shows the energy consumptions of the manipulator that
used the paths generated by the three testers and the RL method described in Section 3. For
each tester and RL, the raw data of five trials and their mean and STD were presented. The
results show that testers tended to design different trajectories to avoid the obstacles, so the
STDs are high. In contrast, the trajectories from RL have consistent energy costs with small
deviations. The table clearly shows that the trajectories designed by the testers consumed
more energy than those designed by the RL. Among all 15 trajectories, 14 had a higher
energy cost than that of the trajectories designed by the RL. On the other hand, the RMSEs
between the hybrid dynamic model results and the experiment results of the testers and RL
were 0.76 and 1.12, respectively, which confirms that the model can accurately predict the
energy consumption with an error of less than 4% in this case.

Machines 2023, 11, 350 17 of 24
Machines 2023, 11, x FOR PEER REVIEW 17 of 25

Figure 12. The (a) start and (b) end configurations of the manipulator in the experiment. The red
shaded box is the obstacle placed on top of a desk, which is shown as transparent. The solid boxes
represent the bounding boxes of the manipulator. (c) A photograph of the experimental setup.

Table 4, where Act. indicates values from the real manipulator and Mo. means values
from the hybrid dynamic model, shows the energy consumptions of the manipulator that
used the paths generated by the three testers and the RL method described in Section 3.
For each tester and RL, the raw data of five trials and their mean and STD were presented.
The results show that testers tended to design different trajectories to avoid the obstacles,
so the STDs are high. In contrast, the trajectories from RL have consistent energy costs
with small deviations. The table clearly shows that the trajectories designed by the testers
consumed more energy than those designed by the RL. Among all 15 trajectories, 14 had
a higher energy cost than that of the trajectories designed by the RL. On the other hand,
the RMSEs between the hybrid dynamic model results and the experiment results of the
testers and RL were 0.76 and 1.12, respectively, which confirms that the model can accu-
rately predict the energy consumption with an error of less than 4% in this case.

Table 4. The energy consumptions of the manipulator using human-taught and reinforcement
learning (RL)-learned trajectories.

Energy [J]
Tester 1 Tester 2 Tester 3 RL

Act. Mo. Act. Mo. Act. Mo. Act. Mo.
Trial 1 36.5 36.0 84.4 84.9 37.9 37.2 34.0 31.8
Trial 2 62.9 61.7 39.7 38.8 52.9 51.8 32.1 31.9
Trial 3 37.2 36.5 47.6 47.1 34.8 34.0 33.6 33.2
Trial 4 52.9 52.0 37.9 37.3 90.9 90.9 32.8 31.7
Trial 5 33.9 33.1 84.6 84.7 41.8 40.8 33.1 32.9
mean 44.7 43.9 58.8 58.6 51.6 50.9 33.1 32.3
STD 12.6 12.4 23.7 24.2 23.0 23.3 0.7 0.7

In addition to the use of Bi-RRT generated via points for optimization, the two colli-
sion-free via points selected by the testers could also be utilized as the initial via points
for optimization. Table 5 shows the original and optimized energy consumptions of five
trajectories taught by Tester 1 before optimization. The energy consumption improved for
all five trajectories by approximately 20% on average. Note that the energy consumption

Figure 12. The (a) start and (b) end configurations of the manipulator in the experiment. The red
shaded box is the obstacle placed on top of a desk, which is shown as transparent. The solid boxes
represent the bounding boxes of the manipulator. (c) A photograph of the experimental setup.

Table 4. The energy consumptions of the manipulator using human-taught and reinforcement
learning (RL)-learned trajectories.

Energy [J]
Tester 1 Tester 2 Tester 3 RL

Act. Mo. Act. Mo. Act. Mo. Act. Mo.

Trial 1 36.5 36.0 84.4 84.9 37.9 37.2 34.0 31.8
Trial 2 62.9 61.7 39.7 38.8 52.9 51.8 32.1 31.9
Trial 3 37.2 36.5 47.6 47.1 34.8 34.0 33.6 33.2
Trial 4 52.9 52.0 37.9 37.3 90.9 90.9 32.8 31.7
Trial 5 33.9 33.1 84.6 84.7 41.8 40.8 33.1 32.9

mean 44.7 43.9 58.8 58.6 51.6 50.9 33.1 32.3
STD 12.6 12.4 23.7 24.2 23.0 23.3 0.7 0.7

In addition to the use of Bi-RRT generated via points for optimization, the
two collision-free via points selected by the testers could also be utilized as the initial via
points for optimization. Table 5 shows the original and optimized energy consumptions of
five trajectories taught by Tester 1 before optimization. The energy consumption im-
proved for all five trajectories by approximately 20% on average. Note that the energy
consumption was a little higher than that of the via points initialized by Bi-RRT in Table 4
because the number of via points was fixed in this case, which imposed stronger constraints
on optimization.

Table 5. The energy consumption of the RL-learned trajectories using initial via points selected by
Tester 1.

Energy [J] Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean

Tester 1 36.5 62.9 37.2 52.9 33.9 44.7
RL-learned 32.4 35.6 32.5 46.3 32.2 35.8

Machines 2023, 11, 350 18 of 24

4.4. Experimental Results of Speed Optimization

Under the same experimental setup as that described in Section 4.2, the yielded energy-
efficient trajectories were further computed for speed optimization, i.e., reducing motion
time. To evaluate the performance of the proposed speed optimization, a baseline trajectory
was designed that individually compressed the elapsed time of all trajectory sections until
the joint reached its torque limit. Hereafter, this method is referred to as “time compression
(TC)” for comparison.

Table 6 compares the optimized time of the trajectories using TC and RL. The original
elapsed time was four seconds, and the average optimized times using TC and RL were
1.57 ± 0.14 and 1.14 ± 0.12 s, respectively. The performance of the RL method is better than
that of the TC method by approximately 27%. To examine this in more detail, Figure 13a
manifests the joint torques of the hybrid dynamic model and the manipulator before and
after speed optimization in one trial. By comparing the values of the model before and
after optimization, RL magnified torque values within the torque limitation to speed up
the task, rendering the torque profile more severe. In addition, it is difficult to simulate the
initial and high-frequency responses of the actual torque profiles in the dynamic model.

Machines 2023, 11, x FOR PEER REVIEW 19 of 25

Figure 13. The speed optimization results. From the top: the joint torque profiles of the hybrid model
before (1st row) and after (2nd row) speed optimization and of the manipulator (3rd row). The pro-
files shown in (a,b) were optimized from different energy-optimized trajectories: (a) using Bi-RRT
generated via points and (b) using human-taught via points. All plots were drawn using Python
and Matplotlib.

Similar to the concept of Table 5, the energy-optimized trajectories based on tester-
selected via points for simplicity could also be set as the initial trajectories for speed opti-
mization, and the optimized time of the five energy-optimized trajectories using via points
selected by Tester 1 are shown in Table 7. On average, the optimized times for TC and RL
were 1.67 and 1.29 s, respectively, and the latter was better than the former by 23%. With
further observation, Figure 13b shows the joint torques of the model and the manipulator
before and after the speed optimization of the case, and the results were similar to those
of Figure 13a.

Table 7. The results of speed optimization using via points selected by Tester 1.

Time [s] Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean
TC 1.31 2.05 1.44 2.25 1.31 1.67
RL 1.00 1.62 1.08 1.70 1.04 1.29

Improve 23.7% 21.0% 25.0% 24.4% 20.6% 22.9%

5. Conclusions
This article has reported the construction of the hybrid dynamic model as the digital

twin and strategy to optimize the energy and speed of a manipulator by using RL, based
on the dynamic model.

Figure 13. The speed optimization results. From the top: the joint torque profiles of the hybrid
model before (1st row) and after (2nd row) speed optimization and of the manipulator (3rd row). The
profiles shown in (a,b) were optimized from different energy-optimized trajectories: (a) using Bi-RRT
generated via points and (b) using human-taught via points. All plots were drawn using Python
and Matplotlib.

Machines 2023, 11, 350 19 of 24

Table 6. The results of speed optimization.

Time [s] Time Compression RL-Learned Improvement

Trial 1 1.64 1.25 23.8%
Trial 2 1.61 1.10 31.7%
Trial 3 1.64 0.98 40.2%
Trial 4 1.31 1.13 13.7%
Trial 5 1.64 1.26 23.2%
mean 1.57 1.14 26.5%
STD 0.14 0.12 10.0%

Similar to the concept of Table 5, the energy-optimized trajectories based on tester-
selected via points for simplicity could also be set as the initial trajectories for speed
optimization, and the optimized time of the five energy-optimized trajectories using via
points selected by Tester 1 are shown in Table 7. On average, the optimized times for
TC and RL were 1.67 and 1.29 s, respectively, and the latter was better than the former
by 23%. With further observation, Figure 13b shows the joint torques of the model and
the manipulator before and after the speed optimization of the case, and the results were
similar to those of Figure 13a.

Table 7. The results of speed optimization using via points selected by Tester 1.

Time [s] Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean

TC 1.31 2.05 1.44 2.25 1.31 1.67
RL 1.00 1.62 1.08 1.70 1.04 1.29

Improve 23.7% 21.0% 25.0% 24.4% 20.6% 22.9%

5. Conclusions

This article has reported the construction of the hybrid dynamic model as the digital
twin and strategy to optimize the energy and speed of a manipulator by using RL, based
on the dynamic model.

The hybrid model is composed of a reduced-order analytic model, a linear empirical
compensation, and a DNN model. To spare computing complexity, the analytic dynamic
model was reduced to a three-DOF manipulator, with the other links fixed as a mass
point, and constructed given mechanical parameters from specification. The empirical
part, compensating for inertia, damping, and friction, and the DNN model, ameliorating
for the rest of the un-modeled dynamics, were both trained by actual torque data. The
experimental results showed that averaged energy errors between the manipulator results
and the analytic model (τanalytic), the analytic model with energy loss terms (τanalytic + τloss),
and the hybrid model (τhybrid = τanalytic + τloss + τDNN), are −22.1, −2.1, and −0.2 J,
respectively, which confirms that the hybrid composition of the model can significantly
augment energy estimation accuracy. In cases where the manipulator was subjected to
different payloads, the results exhibited a similar trend in amelioration.

Afterwards, the hybrid model was used in the manipulator trajectory optimization for
energy efficiency and speed. The optimization was treated as a bandit problem and solved
by RL. The Bi-RRT was utilized to find the initial via points of the trajectories, and then the
PPO algorithm was used for trajectory optimization with an obstacle-avoidance capability.
In addition, the trajectory optimization using GA was implemented for a performance
comparison as well. The simulation results showed that RL can reach almost the same
optimization effect as GA, but using only one tenth of the computation time of GA. In the
energy optimization experiment, the human-taught method was compared to RL, and the
results showed that the energy consumption of the 15 trajectories designed by the testers
ranged between 33.9 and 90.9 J, while that of the five trajectories derived by RL had a mean
and STD 33.1 ± 0.7 J, attesting to the effectiveness of energy optimization using RL. For the
speed optimization experiments, the performance of the RL method was better than that of
the time compression method by approximately 27%. In short, RL can effectively reduce

Machines 2023, 11, 350 20 of 24

energy and time consumption in the manipulator obstacle-avoiding tasks with much less
computation time compared to other optimization algorithms.

We are currently working on using different artificial intelligence techniques for the same
energy and speed optimization problem as well as deploying the developed technique for
other types of manipulators. Moreover, more efficient algorithms are also being investigated.
The PPO algorithm can be deployed in the same way as the distributed PPO (DPPO) to
augment the solution searching space and speed up optimization convergence. The hyperpa-
rameters of the NN structure can be further optimized by using Bayesian optimization.

Author Contributions: Validation, Y.-H.C. and W.-T.Y.; formal analysis, Y.-H.C.; investigation, W.-T.Y.
and B.-H.C.; resources, P.-C.L.; data curation, Y.-H.C. and W.-T.Y.; writing—original draft preparation,
Y.-H.C. and W.-T.Y.; writing—review and editing, B.-H.C. and P.-C.L.; supervision, P.-C.L.; project
administration, P.-C.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Science and Technology Council, Taiwan, under
contract MOST 108-2634-F-002-002-, MOST 109-2634-F-002-039-, and MOST 110-2634-F-002-038-.

Informed Consent Statement: Not applicable.

Data Availability Statement: Since the data are related to the commercial secret of the manipulator
used in this paper, such as physical characteristics, motor driver abilities, and so on, the data in this
paper are not publicly available. Or, upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Notations of the dynamic model.

Notation Description

τi Torque of the ith joint, i = 1, 2, 3
θi Angle of the ith joint, i = 1, 2, 3
mi Mass of the ith link
vi Center of mass (COM) velocity of the ith link
ωi Angular velocity of the ith link
Iik Principal moment of inertia of the ith link along x-axis, y-axis or z-axis (k = x, y, z)
hi COM height of the ith link

si, ci sin(θi), cos(θi) i = 1, 2, 3
sij, cij sin

(
θi + θj

)
, cos

(
θi + θj

)
i, j = 1, 2, 3

ai, di, li Length of the links illustrated in Figure 1c

The equation derivation of the analytic reduced-order model shown in Equation (2) is
demonstrated. The associated notations are listed in Table A1. Note that the bold symbols
indicate vectors, and m4 represents the summation of the 4th, 5th, and 6th link mass.
Lagrange equation method is employed here. The Lagrange equation is expressed as

d
dt

(
∂L

∂
.
θ

)
− ∂L

∂θ
= τ (A1)

where L is the Lagrangian of the system. The Lagrangian composed of kinematic energy
and potential energy can be expressed as

L =
1
2 ∑4

i=1

(
vi

Tmivi + ωi
T Iikωi

)
+ ∑4

i=1(mighi) (A2)

Machines 2023, 11, 350 21 of 24

The linear and angular velocities of the links are

v1 =

0
0
0

, ω1 =

 0
−

.
θ1
0

v2 =

0
l2
0

.
θ2

+

 0
0

l2s2
.
θ1

 =

 0
l2

.
θ2

l2s2
.
θ1

ω2 =

s2 −c2 0
c2 s2 0
0 0 1

 0
−

.
θ1
0

+

 0
0
.
θ2

 =

 c2
.
θ1

−s2
.
θ1.

θ2

v3 =

a2s3

.
θ2

a2c3
.
θ2 + l3

(.
θ2 +

.
θ3

)
.
θ1(a2s2 + l3s23)

ω3 =

 c3 s3 0
−s3 c3 0

0 0 1

 c2

.
θ1

−s2
.
θ1.

θ2

+

 0
0
.
θ3

 =

 c23
.
θ1

−s23
.
θ1.

θ2 +
.
θ3

v4 =

a2s3

.
θ2

a2c3
.
θ2 + a3

(.
θ2 +

.
θ3

)
.
θ1(a2s2 + a3s23)

ω4 = ω3

(A3)

In addition, the center of mass (COM) heights of the links are

h1 = l1
h2 = d1 + l2c2
h3 = d1 + a2c2 + l3c23
h4 = d1 + a2c2 + a3c23

(A4)

By substituting Equations (A3) and (A4) into Equation (A2), the equation of motion
can be obtained as

M(θθθ)
..
θ + C

(
θθθ,

.
θθθ
) .

θθθ + G(θθθ) = τ (A5)

where

θ =

θ1
θ2
θ3

, τ =

τ1
τ2
τ3

 (A6)

and

M(θ) =

M11 0 0
0 M22 M23
0 M32 M33

C
(

θ,
.
θ
)
=

 0 C12 C13
C21 C22 C23
C31 C32 0

, G(θ) =

 0
G2
G3

 (A7)

Machines 2023, 11, 350 22 of 24

The corresponding terms in the inertia matrix M(θ) are

M11 = I1y + I2xc2
2 + I2ys2

2 + I3xc23
2 + I3ys23

2 + l22s2
2m2 + a2

2s2
2m3+

a2
2s2

2m4 + l32s23
2m3 + a3

2s23
2m4 + 2l3a2s2s23m3 + 2a3a2s2s23m4

M22 = I2z + I3z + m2l22 + m3l32 + m4a3
2 + m3a2

2 + m4a2
2 + 2a2a3c3m4+

2l3a2c3m3

M23 = I3z + m3l32 + m4a3
2 + a2a3c3m4 + l3a2c3m3

M32 = I3z + m3l32 + m4a3
2 + a2a3c3m4 + l3a2c3m3

M33 = I3z + m3l32 + m4a3
2

(A8)

The terms in Coriolis and centrifugal matrix C
(

θ,
.
θ
)

are

C12 = 2
.
θ1(−I3xc23s23 + I3yc23s23 − I2xc2s2 + I2yc2s2 + l32c23s23m3 + a3

2c23s23m4+
l22c2s2m2 + a2

2c2s2m3 + a2
2c2s2m4 + l3a2c2s23m3 + l3a2s2c23m3 + a3a2c2s23m4+

a3a2s2c23m4)

C13 = 2
.
θ1(−I3xc23s23 + I3yc23s23 + l32c23s23m3 + a3

2c23s23m4 + l3a2s2c23m3+
a3a2s2c23m4)

C21 =
.
θ1(−I2xc2s2 − I2yc2s2 + I3xc23s23 − I3yc23s23 − l22c2s2m2 − a2

2c2s2m3−
a2

2c2s2m4 − l32c23s23m3 − a3
2c23s23m4 − l3a2c2s23m3 − l3a2s2c23m3−

a3a2c2s23m4 − a3a2s2c23m4)

C22 = 2
.
θ3(−l3a2s3m3 − a3a2s3m4)

C23 =
.
θ3(−l3a2s3m3 − a3a2s3m4)

C31 =
.
θ1(I3xc23s23 − I3yc23s23 − l32c23s23m3 − a3

2c23s23m4 − l3a2s2c23m3−
a3a2s2c23m4)

C32 =
.
θ2(l3a2s3m3 + a3a2s3m4)

(A9)
The terms in gravity matrix G(θ) are

G2 = −g(l3s23m3 + a3s23m4 + l2s2m2 + a2s2m3 + a3s2m4)

G3 = −g(l3s23m3 + a3s23m4)
(A10)

If a more complete dynamic model including mechanical energy loss were to be
considered, more terms should be added to Equation (A5),

τactual = M(θ)
..
θ + C

(
θ,

.
θ
) .

θ+ G(θ) +
[

Bm
..
θ+ Cm

.
θ+ fc

(
sign

(.
θ
))]

+ τDNN (A11)

where motor rotation, damping, friction, and high-ordered nonlinear and other unpre-
dictable effects are included. The equation Bm = Im · N2 represents the equivalent inertia
of motors, where Im is the motor inertia and N is the reduction ratio. Cm is the equivalent
damping coefficient, and fc is the friction coefficient of the simplified kinetic friction model.
Since these parameters depend heavily on individual machine conditions and are therefore
unknown, abundant data for τactual,

..
θ, and

.
θ were collected in experiments to infer the

values of Bm, Cm, and fc using linear regression. Afterwards, a neural network model
represented as τDNN was used to fit the high-ordered nonlinear and unpredictable effects.

References
1. Singh, S.; Leu, M.-C. Optimal trajectory generation for robotic manipulators using dynamic programming. J. Dyn. Syst. Meas.

Control. 1987, 109, 88–96. [CrossRef]
2. Field, G.; Stepanenko, Y. Iterative dynamic programming: An approach to minimum energy trajectory planning for robotic

manipulators. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Minneapolis, MN, USA,
22–28 April 1996; pp. 2755–2760.

http://doi.org/10.1115/1.3143842

Machines 2023, 11, 350 23 of 24

3. Hirakawa, A.R.; Kawamura, A. Trajectory planning of redundant manipulators for minimum energy consumption without
matrix inversion. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Albuquerque, NM,
USA, 20–25 April 1997; pp. 2415–2420.

4. Gregory, J.; Olivares, A.; Staffetti, E. Energy-optimal trajectory planning for robot manipulators with holonomic constraints. Syst.
Control. Lett. 2012, 61, 279–291. [CrossRef]

5. Hansen, C.; Öltjen, J.; Meike, D.; Ortmaier, T. Enhanced approach for energy-efficient trajectory generation of industrial robots. In
Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), Seoul, Republic of Korea,
20–24 August 2012; pp. 1–7.

6. Wigstrom, O.; Lennartson, B.; Vergnano, A.; Breitholtz, C. High-level scheduling of energy optimal trajectories. IEEE Trans.
Autom. Sci. Eng. 2013, 10, 57–64. [CrossRef]

7. Hollerbach, J.; Suh, K. Redundancy resolution of manipulators through torque optimization. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), St. Louis, MO, USA, 25–28 March 1985; pp. 1016–1021.

8. Suh, K.; Hollerbach, J. Local versus global torque optimization of redundant manipulators. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Raleigh, NC, USA, 31 March–3 April 1987; pp. 619–624.

9. Sahar, G.; Hollerbach, J.M. Planning of minimum-time trajectories for robot arms. Int. J. Robot. Res. 1986, 5, 90–100. [CrossRef]
10. Gasparetto, A.; Zanotto, V. Optimal trajectory planning for industrial robots. Adv. Eng. Softw. 2010, 41, 548–556. [CrossRef]
11. Rubio, F.; Llopis-Albert, C.; Valero, F. Industrial robot efficient trajectory generation without collision through the evolution of the

optimal trajectory. Robot. Auton. Syst. 2016, 86, 106–112. [CrossRef]
12. Ghasemi, M.; Kashiri, N.; Dardel, M. Time-optimal trajectory planning of robot manipulators in point-to-point motion using an

indirect method. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2012, 226, 473–484. [CrossRef]
13. Schulman, J.; Duan, Y.; Ho, J.; Lee, A.; Awwal, I.; Bradlow, H.; Pan, J.; Patil, S.; Goldberg, K.; Abbeel, P. Motion planning with

sequential convex optimization and convex collision checking. Int. J. Robot. Res. 2014, 33, 1251–1270. [CrossRef]
14. Krivošej, J.; Šika, Z. Optimization and control of a planar three degrees of freedom manipulator with cable actuation. Machines

2021, 9, 338. [CrossRef]
15. Choi, Y.; Jimenez, H.; Mavris, D.N. Two-layer obstacle collision avoidance with machine learning for more energy-efficient

unmanned aircraft trajectories. Robot. Auton. Syst. 2017, 98, 158–173. [CrossRef]
16. Garg, D.P.; Kumar, M. Optimization techniques applied to multiple manipulators for path planning and torque minimization.

Eng. Appl. Artif. Intell. 2002, 15, 241–252. [CrossRef]
17. Tian, L.; Collins, C. An effective robot trajectory planning method using a genetic algorithm. Mechatronics 2004, 14, 455–470. [CrossRef]
18. Števo, S.; Sekaj, I.; Dekan, M. Optimization of robotic arm trajectory using genetic algorithm. IFAC Proc. Vol. 2014, 47, 1748–1753. [CrossRef]
19. Abu-Dakka, F.J.; Assad, I.F.; Alkhdour, R.M.; Abderahim, M. Statistical evaluation of an evolutionary algorithm for minimum

time trajectory planning problem for industrial robots. Int. J. Adv. Manuf. Technol. 2017, 89, 389–406. [CrossRef]
20. Glasius, R.; Komoda, A.; Gielen, S.C. Neural network dynamics for path planning and obstacle avoidance. Neural Netw. 1995, 8,

125–133. [CrossRef]
21. Martín, P.; Millán, J.d.R. Robot arm reaching through neural inversions and reinforcement learning. Robot. Auton. Syst. 2000, 31,

227–246. [CrossRef]
22. Imajo, S.; Konishi, M.; Nishi, T.; Imai, J. Application of a neural network to the generation of a robot arm trajectory. Artif. Life

Robot. 2005, 9, 107–111. [CrossRef]
23. Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic grasping with deep learning

and large-scale data collection. Int. J. Robot. Res. 2016. [CrossRef]
24. Qiao, L.; Luo, X.; Luo, Q. Control of trajectory tracking for mobile manipulator robot with kinematic limitations and self-collision

avoidance. Machines 2022, 10, 1232. [CrossRef]
25. Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [CrossRef]
26. Stulp, F.; Theodorou, E.A.; Schaal, S. Reinforcement learning with sequences of motion primitives for robust manipulation. IEEE

Trans. Robot. 2012, 28, 1360–1370. [CrossRef]
27. Cheng, Y.; Zhang, W. Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels.

Neurocomputing 2018, 272, 63–73. [CrossRef]
28. Cao, Z.; Guo, H.; Zhang, J.; Oliehoek, F.; Fastenrath, U. Maximizing the probability of arriving on time: A practical Q-

learning method. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017;
pp. 4481–4487.

29. Kollar, T.; Roy, N. Trajectory optimization using reinforcement learning for map exploration. Int. J. Robot. Res. 2008, 27, 175–196. [CrossRef]
30. Akrour, R.; Abdolmaleki, A.; Abdulsamad, H.; Neumann, G. Model-free trajectory optimization for reinforcement learning. In

Proceedings of the International Conference on Machine Learning (ICML), New York, NY, USA; 2016; pp. 2961–2970.
31. Li, Z.; Zhao, T.; Chen, F.; Hu, Y.; Su, C.-Y.; Fukuda, T. Reinforcement learning of manipulation and grasping using dynamical

movement primitives for a humanoidlike mobile manipulator. IEEE/ASME Trans. Mechatron. 2018, 23, 121–131. [CrossRef]
32. Bucinskas, V.; Dzedzickis, A.; Sumanas, M.; Sutinys, E.; Petkevicius, S.; Butkiene, J.; Virzonis, D.; Morkvenaite-Vilkonciene, I.

Improving industrial robot positioning accuracy to the microscale using machine learning method. Machines 2022, 10, 940. [CrossRef]

http://doi.org/10.1016/j.sysconle.2011.11.005
http://doi.org/10.1109/TASE.2012.2198816
http://doi.org/10.1177/027836498600500305
http://doi.org/10.1016/j.advengsoft.2009.11.001
http://doi.org/10.1016/j.robot.2016.09.008
http://doi.org/10.1177/0954406211415321
http://doi.org/10.1177/0278364914528132
http://doi.org/10.3390/machines9120338
http://doi.org/10.1016/j.robot.2017.09.004
http://doi.org/10.1016/S0952-1976(02)00067-2
http://doi.org/10.1016/j.mechatronics.2003.10.001
http://doi.org/10.3182/20140824-6-ZA-1003.01073
http://doi.org/10.1007/s00170-016-9050-1
http://doi.org/10.1016/0893-6080(94)E0045-M
http://doi.org/10.1016/S0921-8890(99)00100-1
http://doi.org/10.1007/s10015-004-0334-4
http://doi.org/10.1177/0278364917710318
http://doi.org/10.3390/machines10121232
http://doi.org/10.1177/0278364913495721
http://doi.org/10.1109/TRO.2012.2210294
http://doi.org/10.1016/j.neucom.2017.06.066
http://doi.org/10.1177/0278364907087426
http://doi.org/10.1109/TMECH.2017.2717461
http://doi.org/10.3390/machines10100940

Machines 2023, 11, 350 24 of 24

33. Hsu, F.-S.; Perng, C.-K.; Ding, H.-M.; Chen, Y.-H.; Yu, H.-J.; Lu, C.-C.; Wu, Y.-J.; Chen, C.-M. Postoperative free-flap registration
and tracking system using robotic arm with embedded camera. In Proceedings of the IEEE International Symposium on
Biomedical Imaging (ISBI), Washington, DC, USA, 4–7 April 2018.

34. Lee, C.-E.; Chen, C.-M.; Hsu, F.-S.; Yu, H.-J.; Chen, L.-W.; Yang, A.-S.; Perng, C.-K. A Postoperative Free Flap Monitoring System:
Circulatory Compromise Detection Based on Visible-Light Image. IEEE Access 2022, 10, 4649–4665. [CrossRef]

35. Rethink Robotics, Sawyer BLACK Edition. Available online: https://www.rethinkrobotics.com/fileadmin/user_upload/sawyer/
rr-blackedition-brochure_low.pdf (accessed on 24 February 2023).

36. Universal Robots, UR5e. Available online: https://www.universal-robots.com/products/ur5-robot/ (accessed on 24 February 2023).
37. Franka Emika, Panda Robots. Available online: https://www.franka.de/research (accessed on 24 February 2023).
38. Gottschalk, S.; Lin, M.C.; Manocha, D. OBBTree: A hierarchical structure for rapid interference detection. In Proceedings of the

Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996;
pp. 171–180.

39. Gottschalk, S. Separating Axis Theorem; Technical Report TR96-024; Department of Computer Science, UNC Chapel Hill: Chapel
Hill, NC, USA, 1996.

40. Eberly, D. Dynamic Collision Detection Using Oriented Bounding Boxes; Geometric Tools, Inc.: Chapel Hill, NC, USA, 2002.
41. Craig, J.J. Introduction to Robotics: Mechanics and Control; Pearson/Prentice Hall Upper: Saddle River, NJ, USA, 2005; Volume 3,

pp. 201–229.
42. Inc., T.R. TM AI Cobot. Available online: https://tm-robot.oss-cn-hongkong.aliyuncs.com/Single%20Download%20File/SPEC%

2022J31EN.pdf (accessed on 7 February 2023).
43. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,

arXiv:1707.06347.
44. Heess, N.; TB, D.; Sriram, S.; Lemmon, J.; Merel, J.; Wayne, G.; Tassa, Y.; Erez, T.; Wang, Z.; Eslami, S.M.A.; et al. Emergence of

locomotion behaviours in rich environments. arXiv 2017, arXiv:1707.06347.
45. Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), Chapel Hill, NC, USA, 24–28 April 2000; pp. 995–1001.
46. Ratiu, M.; Prichici, M. Industrial robot trajectory optimization- a review. MATEC Web Conf. 2017, 126. [CrossRef]
47. Constantinescu, D.; Croft, E.A. Smooth and time-optimal trajectory planning for industrial manipulators along specified paths.

J. Robot. Syst. 2000, 17, 233–249. [CrossRef]
48. Mitchell, M. An Introduction to Genetic Algorithms; The MIT Press: Cambridge, MA, USA, 1996.
49. Lee, J.H.; Park, J.H. Time-dependent genetic algorithm and its application to quadruped’s locomotion. Robot. Auton. Syst. 2019,

112, 60–71. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ACCESS.2021.3136795
https://www.rethinkrobotics.com/fileadmin/user_upload/sawyer/rr-blackedition-brochure_low.pdf
https://www.rethinkrobotics.com/fileadmin/user_upload/sawyer/rr-blackedition-brochure_low.pdf
https://www.universal-robots.com/products/ur5-robot/
https://www.franka.de/research
https://tm-robot.oss-cn-hongkong.aliyuncs.com/Single%20Download%20File/SPEC%2022J31EN.pdf
https://tm-robot.oss-cn-hongkong.aliyuncs.com/Single%20Download%20File/SPEC%2022J31EN.pdf
http://doi.org/10.1051/matecconf/201712602005
http://doi.org/10.1002/(SICI)1097-4563(200005)17:5<233::AID-ROB1>3.0.CO;2-Y
http://doi.org/10.1016/j.robot.2018.10.015

	Introduction
	The Manipulator Models
	The Hybrid Dynamic Model of The Manipulator
	The Bounding Box Model and Singularity Penalty

	Trajectory Optimization by Reinforcement Learning
	Determination of The Initial Via Points
	Energy Optimization
	Speed Optimization
	Genetic Algorithm

	Simulation and Experiment Results
	Performance of The Hybrid Dynamic Model
	Simulation Results of Trajectory Optimization
	Experimental Results of Energy Optimization
	Experimental Results of Speed Optimization

	Conclusions
	Appendix A
	References

