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Abstract: Feedrate has a great influence on contour error in five-axis machining. Accordingly, it is of
great significance to plan the time-optimal feedrate curve considering the contour error constraint
to achieve high-accuracy and high-efficiency machining. Aiming at improving the error control
accuracy of model linearization loss and optimizing the machining time, the PSO-based feedrate
optimization algorithm for five-axis machining with constraint of contour error is proposed in this
paper. Firstly, the relationship between parametric feedrate and contour error constraint is clarified
that provides a model basis for accurately controlling contour error by optimizing the feedrate
curve. Then, the feedrate optimization model, which takes the control vertices of the feedrate curve
expressed by B-spline as the decision variables and minimizes the machining time as the optimization
objective, is established. Subsequently, to overcome the shortcomings of low accuracy and low
efficiency caused by single optimization of global control vertices, the group search particle swarm
optimization (GSPSO) algorithm based on window movement is adopted to optimize the feedrate
curve in segments. Finally, the effectiveness of the proposed feedrate optimization algorithm is
validated by three typical test toolpaths on an open double-turntable five-axis machine tool. In light
of the experiment, the proposed algorithm is able to fully release the potential of the machine tools
while accurately controlling the contour error of the cutter tip and cutter orientation.

Keywords: feedrate optimization; contour error; particle swarm optimization (PSO); five-axis machining

1. Introduction

With the rapid increase in the demand for complex surface parts in aerospace and energy
fields, five-axis machine tools, with the features of good obstacle avoidance and high motion
flexibility, have been widely used. To achieve high-precision and high-efficiency machining
on the five-axis machine tools, it is necessary to explore the contour error control method
with optimal machining time. At present, the control of contour error is mainly realized
by redesigning the servo controller structure [1–4], pre-compensation [5–8] and feedrate
optimization. However, users usually are not capable of implementing these advanced control
strategies to improve contour accuracy due to the confidentiality of the built-in controller
structure of most commercial machine tools. In addition, the pre-compensation technology
also has the problem that the contour control effect in the high-curvature area of the path
deteriorates due to the decrease in path smoothness. By comparison, contour accuracy is
improved by optimizing the feedrate curve, which can not only overcome the limitations of
the above two methods, but also has higher flexibility and stronger robustness. Therefore,
how to plan the time-optimal feedrate curve under the premise of ensuring contour accuracy
is worthy of in-depth study.

In the initial research, in order to reduce the influence of curve interpolation error,
the adaptive feedrate planning algorithm considering chord error was proposed [9,10].
Subsequently, some studies [11] have shown that limiting the kinematic characteristics
of the cutter tip velocity, acceleration and jump in the process of machining can improve
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the forming quality of the parts and the service life of the cutters. Thus, the linear [12],
exponential [13], s-curve [14] and sine-curve [15] acceleration and deceleration strategies
that limit the kinematics characteristics of the cutter tip have been proposed successively.
Notice that the abovementioned feedrate planning methods mainly focus on controlling
the chord error and the kinematic features of the feed cutter, while ignoring the driving
property of the machine tool feed axis. Especially in five-axis machining, due to the complex
nonlinear mapping relationship between the motion of the feed cutter and the motion of
the feed axis, even if the feedrate of the cutter is set to a constant value, the motion state of
the feed axis may exceed its own driving capacity, resulting in the reduction in machining
accuracy. Consequently, it is necessary to consider the drive constraints in the process of
planning the feedrate curve. For instance, Sun [16] proposed a curve evolution strategy
to iteratively adjust the initial feedrate curve to meet the jerk constraint requirements.
Sencer [17] proposed a feedrate optimization method considering the Bang-Bang control of
drive constraints, which realized the control of the motion state of the feed axis. Since then,
the linear programming algorithm [18], bidirectional scanning algorithm [19], heuristic
search algorithm [20] and greedy idea algorithm [21] have been proposed to control the
driving performance of the feed axis.

It should be pointed out that although the above feedrate optimization algorithm
is able to improve the contour accuracy, it does not directly consider the contour error
constraint. To achieve the goal of accurately controlling the contour error by optimizing the
feedrate curve, Lin [22] first established a nonlinear function model with the feedrate and
the contour error respectively regarded as the independent variable and the dependent
variable, and obtained the approximate value of the maximum feasible feedrate satisfying
the preset contour error constraint. Jia [23] approximated the whole position closed-loop
control system to a typical second-order under-damped system and deduced the explicit
functional relationship of contour error in regard to the cutter feedrate, the curvature of
the toolpath and the damping ratio of the system. On the basis of revealing the poten-
tial linear relationship between feed axis tracking error, feed axis velocity and feed axis
acceleration, Wang [24] clarified the relationship between feedrate and the contour error
constraint. According to the established feed servo system model, Chen [25] deduced the
analytical equation between feedrate and contour error constraint. In addition, Erwin-
ski [26] proposed a method to control contour error by optimizing feedrate curve with
PSO combined with enhanced Lagrange constraint processing technology, based on the
prediction of contour error using an artificial neural network. It is noteworthy that the
above methods are difficult to effectively apply to five-axis machining in consideration
of the complex nonlinear coupling property of five-axis kinematics transformation. For
five-axis machining, Chen [27] clarified the linearization relationship between the contour
of the cutter tip and cutter orientation with respect to feedrate by simplifying the tracking
error prediction model and contour error estimation model.

To sum up, the current research on controlling the contour error of the cutter tip and
cutter orientation by optimizing the feedrate curve is still very limited, and the linearization
of the model will inevitably lead to the decline in error control accuracy. Aiming at handling
the above problem, this paper proposes the PSO-based feedrate optimization algorithm for
five-axis machining with constraint of contour error considering the advantages of PSO in
solving nonlinear optimization problems in the fields of environmental sensing [28], space
science [29], the design of time-delay equalizers [30] and spatial phase shifters [31]. Firstly,
a nonlinear and high-precision feedrate optimization model with constraint of contour
error is established on the basis of the dynamic prediction of tracking error and the iterative
estimation of contour error. After that, for obtaining the target feedrate curve accurately
and efficiently, the GSPSO algorithm based on window movement is applied to plan the
feedrate curve in segments. The rest of the organization structure of the paper is as follows:
The NURBS toolpath and interpolation algorithm are introduced in Section 2. Section 3
illustrates the details of the proposed feedrate optimization algorithm. The experimental
results and analysis are presented in Section 4. The paper is summarized in Section 4
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2. NURBS Toolpath and Interpolation Algorithm

In the workpiece coordinate system (WCS), the five-axis parametric toolpath is usually
made up of the cutter tip position vector p(u) and the unit cutter orientation vector o(u).
NURBS is often used to express the five-axis parametric toolpath due to its accurate
analytical expression and flexible local readjustment capability. The NURBS toolpath
usually adopts normalized arc length parameterization. Therefore, the expression of the
cutter tip position vector and the unit cutter orientation of the five-axis trajectory defined
on the normalized arc length parameter u ε [0, 1] is[

p(u)
o(u)

]T

=
[
px(u), py(u), pz(u), ox(u), o(u), ox(u)

]
(1)

The G2 continuous dual NURBS are adopted to express the following five-axis para-
metric trajectory: 

p(u) =
n
∑

i=0
Ni,3(u)ωipi/Ni,3(u)ωi

q(u) =
n
∑

i=0
Ni,3(u)ωiqi/Ni,3(u)ωi

(2)

where p(u) and q(u), respectively, represent the cutter tip trace and the trace of a point on
the cutter axis that is different from the cutter tip. pi and qi are the control vertices, n + 1
is the number of control vertices and ωi is the weight factor of the NURBS. Ni,3(u) is the
function defined on the following uniform node vector U:

U =

 4︷ ︸︸ ︷
0, · · · , 0, 1

n−2 , · · · , n−1
n−2 ,

4︷ ︸︸ ︷
1, · · · , 1

 (3)

After that, the unit cutter orientation vector o(u) is calculated as{
o(u) = p(u)−q(u)

‖p(u)−q(u)‖
‖o(u)‖ = 1

(4)

Taking the A–C double-turntable five-axis machine tool shown in Figure 1 as an
example, the toolpath [p(u), o(u)]T in the WCS can be converted to the following motion
trajectory m(u) of the feed axis in the machine coordinate system (MCS) by using the
inverse kinematics transformation formula shown in Equation (6):

m(u) = [X(u), Y(u), Z(u), A(u), C(u)]T (5)

where [X, Y, Z] and [A, C], respectively, represent linear axes and rotary axes in the MCS.
The inverse kinematics transformation formula shown in Figure 1 is as follows:

A = arccos(Oz)
C = arctan

(
Ox/Oy

)
X = cos(C)px − sin(C)py
Y = cos(A)sin(C)px − cos(A)cos(C)py − sin(A)pz − sin(A)Lac,z
Z = sin(A)sin(C)px − sin(A)cos(C)py + cos(A)pz + cos(A)Lac,z + LTya,z

(6)
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where LTya,z and Lac,z are turntable offsets. Correspondingly, the forward kinematics
transformation formula shown in Figure 1 is as follows:

ox = sin(A) sin(C)
oy = sin(A) cos(C)
oz = cos(A)
px = − cos(C)X + cos(A)sin(C)Y + sin(A)sin(C)Z− sin(C) sin(A)LTya,z
py = −sin(C)X− cos(A)cos(C)Y− sin(A)cos(C)Z + cos(C) sin(A)LTya,z
pz = −sin(A)Y + cos(A)Z− cos(A)LTya,z − Lac,z

(7)
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In order to interpolate the NURBS toolpath, it is necessary to clarify the relationship
between arc length increment and parameter increment; however, the relationship is
nonlinear due to its dependence on the shape of the toolpath. Therefore, the parameter
increment corresponding to each step of interpolation is usually determined by Taylor
approximation based on the current known feedrate. This paper adopts the following
second-order Taylor formula:

uk+1 = uk +
f (uk)
||Pu(uk)||

Ts +

(
a(uk)
||Pu(uk)||

− Pu(uk)·Puu(uk)

||Pu(uk)||4
f
(
uq
)2
)

Ts
2

2 (8)

where f (uk) and a(uk) are the feedrate and acceleration of the cutter at the interpolation
sampling parameter uk, respectively, and Ts is the interpolation sampling period.

3. The Proposed Feedrate Optimization Algorithm

In this section, the prediction method of contour error of the cutter tip and cutter ori-
entation is first introduced. Then, the feedrate optimization model aiming at the minimum
machining time is established and the PSO algorithm for control vertices optimization is
proposed. Finally, the implementation details of the feedrate optimization are clarified.

3.1. Contour Error Prediction

In five-axis machining, the tracking error caused by the response delay of the feed
servo system will be delivered to the cutter through five-axis kinematics transformation,
resulting in the contour error of the actual machining trajectory. In addition, the contour
error is often obtained by estimation due to the complexity of solving the foot point
parameter. Thus, the establishment of high-precision tracking error prediction and contour
error estimation is the basis of accurate contour error prediction.
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3.1.1. Tracking Error Prediction

For high-performance complex surface parts in CNC machining, to guarantee the
surface processing quality of parts, the feed servo system usually does not allow overshoot.
Therefore, technicians commonly adopt parameter coordination methods to make the entire
CNC machining system run under over-damped conditions. At this time, the feed servo
system is capable of being reasonably simplified to the typical first-order inertia system [32]
shown in Equation (9).

G(s) = τa(s)
τr(s)

= 1
Ts+1 (9)

where τr(s) and τa(s), respectively, represent the desired input position and actual output
position of the servo system in the complex frequency domain, and T is the system time
constant. It should be pointed out that the time constant T of the servo system is usually
several times that of the interpolation sampling cycle Ts of the CNC system. Moreover,
the adjustment time for the servo system to reach the approximate steady-state condition
is about (3 ∼ 4)T, due to the limitation of the response bandwidth of the servo system,
which also means that it is actually difficult for the servo system to reach a steady state in
one interpolation sampling period. Therefore, it is very difficult to achieve high-precision
tracking error prediction based on the assumption of steady-state response of the system.
For the accurate prediction of contour error, we will use a dynamic prediction method based
on an interpolation sampling position sequence to establish a tracking error prediction
model with higher accuracy.

In actual CNC machining, to satisfy the requirements of various geometry, drive and
process constraints, along the predefined toolpath, the feedrate usually takes the form of a
step change with the interpolation sampling period Ts as the time interval. Accordingly,
it is also easy to find that the velocity of the servo system is also a fixed value within the
same sampling period. In this case, ignoring the influence of filtering denoising inside the
system, the position signals received by the servo system are essentially a set of variable
ramp input signals. In order to analyze the tracking error under the variable ramp input
signals, it is assumed that the current sampling moment is the end of the kth sampling
period, and in addition to the ramp signal of the (k + 1)th sampling period sent by the
hose computer, the residual servo lag error of the kth sampling period will also be a part
of the system input signal to drive feed axis movement [6]. At this moment, the linear
superposition of the step signal and the ramp signal can be approximated as the input
signal of the system. For the feed servo system with a single input and single output, the
output of the system is also the linear superposition of the output response of the above
the two typical signals based on the principle of linear superposition. Therefore, the feed
axis tracking error eτ(kTs) at the kth sampling moment is calculated as

eτ(kTs) = eramp
τ (kTs) + estep

τ ((k− 1)Ts)ê−
Ts
T (10)

with {
eramp

τ (kTs) =
τr(k)−τr(k−1)

Ts
T(1− ê−

Ts
T )

estep
τ ((k− 1)Ts) = eτ((k− 1)Ts)

1 ≤ k ≤ N (11)

where τ = (X, Y, Z, A, C) represents the machine tool feed axis, ê and N, respectively,
indicate the natural constant and the number of reference interpolation sampling position
sequences. τr(k) donates the discrete position of the feed axis, and estep

τ ((k − 1)Ts) and
eramp

τ (kTs), respectively, represent the servo lag error of the system at the (k− 1)th sampling
moment and the tracking error introduced by the ramp signal (τ r(k)− τr(k− 1))/Ts. Cor-
respondingly, the actual position of the feed axis at the kth sampling moment is calculated as

τa(k) = τr(k)− e(kTs) (12)

Equations (10) and (12) show that the output position of the feed axis at the kth
sampling moment is not only related to the input signal at the current moment but is
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also affected by the previous input signal. For a given feed servo system, ê, T and Ts in
Equation (10) are fixed constants. Therefore, Equations (10) and (11) essentially reveal the
potential linear relationship between the system reference position sequence and the feed
axis tracking error, which also provides a model basis for the subsequent precise prediction
of contour error.

3.1.2. Contour Error Estimation

On the five-axis toolpath as shown in Figure 2, (pa, oa) is the actual cutter position,
(pr, or) is the reference cutter position, and the cutter position deviation between (pa, oa)
and (pr, or) is the tracking error

(
ep, eo

)
, where ep is the tracking error of the cutter tip,

and eo is the tracking error of the cutter orientation, as shown by the green solid line in
Figure 2. The cutter tip position pn is the point closest to the actual cutter tip position pa on
the toolpath, also known as the station point. The deviation of the cutter position between
(pa, oa) and (pn, on) is the contour error

(
εp, εo

)
, where εp and εo, respectively, represent

the contour error of the cutter tip and cutter orientation, as shown by the red solid line in
Figure 2.
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Accordingly, calculating the parameter un corresponding to the station point pn is a
prerequisite for obtaining the contour error of the cutter tip and cutter orientation. However,
due to the fact that p(u) is a free curve equation, the parameter un corresponding to the
equation is the nonlinear equation, making it difficult to obtain an accurate analytical
solution. To handle this problem, the initial value regeneration Newton method [33] is used
to efficiently and accurately obtain an approximate numerical solution for the parameter
un. The numerical solution u f is calculated as

u f = ub −
‖p′(ub)‖

2
(p(ub)−pa)·p′(ub)

T

‖ p′(ub) ‖
4 + ‖ p′(ub) ‖

2(p(ub)− pa)·p′′ (ub)
T

−
(
(p(ub)− pa)·p′(ub)

T
)(

p′(ub)·p′′(ub)
T
) (13)

where ub is the initial value of regeneration and it is calculated as

ub = ur − (p(ur)− pa)·
p′(ur)

T

‖p′(ur)‖
(14)

where ur represents the corresponding parameter for the cutter tip position pr.
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According to the convergence of Newton’s algorithm, the parameter un corresponding
to the station point pn is calculated as

un =

u f ,
∣∣∣dt

(
u f

)∣∣∣< |d t(ub)
∣∣∣

ub − (p(ub)− pa)·
p′(ub)

T

‖p′(ub)‖
,
∣∣∣dt

(
u f

)∣∣∣≥∣∣∣dt(ub)
∣∣∣ (15)

On the basis of the abovementioned concept of contour error, the cutter tip error εp
and the cutter orientation error εo can be calculated as

εp =‖ p(un)− pa ‖ (16)

εo =‖ o(un)− oa ‖ (17)

3.2. Feedrate Optimization Model

According to the known five-axis parameter trajectory [p(u), o(u)]T , the feedrate curve
f (u) can be expressed by the G2 continuous B-spline defined in the same parameter u

f (u) =
M
∑

i=0
di Ni,3(u) (18)

where di and M + 1, respectively, represent the control vertices and the number of control
vertices of the B-spline, and Ni,3(u) here is set as Equation (2).

Along the given toolpath, the goal of feedrate optimization is to acquire the shortest
machining time Tobj by adjusting the feedrate curve f (u) shape while meeting the preset
contour error constraint. Therefore, the feedrate optimization model can be established
as follows:

minTobj = min
∫ 1

0
dt
du du (19)

s.t.
{

εp(u) ≤ εpmax
εo(u) ≤ εomax

, u ε[0, 1] (20)

where εpmax and εomax, respectively, indicate the upper bound of the contour error con-
straints of the cutter tip and cutter orientation. According to the analysis of the feedrate
optimization model, the model has the characteristic of a strong coupling nonlinearity.
To accurately and efficiently solve the optimization model and gain the optimal target
feedrate curve, this paper proposes a general solution with PSO combined with a novel
constraint processing technology. Furthermore, it is worth noting that the optimized
machining time is paid more attention than the calculation time for the off-line feedrate
optimization algorithm.

3.3. Control Vertices Optimization Based on PSO Algorithm

In light of the definition of feedrate curve f (u), the feedrate curve shape is completely
controlled by the control vertices on the premise that the knot vector U remains unchanged.
As a consequence, the control vertices {di}M

i=0 can be selected as the decision variables
of the feedrate optimization model. The PSO algorithm is used for solving the feedrate
optimization model in this paper and it determines the optimal solution step by step
through the exchange of information between an individual and a population. Different
from other optimization algorithms, the PSO algorithm not only has few parameters and
is easy to implement, but also has a fast solving speed and a strong global parallel search
ability. Additionally, it has small restrictions on population size and is capable of recording
population information [34]. The mathematical model considering contour error constraints
and taking control vertices as decision variables is first established in this section. After
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that, the process of using the GSPSO algorithm based on window movement to solve the
decision variables is introduced at great length.

3.3.1. Mathematical Model

Consider the convex hull property of the spline curve, the search boundary condition
of the control vertices is set as 0 ≤ {di}M

i=0 ≤ fmax, where fmax is the maximum programmed
feedrate, whose value is usually determined by surface quality, cutter life, the removal
rate of material, cutting force and other factors. Obtaining the time-optimal feedrate curve
means seeking the maximum feasible solution of the feedrate under the contour error
constraints. Consequently, the objective function shown in Equation (19) Tobj is converted
into the new objective function Fobj as follows:

minFobj = −
N
∑

k=0

M
∑

i=0
di Ni,3(uk)(uk − uk−1) (21)

s.t.

{
g1(uk) =

εp
εpmax

− 1 ≤ 0
g1(uk) =

εo
εomax

− 1 ≤ 0
, 0 ≤ k ≤ N (22)

where g1(uk) and g1(uk), respectively, denote the inequality constraints at the interpolation
sampling parameter uk. The normalization of the constraints and objective function is
performed to avoid the optimization process being affected by their order of magnitude
differences.

Accordingly, the constraint violation degree ck at the sampling parameter uk is calcu-
lated as

ck =
2
∑

i=1
max(0, gi(uk)), 0 ≤ k ≤ N (23)

According to the analysis of Equation (23), ck = 0 means that the motion state at the
sampling parameter uk meets all constraints, otherwise one of the contour error constraints
of cutter tip and cutter orientation is violated. Hence, when the objective function Fobj
is minimum and there is no violation of constraints, the corresponding control vertices
{di}M

i=0 can be used to generate the target optimal feedrate curve.

3.3.2. GSPSO Algorithm Based on Window Movement

Note that if all control vertices are simultaneously optimized, it has not only a problem
in determining the optimal solution, but also needs to take a long time to calculate. To
consider the accuracy and efficiency of the solution, the moving window planning method
is adopted to attain the solution of the feedrate optimization model on the basis of the
flexible local readjustment capability of the feedrate curve, as shown in Figure 3. Each time
the window is moved, a group of control vertices are optimized until all control vertices
are optimized. To ensure that the feedrate curve between the two adjacent windows can
smoothly transition without violating the constraints of contour error in the optimization
process, a certain width overlap region R should be reserved between adjacent windows,
as shown in Figure 4. Taking the control vertices contained in a single window as the
optimization unit, the specific implementation process of GSPSO algorithm is introduced.
According to the analysis results in Section 3.3.1, the search interval of control vertices in
the GSPSO algorithm can be determined as [0, fmax]. To achieve the goal of optimizing the
global search capability and convergence time, both the infeasible solutions of the optimiza-
tion model should be sufficiently utilized, and the method of population initialization also
needs to be optimized. The detailed implementation process of the GSPSO algorithm is
described as follows:
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Step 1. Set the initial and maximum values of the iteration times to 0 and lmax, respec-
tively. The population velocity of random initialization is defined as vl =

[
vl

1, vl
2, · · · , vl

s

]
,

where s is the population size. Making the best of the boundary value fmax of control
vertices {di}M

i=0 is beneficial to obtaining good initialization results. In view of the above,

the initial position xl
m =

[
dl

r,m, dl
r,m, · · · , dl

t,m

]
of the mth h-dimensional particle can be

calculated as
xl

m = rand(1, h) fmax, m = 1, 2, . . . , s (24)

with
h = t− r + 1 (25)

where r and t, respectively, represent the sequence numbers of control vertices dr and
dt, and rand(1, h) indicates a 1× h dimensional belonging to the range of [0, 1] uniform
random number matrix.

Step 2. According to B-spline definition, the sampling parameter interval [ur* , ut* ] that
needs to detect the constraint violation degree ck can be determined by the particle xl

m, and

the corresponding total constraint violation degree Cl
m is calculated as Cl

m =
t*

∑
r=r*

cl
k. After

that, the objective function corresponding to the particle xl
m is Fl

obj,m, which can be calculated

by Equation (21). Set the initial individual best position Pl
m = xl

m, the individual best value
Pl

best.m = Fl
obj,m, and the corresponding total constraint violation degree Pl

const,m = Cl
m of the

particle xl
m. The initialization results of the global optimal position Gl , the global optimal

value Gl
best and the corresponding total constraint violation degree Gl

const can be acquired
from Algorithm 1.

Step 3. The linear weight reduction strategy [34] is adopted to determine the new
position and velocity per particle. The updated process is as follows:

vl+1
m = ϕvl

m+c1r1

(
Pl

m − xl
m

)
+ c2r2

(
Gl − xl

m

)
(26)

xl+1
m = xl

m + vl+1
m (27)

ϕ = ϕmax − (ϕmax−ϕmin)
Lmax

l (28)

where xl
m and vl

m are the position and velocity of the mth particle in the lth iterations,
respectively, xl+1

m and vl+1
m are the position and velocity of the (m + 1)th particle in the

(l + 1)th iterations, respectively. c1 and c2 are the acceleration constant, also known as
the learning factor, ϕmin and ϕmax are the upper and lower bounds of the inertia weight,
respectively, r1 and r2 represent belonging to the range of [0, 1] uniform random number.

Step 4. Handle boundary conditions and calculate the total constraint violation degree
Cl

m and the objective function value Fl
obj,m of the particle xl

m, and let l = l + 1. Considering
that infeasible solutions should be sufficiently utilized, the updated strategy [35] and
Algorithm 1 are adopted to update the individual best position Pl

m and global optimal
position Gl .

Step 5. If l < lmax, return to step 3. Otherwise, the global optimal position Glmax
best and

corresponding total constraint violation degree Glmax
const should be output.
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Algorithm 1. Algorithm of global optimal position.

Input: Pl
m Pl

best,m Pl
const,m (m = 1, 2, · · · , s) Gl−1 Gl−1

best Gl−1
const (l ≥ 1)

Gl = Pl
1 Gl

best = Pl
best,1 Gl

const = Pl
const,1 (l = 0) // Initialization

Output: Gl Gl
best Gl

const
01: for m = 1 : s do
02: if Gl−1

const = 0 & Pl
const,m = 0 // Both positions are feasible solutions

03: if Pl
best < Gl−1

best
04: Gl = Pl

m Gl
best = Pl

best.m Gl
const = Pl

const,m
05: end if
06: elseif Gl−1

const = 0 & Pl
const,m > 0 // One of the two solutions is feasible and the

other is not.
07: if Pl

best < Gl−1
best

08: if r3 < (0.5− l/(2lmax)) // Randomly generate r3 ∈ [0, 1]
09: Gl = Pl

m Gl
best = Pl

best.m Gl
const = Pl

const,m
10: end if
11: end if
12: elseif Gl−1

const > 0 & Pl
const,m = 0

13: if Pl
best < Gl−1

best
14: Gl = Pl

m Gl
best = Pl

best.m Gl
const = Pl

const,m
15: else
16: if r3 > (0.5− l/(2lmax)) // Randomly generate r3 ∈ [0, 1]
17: Gl = Pl

m Gl
best = Pl

best.m Gl
const = Pl

const,m
18: end if
19: end if
20: elseif Gl−1

const > 0 & Pl
const,m > 0 // Both positions are infeasible solutions

21: if Pl
best < Gl−1

best Pl
const,m < Gl−1

const
22: Gl = Pl

m Gl
best = Pl

best.m Gl
const = Pl

const,m
23: elseif Pl

best.m > Gl−1
best & Pl

const,m < Gl−1
const

24: if Gl−1
const/Pl

const,m > Pl
best.m/Gl−1

best
25: Gl = Pl

m Gl
best = Pl

best.m Gl
const = Pl

const,m
26: end if
27: elseif Pl

best < Gl−1
best & Pl

const,m > Gl−1
const

28: ifGl−1
const/Pl

const,m < Pl
best.m/Gl−1

best
29: Gl = Pl

m Gl
best = Pl

best.m Gl
const = Pl

const,m
30: end if
31: end if
32: else
33: Gl = Pl−1

m Gl
best = Pl−1

best.m Gl
const = Pl−1

const,m
34: end if
35: end for

3.4. Implementation Details of Feedrate Optimization

In light of the above modeling process and the proposed algorithm, detailed optimiza-
tion steps of the feedrate curve are described as follows:

Step 1. The interpolation sampling parameter sequence {uk}N
k=0 is determined by

Equation (2), on the basis of the given toolpath and the initial feedrate curve is generated
by a random initialization of the GSPSO algorithm.

Step 2. For the sequence {uk}N
k=0, the corresponding reference command sequence{

[pr(uk), or(uk)]
T
∣∣∣0 ≤ k ≤ N

}
and {mr(uk)|0 ≤ k ≤ N} can be respectively obtained from

Equations (3) and (4).
Step 3. According to the contour error prediction model in Section 3.1, the cutter

tip contour error sequence
{

εp(uk)
∣∣0 ≤ k ≤ N

}
and the cutter orientation contour error

sequence {ε0(uk)|0 ≤ k ≤ N} are gained by the reference command sequence.



Machines 2023, 11, 501 12 of 18

Step 4. If l < lmax, use the proposed GSPSO algorithm to optimize the previous
feedrate curve and return to Step 1. Otherwise, output the final feedrate curve of the
current window.

Step 5. Repeat the above process as the window moves until the optimization of the
global feedrate curve is completed.

Figures 4 and 5, respectively, present a flow chart of feedrate curve optimization in the
current window and a diagram of the window moving method to better understand the
optimization process of the global feedrate curve.
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4. Experimental Verification

The effectiveness of the proposed feedrate optimization algorithm is validated by three
typical toolpaths in this section. The A–C double-turntable open five-axis machine tool for
experimental verification is shown in Figure 6. During actual processing, the actual position
information of the linear axes and rotary axes of the machine tool can be acquired from the
optical encoder with a resolution of 500× 256 pulses/rev. The motor and driver driving
linear axes and rotary axes are of the YASKAWA brand. The time constants of the feed axes
of the machine tool were determined using the method proposed by Dong [32], which were
approximated as TX = 0.0231, TY = 0.0231, TZ = 0.0271, TA = 0.0262 and TY = 0.0215,
respectively. The interpolation sampling period Ts is 4 mms. To consider the calculation
efficiency and optimization result accuracy, the total number of control vertices of the feedrate
curve M is 120, the interval window interval h is 25, and the window overlap region R is 5.
Parameters of GSPSO algorithm are shown in Table 1. Moreover, considering the driving
capacity limitation of the YASKAWA servo driver used in the experiment, the maximum
programmed feedrate fmax of the cutter tip was set to 20 mm/s during the actual experiment.
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Table 1. Parameters of GSPSO algorithm.

c1 c2 ϕmax ϕmin s lmax

1.4962 1.4962 0.8 0.4 100 30

4.1. Example 1

The total length of the butterfly trajectory expressed by NURBS is 338.68 mm in Exper-
iment 1, as shown in Figure 7a. According to the analysis of trajectory characteristics, many
high-curvature areas on the toolpath are conducive to verifying the excellent performance
of the algorithm. In this example, the maximum limit value of the cutter tip contour error
εpmax is 0.05 mm. Figure 7b shows the feedrate curve with a cutter contour error constraint
generated by the proposed method. The actual cutter tip contour error during the experi-
ment is shown in Figure 7c. Analysis of this picture reveals that the cutter tip contour error
at each point on the toolpath does not go beyond the set constraint limit, which proves that
the algorithm is effective. Further study of the experimental results is able to find that the
cutter tip error almost reaches the set maximum error limit in multiple processing time
intervals, which also reflects the excellent performance of the algorithm to some extent.
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4.2. Example 2

Unlike three-axis machining, the nonlinear coupling motion peculiarity of five-axis
machining makes it more difficult to accurately control the cutter tip contour error. In
Experiment 2, take the five-axis end milling trajectory expressed by NURBS as shown in
Figure 8a as an example for experimental verification, and the toolpath length is 128.45
mm. Figure 8b,c, respectively, represent the corresponding reference position curves of
the translational axes (X, Y, Z) and the rotational axes (A, C) in the MCS. The maximum
limit value of the cutter tip contour error εpmax is 0.04 mm in this example. The five-axis
milling process and the machined part with the optimized feedrate are shown in Figure 8d,e.
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Figure 8f presents the feedrate curve with cutter contour error constraint generated by
the proposed method. Figure 8g displays the experimental measurement results of cutter
tip contour error for five-axis end milling. According to the analysis of the experimental
results, the cutter contour error does not exceed the preset error constraint range and
fluctuates around the limit value of the constraint in most of the processing time, which
further exhibits the superiority of the algorithm.
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Figure 8. Experimental results of five-axis end milling: (a) toolpath is expressed by dual NURBS;
(b) position curve of linear axes; (c) position curve of rotary axes; (d) five-axis milling process;
(e) machined part with the optimized feedrate; (f) optimized feedrate curve with the constraint of
cutter tip contour error; (g) experimental measurement results of cutter tip contour error.

4.3. Example 3

Compared with end milling, flank milling needs to bound the contour error of cutter
tip and cutter orientation. To guarantee the contour accuracy of flank milling, the contour
error of cutter tip and cutter orientation should be constrained simultaneously. Figure 9a
exhibits the five-axis flank milling trajectory expressed by dual NURBS that is taken
as the test object for experimental verification, and the toolpath length is 329.44 mm.
Figure 9b,c indicate the corresponding reference position curves of the translational axes
(X, Y, Z) and the rotational axes (A, C) in the MCS, respectively. To further validate that the
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proposed feedrate optimization algorithm is effective and excellent, the contour accuracy
and processing time of the constant feedrate process of machine tools and the new method
are compared. In this comparative experiment, the limit value of the contour error of the
cutter tip εpmax is 0.04 mm and the limit value of the contour error of cutter orientation
εomax is 3× 10−4 rad, and the constant feedrate process parameter is 10mm/s. Based on
the established feedrate optimization model, the feedrate curve is determined under the
constraint of contour error, including the cutter tip (colored in pink), the cutter orientation
(colored in cyan) and the final blue feedrate curve, as shown in Figure 9d.
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Figure 9e,f present the comparative experimental results of the contour error of cutter
tip and cutter orientation for using the above-mentioned two methods. On the basis of
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the analysis of experimental data, the maximum values of the contour error cutter tip
and cutter orientation are 0.0692 mm and 6.019× 10−4 rad for using constant feedrate
processing, respectively, which are out of limits and do not meet the requirements of
machining accuracy. In contrast, the paper proposes a feedrate optimization algorithm that
can not only effectively control the contour error cutter tip and cutter orientation within
the preset range but can also greatly improve the maximum feasible feedrate. According
to the calculation of specific experimental data, the maximum values of the contour error
cutter tip and cutter orientation have decreased by 42.2% and 50.16%, respectively, and
the machining time has shortened by 11.42%. In addition, further analysis of Figure 9e,f
demonstrates that at least one out of the cutter tip contour error and cutter orientation
contour error has reached its upper bound in the whole machining process, which reflects
the optimization of the proposed algorithm in great measure.

Note that the interpolation sampling position sequence of each servo feed axis of the ma-
chine tool is generated without going against the drive constraints in all experiments. Therefore,
the influence of other factors besides contour error can be minimized or ignored in the process
of experimental verification. As a matter of fact, based on the process of solving the feedrate
optimization model with the proposed GSPSO algorithm, it is easy and reliable to introduce
more constraints related to machining into the existing optimization model. The analysis of
the contour error image indicates that although the relatively satisfactory experimental results
have been achieved, there is still some optimization space to acquire more accurate control. It is
speculated that this may be mainly caused by the loss of a certain accuracy of the tracking error
prediction model due to the transfer function of the servo system being simplified. In the next
work, the dynamic response, particularity of the servo system, will be further studied and a
more accurate tracking error prediction model will also be established.

5. Conclusions

The heuristic feedrate optimization algorithm is proposed to optimize five-axis ma-
chining in this paper and is capable of achieving the accurate control of five-axis contour
error. Firstly, according to the established tracking error dynamic prediction model and the
contour error iterative estimation model, the relationship between the parametric feedrate
and contour error constraint is clarified, which provides a model basis for the accurate con-
trol of contour error by optimizing the feedrate curve. After that, the feedrate optimization
model aiming at minimizing the machining time and taking the control vertices of the fee-
drate curve expressed by cubic B-spline as decision variables is established. Subsequently,
considering that B-spline has a flexible local readjustment capability, the GSPSO algorithm
based on window movement is applied to optimize the feedrate curve in segments, which
solves the problem of low accuracy and low efficiency caused by the single optimization of
all control vertices. Finally, experimental tests on an open five-axis machine tool validate
the excellent performance of the proposed feedrate optimization algorithm. Experimental
results show that the proposed algorithm is capable of sufficiently releasing the potential
of the machine tools while accurately controlling the contour error of the cutter tip and
cutter orientation. Moreover, it is easy to implement and trustworthy, the size of contour
error constraints can be adjusted with freedom and more constraints can be introduced in
accordance with the actual machining requirements.
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