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Abstract: Aluminum vapor chambers have become an important component used to solve heat
dissipation problems in lightweight applications due to their low density and good heat transfer
characteristics. In this paper, a new sintered aluminum powder wick is provided for an aluminum
vapor chamber. An aluminum porous wick was sintered using liquid phase sintering technology.
Using acetone as the working medium, the influence of the structural parameters of the aluminum
wick on its boiling heat transfer performance was studied. The influence of thickness on the boiling
heat transfer performance of a sintered porous wick is particularly significant. Thinner, porous
wicks have better critical heat flux (CHF). The porosity and particle diameter mainly affect the heat
transfer coefficient (HTC). At a low heat flux, the sintered wick with low porosity and a small particle
diameter has a higher HTC. The HTC of porous wicks, with a larger particle diameter and porosity,
decreases slower. The optimal porosity ranges from 46.4 ± 2.5% to 51.8 ± 2.5%. Compared with
the polished aluminum plate, the CHF is increased by 1.7 times, and the HTC is increased by about
4.6 times under the same heat flux.

Keywords: pool boiling; heat transfer enhancement; aluminum vapor chamber; sintered aluminum
powder wick

1. Introduction

With the development of space technology, heat dissipation has become an urgent
problem that requires solving. Vapor chambers are widely used in heat dissipation. Most
vapor chambers are made of copper- or aluminum-based materials. Aluminum vapor
chambers are important to solving the heat dissipation problem of aerospace devices due
to their high heat transfer performance, wide operating temperature zone, and lightweight
characteristics. The wick structure is the core component of an aluminum vapor chamber.
It is the decisive factor in improving the heat transfer coefficient and ultimate cooling
power of the vapor chamber. In previous studies, the wick of the aluminum vapor chamber
mainly consisted of a groove and aluminum wire mesh [1,2]. However, these wicks are
often unable to meet the high heat flux heat dissipation requirements due to limitations,
such as low capillary pressure, high phase transition nucleation superheat, and smaller
nucleation core.

Xie et al. [3] summarized several important factors regarding the effect of wick struc-
ture on the performance of vapor chamber heat transfer and common strategies for im-
provement. Studies have shown that sintered porous wicks have a large capillary pressure
and a low manufacturing cost, which are key to solving the above problems. However,
there are few studies that involve the sintering of aluminum powder. This may be because
there is an alumina layer on the surface of the aluminum, which prevents the aluminum
powder from sintering. On the other hand, there have been many studies concerning the
sintering of copper powder or other aluminum-based wicks [1,2,4–9].
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Many scholars have studied the influence of surface morphology and other parameters
on the boiling performance of sintered copper powder wicks. Ji et al. [4] studied the pool
boiling heat transfer process under the normal pressure of acetone and prepared seven
kinds of boiling surfaces. They tested the effect of porous structure on the wick and channel
on steam escape. It was found that the 2D and 3D porous surfaces significantly enhanced
the boiling heat transfer. Liter et al. [5] compared the influence of cylindrical and tapered
porous surfaces on CHF. It was found that the CHF on the surface of one of the conical
porous structures increased by two times. The hypothesis was put forward that the conical
porous structure reduces the disturbance to the liquid channel when the steam escapes.
At the same time, the porous structure can delay the collapse of the liquid channel. As a
result, the CHF is increased. Xu et al. [6] studied the influence of copper foam with different
porosities on the bubble release mode of pool boiling. Moreover, the effect of porosity
on boiling heat transfer performance is discussed. Weibel et al. [7] studied the influence
of the thickness and particle diameter of a copper powder sintered wick on the boiling
performance of the wick. The results show that for a given sintered powder wick thickness,
there exists an optimal particle diameter with the minimum thermal resistance due to the
mutual restriction of heat transfer area and steam overflow resistance.

Other scholars have studied the effect of aluminum wire mesh and groove wick on
boiling heat transfer performance. Zhang et al. [1] sintered aluminum fiber and an alu-
minum wire mesh in the cavity of an ultra-thin aluminum vapor chamber as the wick. An
ultra-thin aluminum flat vapor chamber with a thickness of only 1.5 mm was manufactured.
At the same time, the thermal response characteristics of aluminum vapor chambers were
studied. The research shows that the flat aluminum vapor chambers with no wick have bet-
ter thermal response characteristics under the condition of a large dip angle of 90 degrees,
while the vapor chambers with wick are more advantageous under the condition of a
small dip angle (30◦ or 60◦) due to the enhanced liquid reflux. The boiling heat transfer
performance of vapor chambers with an aluminum wick can be improved with surface
treatment. Zhong et al. [2] proposed a method to improve the aluminum groove vapor
chamber through ultrasonic processing. In the aluminum vapor chamber with acetone as
the working medium, the capillary property of the wick increased by an order of magnitude.
At the same time, the maximum capillarity height increased by three times. Huang et al. [8]
carried out alkali corrosion treatment on the groove aluminum heat pipe to form a tiny,
rough structure on the aluminum surface. The capillary properties of the aluminum groove
vapor chamber were significantly improved. The optimum corrosion time and concentra-
tion were also studied. Based on this research, a heat pipe heat transfer limit prediction
method based on capillary rise rate is proposed. Zhang et al. [9] developed a hierarchical
gradient mesh surface that exhibited an exceptionally high CHF of 300 W/cm2 and HTC
of 34.52 W/(cm2K), which are 313% and 811% larger than those of the plain surface with
deionized water under 1 atmosphere pressure. By simply sintering multilayer meshes with
a controllable porosity and a superhydrophilic micro/nanostructured coating, the surface
developed is cost-effective and capable of exhibiting a strong wicking effect and rapid small
bubble detachment characteristics via a chimney-like architecture.

However, the aluminum wicks mentioned above have the disadvantages of low
capillary pressure, high phase transition nucleation superheat, and a smaller nucleation
core. Therefore, some scholars have studied the manufacturing method of sintering the
wick of aluminum powder [9–17]. Ameli et al. [10] sintered aluminum powder using a
selective laser melting process (SLM) to develop a porous structure composed of many
octahedral elements. This method was used to produce a series of wick structures with
different thicknesses, porosities, and pore sizes. Wu et al. [11] prepared the nanostructures
of the coated surface of gold nanoparticles and the coated surface of alumina nanoparticles
using electrophoretic deposition technology. The effects of nanoparticle mass, the size and
materials of nanoparticles, as well as the solvents and working media in the process of
electrophoretic deposition on the boiling heat transfer were studied. Compared with the
smooth surface, the HTC of pool boiling increased by 80%. Schaffer et al. [12] studied the
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sintering behavior of aluminum powder mixed with different elements. It was found that
adding trace magnesium to produce spinel can break the oxide layer on the surface of
aluminum powder and promote the sintering of aluminum powder. Godinez et al. [17]
studied the effects of an aluminum high-temperature conductive microporous coating on
the nucleate boiling heat transfer coefficient and critical heat flux in saturated distilled
water at 1 atm. The aluminum high-temperature conductive microporous coating was
shown, experimentally, to improve the nucleate boiling heat transfer coefficient by a factor
of five as the wall superheat was reduced by from 31 K to 6 K just before CHF.

In this paper, liquid phase sintering technology was used to manufacture the sintered
aluminum powder wick. The aim of this study is to explore the effect of the parameters of
the sintered wick on the boiling performance. Therefore, an aluminum powder sintered
wick with gradient changes in thickness, porosity, and particle diameter was manufactured.
After conducting a wettability test and carrying out a pool boiling experiment, the boiling
curve and heat transfer coefficient of the sample were compared. Finally, the optimum
parameters for sintering aluminum powder were obtained.

2. Experiment
2.1. Sample Preparation

In this study, liquid phase sintering manufacturing technology is used to sinter the
aluminum powder wick. Pure aluminum powder is used as the base material. AlSi10Mg
aluminum alloy powder was mixed with pure aluminum powder as filler metal powder.
The mixed powder was spread in the fixture, and the loose sintering method was used for
manufacturing the aluminum-based wick, as shown in Figure 1. Due to the active chemical
properties of aluminum, the sintering of aluminum powder was carried out in a vacuum
furnace. The sintering temperature of the aluminum powder was increased from its normal
temperature to 615 ◦C and kept for 10 min. The sintered aluminum powder wick is shown
in Figure 2a. Adjusting the ratio of aluminum and aluminum alloy powder can control the
aluminum powder sintering wick. The particle diameter and thickness of the sample can
be easily changed by using different particle diameter aluminum powder or changing the
thickness of the mold. The experimental samples manufactured in this study are shown
in Table 1 below. In this paper, polished aluminum plates are also used for boiling heat
transfer tests, as shown in Figure 2b, which presents an SEM image of the surface of the
polished aluminum sheet. It can be seen that there are still some scratches and pits on the
surface of the polished aluminum sheet after grinding, which has a partial influence on the
boiling performance. The surface morphology of the sintered aluminum powder wick is
shown in Figure 2c,d. There is a dense oxide film on the surface of the aluminum powder
to hinder the sintering of aluminum powder. It can be verified that the adjacent aluminum
powder particles join together, indicating that aluminum powder sintering was successful.
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Figure 2. Image of aluminum wick: (a) Photos of sintered aluminum powder wick; (b) SEM image of
polished aluminum plate; (c,d) SEM image of sintered aluminum powder wick.

Table 1. Experimental sample parameters.

Sample Porous Thickness Porosity Particle Diameter

D6P3-05 0.5 mm 38.2 ± 2.5% 60 µm
D6P4-05 0.5 mm 46.4 ± 2.5% 60 µm
D6P5-05 0.5 mm 51.8 ± 2.5% 60 µm
D6P6-05 0.5 mm 57.2 ± 2.5% 60 µm

D13P3-05 0.5 mm 38.2 ± 2.5% 132 µm
D13P4-05 0.5 mm 46.4 ± 2.5% 132 µm
D13P5-05 0.5 mm 51.8 ± 2.5% 132 µm
D13P6-05 0.5 mm 57.2 ± 2.5% 132 µm
D13P4-10 1 mm 46.4 ± 2.5% 132 µm
D13P4-20 2 mm 46.4 ± 2.5% 132 µm

2.2. Test for Wettability

In this paper, the wettability of the sintered wick with water and alcohol is studied
to distinguish the wettability of samples with different sintering parameters. The main
parameters affecting the performance of the aluminum powder sintered wick are porosity
and particle diameter. The wetting process of the aluminum powder sintered wick with
different parameters was recorded using a high-speed camera. Figure 3 shows the spreading
process of water and ethanol on the surface of sample D6P4-05.

The droplet spreading time of other samples is shown in Figure 4. The porosity of
the sintered wick increased from 38.2 ± 2.5% to 57.2 ± 2.5% (P3 to P6). It can be seen that
under the condition of the same porosity, the sintered wick of aluminum powder with a
particle diameter of 60 µm has better wettability. When the particle diameter is 132 µm, the
spread time of droplets increases rapidly with the increase in porosity. When the particle
diameter is 60 µm, the spreading time is shortened with a decrease in porosity when the
porosity is higher than 46.4 ± 2.5%. However, when the porosity decreases to 46.4 ± 2.5%,
the droplet spreading time increases. When the porosity is too small, the void volume of
the sintered liquid core is limited, and the viscous resistance increases after water droplets
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occupy part of the volume, resulting in the slowing down of water flow. This may be the
result of the influence of the size of the gas escape channel and the capillary force on the
droplet spreading speed.
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2.3. Pool Boiling Apparatus and Data Reduction

Figure 5 shows the pool boiling test device used in this study. This device is composed
of a liquid container, a heating system, a liquid temperature control device, a data acquisi-
tion system, and a high-speed camera system. The experimental process was recorded by
a high-speed camera. The walls of the container are made of transparent quartz glass, so
that the formation and detachment of bubbles can be easily observed and recorded. The
bottom of the container is sealed with sealant. A liquid temperature control device was
used to heat and maintain the temperature of the liquid. The heating system is made of
copper blocks. A sintered aluminum powder wick was sintered onto an aluminum block.
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The aluminum block was clamped to the surface of the heated copper block during the test.
Liquid metal was applied between the aluminum block and the heated copper block to
reduce thermal resistance. It was installed at the bottom of the container and sealed with
sealant. The heating surface size is 25 mm × 25 mm, which is the same as the sample size.
The heat of the copper block is provided by 9 resistance heating rods. The maximum power
of each heating rod is 80 W. The heating system can supply the maximum heating power of
720 W. The power of the heating system was monitored and controlled by transformer and
wattmeter. There are 6 T-type thermocouples on the heating system. Thermocouple T1 is
3.0 mm away from the bottom of the sintered aluminum powder wick. The thermocouple
T1 could directly measure the temperature at the bottom of the sintered aluminum powder
wick. Therefore, the influence of the thermal resistance of the interface between copper and
aluminum blocks on the experimental data could be ignored. The other thermocouples T3,
T4, T5 and T6 are vertically arranged below T1 at 6.0 mm intervals. The thermocouple data
were recorded in real time by the data acquisition card and the computer.
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Figure 5. Experimental apparatus for pool boiling.

When the heat loss from the surrounding area is negligible, the sample heat flux and
wall superheat can be calculated by Fourier's law. In order to determine whether Fourier's
law is valid, the temperature distribution of the device under different heat fluxes was
tested, as shown in Figure 6. The temperatures of four positions T3–T6 were selected for
fitting, as shown in Figure 6. Adj.R2 is 0.999, 0.998, 0.999 and 0.999, respectively. It can be
seen that Adj.R2 is not less than 0.998, indicating a linear distribution of temperature. The
heat flux can be obtained by the following formula:

q′′ = −kCu
T6 − T3

3x2
(1)

where kCu is the thermal conductivity of copper, and x2 = 6 mm is the distance between two
adjacent thermocouples. The boiling surface temperature Tw can be calculated as follows:

Tw = T1 − q′′
(

x1

kCu
+

ts

ks

)
(2)

where x1 = 3 mm is the distance between the thermocouple T1 and the heating block, ts
is the thickness of the solder layer, and ks is the thermal conductivity of the solder layer.
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The wall superheat ∆T is the difference between the wall temperature and the surrounding
acetone temperature, and can be obtained as:

∆T = Tw − Ta (3)

in which Ta is the temperature of the surrounding acetone measured by thermocouple T7.
Then, the boiling heat transfer coefficient (h) can be obtained as:

h =
q′′

∆T
(4)
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The uncertainty of the whole test system can be estimated by the standard error
analysis method, as shown in Equations (5) and (8). The measurement uncertainty of the
T-type thermocouple is ± 0.2 ◦C. The location uncertainty for those thermocouples is
estimated as ± 0.05 mm. The uncertainty of the thickness of the solder layer ts is less than
2%. The uncertainty of the heat flux is estimated to be less than 6.37%. The uncertainty of
HTC is estimated to be less than 8.26%.
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3. Results and Discussion
3.1. Verification of Device Accuracy

In order to verify the accuracy of the pool boiling test device, the pool boiling per-
formance of a polished aluminum plate was tested first. The results were compared with
the theoretical results of Rohsenow [13]. It is believed that the main heat transfer mode
of boiling is the efficient heat transfer between a solid and liquid caused by a violent
disturbance in the process of bubble separation. The following formula for calculating the
heat transfer of pool boiling is proposed:

cpl · ∆Tsat

hlv
= Csf

[
qa

µ · hlv

√
σ

g(ρl − ρv)

]0.33( cpl · µ
kl

)n
(9)

Among them, cpl, hlv, µ and σ are the specific heat capacity, latent heat of vaporization,
dynamic viscosity and surface tension of liquid at atmospheric pressure, ρl and ρv are the
density of liquid and vapor. The kl is the thermal conductivity of liquid working medium.
The Csf and n are the dimensionless empirical constant and empirical index, respectively.
In this study, the solid-liquid combination of aluminum and acetone is used. Their values
are 0.0096 and 1.7 [14], respectively.

The experimental results and calculation results of the polished aluminum plate are
shown in Figure 7. At a low heat flux, the experimental boiling curve of the aluminum plate
basically coincides with the theoretical calculation results of Rohsenow. At a high heat flux,
the experimental boiling curve of the aluminum plate deviates to the left. The maximum
deviation is still less than 3 ◦C. This deviation is mainly affected by the rough surface.
Scratches and pits on the surface of the polished aluminum, as shown in Figure 2b, improve
the wettability of the aluminum and allow bubbles to escape the boiling surface more easily.
In addition, scratches enhance the horizontal complement of the working medium. This
results in a lower superheat of the polished aluminum plate than the theoretical value at
high heat flux. It can be seen from Figure 7 that the boiling measuring device has a high
accuracy within the range of the measured heat flux.
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3.2. Effect of Thickness on Boiling Performance

Figure 8 shows the boiling curve and boiling HTC of a sintered porous wick of
aluminum powder with different thicknesses. Compared with the aluminum plate, it
can be seen that the wall superheat of the sintered porous wick of aluminum powder
is significantly reduced. At the same heat flux, sample D13P4-05 has the lowest wall
superheat. Its maximum value is only 11.3 ◦C. With the increase in the sintered thickness of
aluminum powder, the boiling curve gradually shifted to the lower right. It may be that the
wall superheat gradually increased. This indicates that the enhanced boiling heat transfer
performance of the sintered porous wick of aluminum powder gradually weakened with
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the increase in the thickness. With the increase in sintering thickness, the CHF of aluminum
powder decreased gradually. The results show that the CHF of the porous structure is
the largest at the sintered thickness of 0.5 mm. The CHF decreased greatly in the range
of 0.5~1 mm. When the thickness exceeds 1 mm, the decrease in the CHF is significantly
reduced. The HTC under a low heat flux density and the HTC of a sintered aluminum
powder wick are not far apart, not less than 20 kW/(m2·K). It is significantly higher than
that of the aluminum plate (3.9 kW/(m2·K)), and rapidly increases with the increase in
heat flux. When the heat flux density increases, the HTC of sample D13P4-05 first tends
to exhibit a stable rise after the fall. When the heat flux is 443.1 kW/m2, the HTC reaches
the maximum value of 61.9 kW/(m2·K). For samples D13P4-10 and D13P4-20, the HTC
gradually decreases or becomes gentle with the increase in heat flux. This indicates that the
enhanced boiling heat transfer performance of samples D13P4-10 and D13P4-20 gradually
weakens at high heat flux. D13P4-10 and D13P4-20 have the highest HTC at 35.6 kW/m2

and 61.3 kW/m2, respectively. The main reason for the above phenomenon is that at low
heat flux, the porous structure contributes to bubble nucleation. The boiling performance
is significantly improved compared with the flat plate. With the increase in heat flux, the
thicker porous structure layer will prevent bubbles from escaping, resulting in decreased
heat transfer performance. At the same time, bubbles trapped in the porous structure
further hinder the supplement of liquid working medium, leading to the decrease in CHF.
When the porous layer is thinner, the liquid replenishment efficiency is higher because
the formation and separation of bubbles are easier. Finally, the sample obtained better
comprehensive boiling heat transfer performance. In conclusion, the porous wick sintered
with 0.5 mm thickness of aluminum powder has the best heat transfer performance.
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3.3. Effects of Particle Diameter and Porosity

The boiling curves of the sintered porous wick with particle diameters of 60 µm and
132 µm are shown in Figures 9 and 10. At low heat flux, the wall superheat of the sintered
wick of aluminum powder with different porosities is basically similar, which is much
lower than that of the aluminum plate. The results show that the sintered porous wick with
different porosities has a similar promoting effect on the bubble growth at low heat flux.
The wall superheat required by the activation of the bubble nucleation site on the porous
structure is relatively low. In addition, compared with 132 µm, the wall superheat of the
60 µm aluminum powder sintered porous wick is relatively smaller. The difference between
different porosities is smaller. With the increase in heat flux, the wall superheat gradually
increases. The difference of wall superheat in porous wicks sintered by aluminum powder
with different porosities gradually appears. For the 60 µm aluminum powder sintered
porous wick, the wall superheat of sample D6P5-05 is relatively low at the same heat flux.
This indicates that the porous structure with a porosity of 51.8± 2.5% has a relatively strong
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promoting effect on bubble nucleation and a relatively high bubble nucleation efficiency at
high heat flux. For the 132 µm aluminum powder sintered porous wick, the wall superheat
of the porous structure with a porosity of 46.4 ± 2.5% is relatively lower. It may be that the
optimal porosity is conducive to decreases in bubble nucleation with the increase in the
aluminum powder particle diameter. At the same time, the sintered porous wicks of the
aluminum powder with the same particle diameters and different porosities have similar
limiting heat flux. For example, the CHF of D6P5-05 and D6P6-05 is 636.3 kW/m2 and
626.4 kW/m2. The CHF of D13P5-05 and D13P6-05 is 645.8 kW/m2 and 607.9 kW/m2.
The results show that under the condition of a certain thickness, the porosity and particle
diameter of the porous structure have little influence on the boiling limit heat flux.
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The HTC of the sintered porous wick with particle diameters of 60 µm and 132 µm is
shown in Figures 9b and 10b. The results show that the HTC decreases with the increase in
heat flux for the sintered porous wick with a particle diameter of 60 µm. Relatively, D6P5-05
has a high HTC with a value of 81.3~59.4 kW/(m2·K). The results indicate that the boiling-
enhanced heat transfer performance of the porous wick sintered with 60 µm aluminum
powder decreased with the increase in heat flux. In the boiling process of high heat flux,
large bubbles will be generated. When the pore size is small, the detachment resistance of
bubbles is relatively large. The detachment efficiency of bubbles decreases, leading to the
decline in the overall boiling heat transfer performance. Therefore, the decrease in the HTC
of the 60 µm aluminum powder sintered porous wick at high heat flux may be due to the
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small pore size, which leads to the blockage of large bubble escape. The HTC of D6P5-05
decreases more slowly and is higher than that of other samples at high heat flux. These
results indicate that D6P5-05 provides a large number of nucleation sites while leaving
relatively large channels for bubble escape. The porous structure D13P3-05 sintered with
aluminum powder with a particle diameter of 132 µm has the same variation trend. This
result shows that the bubble escape resistance in the porous structure with a large particle
diameter and low porosity is relatively large at high heat flux, leading to the decrease
in boiling heat transfer performance. For the sample with a particle diameter of 132 µm,
the HTC increased with the increase in heat flux. When the heat flux density is less than
200 kW/m2, D13P3-05 has a relatively large HTC, at a value of 48.9~63.4 kW/(m2·K). When
the heat flux density is higher than 200 kW/m2, HTC of D13P4-05 is relatively large. This
result shows that the low porosity of the aluminum powder improved the performance of
the enhanced-boiling heat transfer sintered porous wick. The main reason is that the porous
structure with larger porosity has a lower pore density and larger pore size, resulting in
less density of the corresponding bubble nucleation site and a weak enhancement effect on
boiling heat transfer. The HTC of the sintered porous wick with a particle diameter of 60 µm
is higher than that with particle diameter of 132 µm, which can be seen by comparing the
HTC of different particle diameters. There are more nucleation sites on the sintered porous
aluminum powder wick of with a small particle diameter, which has a better enhancement
effect on the boiling heat transfer process.

In summary, the sintered porous wicks of aluminum powder with different particle
diameters and porosities have lower CHF. The influence of particle diameter and porosity
on HTC is significant. At low heat flux, the sintered porous wicks with low porosity and
small particle diameter are more conducive to enhancing boiling heat transfer. At high heat
flux, the samples with large particle diameters and high porosities have a higher HTC. The
optimal porosity range is 46.4 ± 2.5% to 51.8 ± 2.5%.

3.4. Bubble Generation Visualization

In this study, a high-speed camera with 3000 frames per second was used to record
the bubble growth during the boiling heat transfer test of the sintered wick of aluminum
powder, as shown in Figure 11. For the three samples, the density of the bubbles increased
with the increase in heat flux. This indicates that more and more nucleation sites are
activated with the increase in heat flux. When the heat flux further increased to 300 kW/m2,
the bubble growth rate increased and adjacent bubbles began to fuse with each other.
Compared with the polished aluminum plate, the porous structure of the sintered wick
had better wettability and promoted bubble escape, delaying the arrival of CHF. Compared
with the polished aluminum plate, the CHF of the sintered aluminum powder wick was
nearly 1.8 times higher. Compared with D6P4-05 and D6P5-05, sample D6P4-05 had more
bubble formation when the heat flux was 20 kW/m2, which indicates that sample D6P4-05
has more nucleation sites. However, when the heat flux reached 200 kW/m2, the bubbles
of D6P5-05 were smaller, indicating that bubbles of D6P5-05 escape more easily. The
comparison between Figure 11b,d shows that at low heat flux, D6P5-05 has more and
smaller bubbles, which is due to the relatively small porosity of D6P5-05 promoting the
escape of bubbles. At high heat flux, d5 and d6 have similar bubble morphology. This is
also consistent with the experimental data.



Machines 2023, 11, 468 12 of 14

Machines 2023, 11, x FOR PEER REVIEW 12 of 15 
 

 

main reason is that the porous structure with larger porosity has a lower pore density and 
larger pore size, resulting in less density of the corresponding bubble nucleation site and 
a weak enhancement effect on boiling heat transfer. The HTC of the sintered porous wick 
with a particle diameter of 60 μm is higher than that with particle diameter of 132 μm, 
which can be seen by comparing the HTC of different particle diameters. There are more 
nucleation sites on the sintered porous aluminum powder wick of with a small particle 
diameter, which has a better enhancement effect on the boiling heat transfer process. 

In summary, the sintered porous wicks of aluminum powder with different particle 
diameters and porosities have lower CHF. The influence of particle diameter and porosity 
on HTC is significant. At low heat flux, the sintered porous wicks with low porosity and 
small particle diameter are more conducive to enhancing boiling heat transfer. At high 
heat flux, the samples with large particle diameters and high porosities have a higher 
HTC. The optimal porosity range is 46.4 ± 2.5% to 51.8 ± 2.5%. 

3.4. Bubble Generation Visualization 
In this study, a high-speed camera with 3000 frames per second was used to record 

the bubble growth during the boiling heat transfer test of the sintered wick of aluminum 
powder, as shown in Figure 11. For the three samples, the density of the bubbles increased 
with the increase in heat flux. This indicates that more and more nucleation sites are acti-
vated with the increase in heat flux. When the heat flux further increased to 300 kW/m2, 
the bubble growth rate increased and adjacent bubbles began to fuse with each other. 
Compared with the polished aluminum plate, the porous structure of the sintered wick 
had better wettability and promoted bubble escape, delaying the arrival of CHF. Com-
pared with the polished aluminum plate, the CHF of the sintered aluminum powder wick 
was nearly 1.8 times higher. Compared with D6P4-05 and D6P5-05, sample D6P4-05 had 
more bubble formation when the heat flux was 20 kW/m2, which indicates that sample 
D6P4-05 has more nucleation sites. However, when the heat flux reached 200 kW/m2, the 
bubbles of D6P5-05 were smaller, indicating that bubbles of D6P5-05 escape more easily. 
The comparison between Figure 11b,d shows that at low heat flux, D6P5-05 has more and 
smaller bubbles, which is due to the relatively small porosity of D6P5-05 promoting the 
escape of bubbles. At high heat flux, d5 and d6 have similar bubble morphology. This is 
also consistent with the experimental data. 

 
Figure 11. boiling bubbles on sintered porous wick: (a) aluminum plate, (b) D6P5-05, (c) D6P4-05, 
(d) D13P4-05. 

3.5. Comparison with Other Studies 

Figure 11. Boiling bubbles on sintered porous wick: (a) aluminum plate, (b) D6P5-05, (c) D6P4-05,
(d) D13P4-05.

3.5. Comparison with Other Studies

The boiling properties of aluminum powder wicks were compared with those of other
studies. Zan Wu’s team created a copper-based porous wick, the samples of Electrophoretic
Deposition Wick, using the Electrophoretic Deposition method [11]. Then, 1.5 mg copper
particles with a particle diameter of 126 ± 24 nm was fixed on the surface of the copper
sheet by using electrophoretic deposition technology. Its boiling performance curve is
shown in Figure 12. The limiting heat flux of this sample is 32 W/cm2. When the heat
flux is low, the superheat of the electrophoretic deposition wick increases rapidly, which
indicates that the activation of the bubble nucleation site of the sample is slow. Compared
with D6P5-05, the electrophoretic deposition wick has higher superheat and lower CHF.
This may be the reason why the electrophoretic deposition wick has few nucleation sites.
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Xianbing Ji’s team used copper powder at 130–170 nm to form porous wicks with
different surface morphologies [2]. The surface of porous copper was covered with a
2.5 mm thick sintered porous layer of copper powder with a porosity of 32%. The surface
of sample conical array porous copper was sintered with a 2 mm spaced cone array with a
height of 2.5 mm. The surface of 2D porous copper was sintered with a porous structure
with a groove shape. Acetone was used as a performance test for these samples. The results
are shown in the Figure 12. D6P5-05 and porous copper had lower CHF, but D6P5-05 had
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lower superheat and higher HTC. This may be because D6P5-05 has a thinner thickness
and bubbles escape more smoothly during the boiling heat transfer process. The CHF of
conical array porous copper and 2D porous copper is twice that of D6P5-05. This is because
the surface structure of the conical array and 2D porous provide more nucleation sites for
bubble growth. At the same time, the structure of the cone with a large bottom and small
top also provides a larger channel for bubbles to escape.

4. Conclusions

In this paper, the sintered wick of aluminum powder was fabricated. The boiling heat
transfer performance of an aluminum powder wick was studied by conducting the pool
boiling experiment. Several main points are concluded below:

(1) Liquid phase sintering technology was used to manufacture the sintered liquid wick
of aluminum powder with different parameters. The porosity of the sample ranged
from 38.2 ± 2.5% to 57.2 ± 2.5%. The alcohol droplets spread rapidly on the samples
with all structural parameters. Among them, the sample with a particle diameter of
60 µm and porosity of 46.4% had the best wettability. The droplet spreading time
decreased first and then increased with the increase in porosity when the particle
diameter was 60 µm. This may be the result of the influence of the size of the gas
escape channel and the capillary force on the droplet spreading speed.

(2) The thickness has a significant effect on the boiling heat transfer performance of the
sintered wick. When the wick was thick, the boiling heat transfer performance of
the sintered wick was poor. As the thickness decreased, the boiling heat transfer
performance of the sintered wick had a clear improvement, especially when the heat
flux was high. The sintered porous wick with a thickness of 0.5 mm aluminum
powder had the best heat transfer performance. This is because the thinner porous
layer reduced the travel and resistance of bubbles escaping during the boiling heat
transfer process.

(3) The effect of porosity and particle diameter on the HTC is significant. When the
particle diameter or the porosity was low, the HTC decreased gradually with the
increase in heat flux. At high heat flux, the samples with a large particle diameter
and high porosity had a higher HTC. It was found that the boiling heat transfer
performance of D6P5-05 is the best. Its CHF of 636.3 kW/m2 is close to other samples,
but its HTC is significantly better than other samples at high heat flux.

(4) The porous structure of the sintered wick greatly improves the boiling heat transfer
performance. Compared with the polished aluminum plate, the CHF increased by
1.7 times, and the HTC increased by about 4.6 times at a heat flux of 300 kW/m2. This
is because the porous structure provides more nucleation sites compared with the
polished aluminum plate. At the same time, the pores between the aluminum powder
provide adequate channels for bubbles to escape.
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Nomenclatures

CHF critical heat flux, kW/m2

HTC(h) heat transfer coefficient, kW/ (m2·K)
q′′ heat flux, kW/m2

Tw wall temperature, ◦C
kCu thermal conductivity of copper, W/ (m·K)
ks thermal conductivity of solder, W/ (m·K)
x1 the distance between T1 and the top of copper block, mm
x2 the distance between adjacent thermocouples, mm
Ta the temperature of surrounding acetone, ◦C
∆T wall superheat, ◦C
ts the thickness of the solder layer, mm
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