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Abstract: In this paper, we propose a fault tolerant control law for a morphing quadrotor, where
the considered morphing ability is that of extendable/telescopic arms. This quite recent class of
systems is able to provide a good trade-off between payload capabilities, maneuverability, and space
occupancy. However, such degrees of freedom require dedicated servomotors, which in turn implies
more possible faults. Thus, the problem of diagnosis for the telescopic servo motors subject to a
stuck fault is considered. System symmetries are exploited and used in a residual generator design,
which triggers an active fault isolation/identification phase. External disturbances are also taken into
account and estimated through a nonlinear disturbance observer. A classical double-loop controller
closes the loop, providing an overall control system structure that follows the disturbance observer-
based control paradigm. The control scheme is validated through realistic numerical simulations,
and the closed-loop performances are analyzed.

Keywords: active fault diagnosis; morphing quadrotor; fault-tolerant control; disturbance observer

1. Introduction

The size of Unmanned Aerial Vehicles (UAVs) is not a detail, as for different sizes
different challenges arise. For example, mini, micro, and nano UAVs [1,2] have been largely
studied in the past years, but the downside of miniaturization is the lower payload, which
is not acceptable in many applications. On the contrary, maneuvering becomes more
involved as the vehicle mass and inertia increase, and, therefore, a trade-off between the
system bandwidth and the maximum payload is a current research problem. The solution
is investigated through two main layers, the actuation and the mechanical system struc-
ture of the UAV. Concerning the first, variable pitch actuators are the most remarkable
example [3]. Among the advantages, they show faster time response, leading to reduced
power requirements and motor size [4]. It is worth noting that variable pitch configurations
allow downward thrusts (without reversing the angular speed of the propellers), thus
showing increased fault tolerant capabilities [5,6]. Regarding the second, two alternative
ways have been investigated to reduce the size without compromising payload capabilities.
The first class to note is the so-called folding multirotors, which can be split into multi-joint
structures [7] and continuous deformable structures, such as origami foldable structures [8].
Such systems consist of UAVs being able to be folded/disassembled after the operation,
even reaching a pocket-size dimension for a comfortable transportation [9]. During the
operation, however, they exhibit a fixed structure, and no system reconfiguration is al-
lowed, except for exceptional triggering events [10]. The second class is represented by
reconfigurable or morphing multirotors that allow for in-flight morphing of the UAV [11].
The most common degrees of freedom are represented by extensible arms [12] (telescopic
or sliding arms) and rotating arms [13,14]. By transforming its structure, the UAV does
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modify its space occupancy, its inertia [15], and its maneuverability based on the required
task [16]. From a control law perspective, the morphing ability represents an additional
degree of freedom [17], which is usually handled by a continuous refresh of the center of
mass, the inertia and the allocation matrices, leading to a morphology-dependent control.
Thus, assuming the transformation is relatively slow, only minor modifications need to be
applied to the most common control techniques, such as proportional integral control [18],
linear quadratic regulator [13], and active disturbance rejection control [19]. External dis-
turbances cope with the system dynamics in the same way as standard multirotors. Many
estimation methods have been proposed in the literature, ranging from specific oriented
solutions (see [20] and references therein) to general purpose solutions such as Disturbance
Observer-Based Control (DOBC), where the disturbance attenuation is provided by an
observer-based feed-forward law [21]. Finally, the transformation ability implies additional
actuation degrees, which in turn means possible additional faults with respect to those of
standard multirotors, due to the servomotors involved in the morphing mechanisms. Such
an acquired over-actuation brings the need for directional residues, which we can find in
the observer-based residual generators [22], a possible solution with strong evidence in the
literature and general purpose results.

In this paper, we propose an active fault-tolerant control scheme for morphing quadro-
tors, where the terminology fault-tolerant refers to a control law which is able to cope with
faults, and by active it is meant that the fault is directly estimated and feedforwarded in
the control loop [23,24]. The solution extends our previous work [25], where a DOBC
scheme which copes with external disturbances was designed by joining a Nonlinear
Disturbance Observer (NDO) with an inner/outer loop feedback linearization control
law. Thus, the main objective is that of extending [25] by considering stuck faults in the
morphology-related servomotors. The considered morphing ability is that of telescopic
arms (extendable arms), which represent a promising solution to flight into narrow spaces
while keeping payload and maneuvering capabilities [12]. The diagnosis is performed
by exploiting the system symmetries. It turns out that a classical bank of observers (i.e.,
a residual generator) is not sufficient to cope with the problem, which represents a main
step for the solution. In particular, after one residual component triggers, an active fault
isolation, and identification phase is required, i.e., the isolation/identification is performed
by the injection of a specific class of control inputs.

The paper is structured as follows. In Section 2, we propose and detail the mathemat-
ical model of a telescopic quadrotor. System symmetries are discussed and exploited in
Section 3. Section 4 handles the overall fault diagnosis, both the residual generator and the
active fault diagnosis. Section 5 briefly recalls the DOBC solution provided in [25], which
closes the loop. Finally, numerical simulations are discussed in Section 6, where masses
and dimensions are taken from commercial components, and practical real-world problems
(e.g., input saturation, sensor noise, and different sample rate between the two control
loops) are also taken into account.

2. Mathematical Model

Remark 1. From now on, standard basis vectors of Rn are denoted as ek with k = 1, . . . , n, diag(·)
denoting the diagonal matrix with the elements of the argument in the main diagonal, and col(·)
denoting a column vector whose elements are listed in the argument.

Telescopic quadrotors are quadrotors with extendable (telescopic) arms. The whole
system can be considered as a collection of N = 17 rigid bodies subject to constraints.
The frame is denoted with B0, while the remaining bodies are denoted with Bi,j, where
i ∈ {1, 2, 3, 4} denotes the arm and j ∈ {1, 2, 3, 4} denotes the component (Figure 1). For
each arm, we denote with li the length of the arm.
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Figure 1. Schematic representations of the morphing quadrotor (left) and the telescopic arm (right).
Each arm is independently controlled by a servomotor, possibly leading to an asymmetric structure.
The telescopic arm is considered as a union of four bodies, where for each one the geometric
dimensions are assumed known. For control purposes, as well as for a better interpretation, the overall
arm length li will be always made explicit. The bodies’ centers of mass are depicted with a bold point,
and we assume they coincide with each body’s geometric center.

Two reference frames are considered. The first reference frame is an earth fixed frame
RE = (OE, TE) with a right-handed orthonormal triad TE = (xE, yE, zE), which is assumed
to be inertial for simplicity. Then, a second frame RB = (OB, TB) with a right-handed
orthonormal triad TB = (xB, yB, zB) is placed in the geometric center OB of the frame B0.
Reference frame RB is a rest frame for the quadrotor frame, i.e., it is a body fixed frame
for B0 (see Figure 1). For slowly varying arm lengths, the telescopic quadrotor can be
approximated as a rigid body that has its own center of mass, denoted as G, and described
by the following equations [26]

mp̈F = −kt ṗF −mRE
B(ω̇× rB

G(l) + ω× (ω× rB
G(l))) + FE

g + RE
BFB

m(l) + FE
w

J(l)ω̇ = −krω−ω× J(l)ω + MB
m(l)

η̇ = T(η)ω,

(1)

where each term is as follows:

• pF =
−−−→
OEOB = col(xF, yF, zF) is the position of RB (decomposed in RE);

• ω = col(p, q, r) is the angular velocity of RB relative to RE (decomposed in RB);
• m is the total system mass, g is the gravitational acceleration, and kt and kr are the

linear and angular friction coefficients;
• FE

g = mge3 and FE
w are the gravitational and the (unknown) wind forces (decomposed

in RE);
• l = col(l1, . . . , l4) is the vector containing the arm lengths of each motor (see Figure 1);

• rB
G(l) =

−−→
OBG is the arm-dependent center of mass (decomposed in RB);

• J(l) is the arm-dependent inertia matrix of the overall system, relative to the center
of mass;

• FB
m(l) and MB

m(l) are the arm-dependent thrust and torque due to the actuators (both
decomposed in RB);

• η = col(ϕ, θ, ψ) is the vector composed by the roll (ϕ), pitch (θ), and yaw (ψ) angles,
which let us express the rotation matrix from RB to RE, denoted as RE

B, as

RE
B = RE

B(η) =

 cψ cθ cψ sϕ sθ − cϕ sψ sϕ sψ + cϕ cψ sθ

cθ sψ cϕ cψ + sϕ sψ sθ cϕ sψ sθ − cψ sϕ

−sθ cθ sϕ cϕ cθ

, (2)

where cos(·) = c(·) and sin(·) = s(·) are considered for the sake of brevity;
• T(η) is the kinematic coordinate transformation related to the adopted roll–pitch–

yaw rotation.
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Remark 2. In (1), the time dependencies are omitted for the sake of brevity. We remark that both l
and η are time-dependent variables.

Remark 3. In the following, the arm and angle dependencies are often omitted for the sake of brevity.

Remark 4. The following common approximations were made in the model [6]:

• no torques due to the wind are considered;
• additional forces and torques due to blade flapping are of a smaller magnitude and neglected;
• the friction force is assumed to be linear, with proportional coefficients kt, kr.

For a brief description, let us denote the mass of the body Bi,j with mi,j, and the vector

connecting the body frame with the body Bi,j with rB
i,j =

−−−→
OBGi,j (decomposed in RB). The

remaining variables are as follows.

2.1. Total Mass

The total mass m is the constant real number

m = m0 +
4

∑
i=1

4

∑
j=1

mi,j. (3)

2.2. Center of Mass

The center of mass is the arm-dependent vector

rB
G =

1
m

(
m0rB

0 +
4

∑
i=1

4

∑
j=1

mi,jrB
i,j

)
. (4)

2.3. Inertia Matrix

The inertia is the arm-dependent matrix

J = J0 +
4

∑
i=1

4

∑
j=1

Ji,j, (5)

where each Ji,j denotes the inertia of the body Bi,j relative to axes which are parallel to xB,
yB, and zB, and which pass through the center of mass, i.e., parallel the RB axes. In turn,
each Ji,j is dependent from the geometric dimensions, i.e., from the width wi,j, the length
li,j, the height hi,j, and the orientation of Bi,j (see Figure 1). Denoting the angle of the i-th
arm with δi (around zB, from xB, as depicted in Figure 1), the orientation of the body Bi,j is
described by the rotation matrix

RB
i,j = RB

i,j(δi) =

 cos(δi) − sin(δi) 0
sin(δi) cos(δi) 0

0 0 1

, i = 1, 2, 3, 4, j = 1, 2, 3, 4. (6)

Using the RB
i,js and rB

i,js, it is possible to express the inertia matrices Ji,j through the
parallel axis theorem. The reader can refer to [13,15,25] for details about the calculation of
each Ji,j.

2.4. Actuation Force and Moment

For each propeller i, let fi be the (scalar) upward lift force. Then f B
i = − fie3 is the

vector lift force (decomposed in RB), and the actuation force is

FB
m =

4

∑
i=1

f B
i = −

4

∑
i=1

fie3. (7)
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The actuation torque MB
m can be decomposed into the thrust component and the drag

component, namely MB
m = MB

thrust + MB
drag. In particular, we have

MB
thrust = −

4

∑
i=1

(
(rB

i,4 − rB
G)× fie3

)
, (8)

MB
drag =

4

∑
i=1

cwi

cD
cL

fie3, (9)

where cL and cD are the lift and drag coefficients, while cwi = +1 if the i-th motor rotates
counter-clockwise, and cwi = −1 otherwise.

2.5. Inputs and Faults

Each lift force fi is assumed directly controlled, hence the vector u = col( f1, f2, f3, f4)
serves as control input. The extension of each arm li is performed by a servomotor, which
can be affected by a stuck fault. If lni denotes the nominal length (the reference for li),
the servomotor provides

li =

{
lni if the i-th servomotor is healthy
l̄i if the i-th servomotor is stuck,

(10)

where in case of a stuck fault, the constant l̄i is unknown. Introducing the stuck offset
so = col(s01, s02, s03, s04), where soi = l̄i − lni is the stuck offset of the i-th arm, we have

l = ln + so. (11)

Remark 5. In the following, the assumption of at most one stuck fault at a time is made, that is,
if soi 6= 0 for some i, then soj = 0 for j 6= i. In these terms, Fault Detection (FD) consists of
determining if soi 6= 0 for some i, Fault Isolation (FI) consists of determining which i is such that
soi 6= 0, and Fault Identification (FId) consists of the estimation of l̄i.

Remark 6. Both u and ln are available inputs. The inputs u are fast and can be used for actual
flight control; on the other hand, the inputs ln are slow, and commonly set by an external module
for specific maneuvers (e.g., a supervisory module which commands a shrinking/enlarging phase).
As such, only u will be used for the tracking control goal, while ln will play a main role in the
active stuck fault isolation. To this end, let l? = col(l?1 , l?2 , l?3 , l?4 ) be the desired/optimal arm lengths
provided by the external module; ideally, we would like to achieve l = l? by setting ln = l?. This
will be not true during FI.

Remark 7. In a matrix-like fashion, it is possible to rewrite FB
m and MB

m in terms of u as

FB
m = F1u, MB

m = F2u, (12)

where F1 ∈ R3×4 is the control force input matrix and F2 is the so called control moment input
matrix [27]. Trivially,

F1 =

 0 0 0 0
0 0 0 0
−1 −1 −1 −1

, (13)

while F2 will be exploited later.

Remark 8. Note that rB
G, J and F2 are arm-dependent and, as such, time-varying. These quantities

can be calculated online. As such, in the next sections, their dependence on the arms’ length will be
omitted for brevity.
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3. Symmetries and Sensitivity

To design the fault detection, isolation, and identification policy of Section 4, the fol-
lowing symmetries are presented and will be exploited later.

1. The arms are counter-clockwise numbered and equally distributed on the so-called
“x” configuration, leading to the angles

δi =
π

4
+ (i− 1)

π

2
, i = 1, . . . , 4. (14)

2. The overall geometry of each arm is identical to the others. In particular, the geometry
constraints of each fixed arm Bi,1 and telescopic arm Bi,2 lead to

wi,j = w1,j, i = 2, 3, 4, j = 1, 2, (15)

li,j = l1,j, i = 2, 3, 4, j = 1, 2, (16)

hi,j = h1,j, i = 2, 3, 4, j = 1, 2, (17)

while the geometry constraints of each motor Bi,3 and rotor Bi,4 lead to

ri,j = r1,j, i = 2, 3, 4, j = 3, 4, (18)

hi,j = h1,j, i = 2, 3, 4, j = 3, 4. (19)

3. For each arm, the mass of each component is equal to the corresponding component
of the other arms, which leads to

mi,j = m1,j, i = 2, 3, 4, j = 1, 2, 3, 4. (20)

4. Motors 1 and 3 are counter-clockwise, while 2 and 4 are clockwise, hence

cwi = (−1)i+1, i = 1, 2, 3, 4. (21)

Several implications follow.

5. The total mass of the system is

m = m0 + 4(m1,1 + m1,2 + m1,3 + m1,4). (22)

6. Since δ3 = δ1 + π and δ4 = δ2 + π, for each vector v ∈ span{e1, e2} we have

RB
3,jv = −RB

1,jv, j = 1, 2, 3, 4, (23)

RB
4,jv = −RB

2,jv, j = 1, 2, 3, 4. (24)

Remark 9. The center of mass rB
G is linear in l. In particular, we have rB

G = KGl, where

KG =

√
2

2
m1,2 + m1,3 + m1,4

m

1 −1 −1 1
1 1 −1 −1
0 0 0 0

. (25)

See Appendix A.1 for details.
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Remark 10. The actuation torque MB
m is affine in l, that is, it can be rewritten as MB

m = v(u) +
Km(u)l, where v(u) ∈ R3 and Km(u) ∈ R3×4. Moreover, v(u) is linear in u and it can be
rewritten as v(u) = Kvu, where

Kv =

− l0
2 − l0

2
l0
2

l0
2w0

2 −w0
2 −w0

2
w0
2cD

cL
− cD

cL

cD
cL

− cD
cL

. (26)

Finally, the i-th column of Km(u), denoted as Ki
m(u), is linear in u, that is Ki

m(u) = Diu,
where

Di = RB
i,1E2,i −

m1,2 + m1,3 + m1,4

m
RB

i,1(E2,1 + E2,2 + E2,3 + E2,4), (27)

where Ei,j ∈ R3×4 is defined as a matrix with zero elements but the i, j element which is equal to
“1”. See Appendix A.2 for details.

Remark 11. Defining m̄ =
m1,2+m1,3+m1,4

m , it is possible to rewrite D1, D2, D3, D4 in a matrix
fashion as

D1 = RB
1,1

 0 0 0 0
1− m̄ −m̄ −m̄ −m̄

0 0 0 0

, D2 = RB
2,1

 0 0 0 0
−m̄ 1− m̄ −m̄ −m̄

0 0 0 0

, (28)

D3 = RB
3,1

 0 0 0 0
−m̄ −m̄ 1− m̄ −m̄

0 0 0 0

, D4 = RB
4,1

 0 0 0 0
−m̄ −m̄ −m̄ 1− m̄

0 0 0 0

. (29)

Remark 12. The control moment input matrix F2 can be rewritten as

F2 = Kv + l1D1 + . . . + l4D4. (30)

Indeed, we have MB
m = F2u, and, at the same time,

MB
m = Kvu + Km(u)l (31)

= Kvu +
4

∑
i=1

(liDiu) (32)

= (Kv +
4

∑
i=1

(liDi))u. (33)

Remark 13. Consider the index
||J(ln)− J(l)||
||J(l)|| , (34)

where the demanded arm lengths ln differ from the actual ones for one component only. Each arm is
demanded a length of α i.e., ln = col(α, α, α, α) , ᾱ, and the i-th arm is considered to have a stuck
displacement soi . Therefore, we consider the indexes

ri,α(soi) =
||J(ᾱ)− J(ᾱ + eisoi)||
||J(ᾱ + eisoi)||

, i = 1, . . . , 4. (35)

Figure 2 shows the numerical evaluation of the index r1,α. The indexes r2,α, r3,α, r4,α are
identical due to the symmetry of the system.

For each index, the evaluation is performed for α = 0.2 (m), α = 0.3 (m), and α = 0.4 (m),
which represent the (minimum, average, and maximum) lengths of the arms of the vehicle used in
the numerical simulations, as described in Table 1. In the worst case, that is, when the stuck offset
is 0.2 (m), the variation of ||J(l)|| is up to 30%. It is, however, reasonable to fix the arm set point in
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the middle range (α = 0.3 (m)), leading to a variation up to 15%. Thus, for the rest of the paper,
the design is performed assuming J(l) ≈ J(ln), which will be, therefore, simply written as J.

Figure 2. Sensitivity indexes for J(l). The calculation is performed with the numerical parameters
reported in Section 6.

4. Fault Detection, Isolation, and Identification
4.1. Fault Detection

Following [22], we approach the problem in the following way.

Definition 1. A (fault detection) residual generator is a dynamic system with the structure

ż = f (z, u, pF, ṗF, ω, η),

r = h(z, u, pF, ṗF, ω, η),
(36)

where z(t) ∈ Rnz and r(t) ∈ Rnr , such that

1. whenever no fault occurs, r(t) exhibits convergent dynamics;
2. whenever a fault occurs, at least one component of r(t) does not exhibit convergent dynamics.

If (36) is a (fault detection) residual generator, then r(t) is an (observer based) fault detection
residue.

Remark 14. In the common definitions, the fault detection residue r(t) is a scalar one, that is,
r(t) ∈ R for each t. This condition can be matched by considering the new residue ||r(t)||.

Consider the dynamical system

ΣFD :
ż = −kr J−1ω− J−1(ω× Jω) + J−1v(u) + J−1Km(u)ln + H(ω− z)

r = ω− z,
(37)

where −H ∈ R3×3 is a Hurwitz matrix.

Proposition 1. If u(t) 6∈ ker(Di) for i = 1, . . . , 4, then ΣFD is a (fault detection) residual
generator.

Proof. The residue dynamics are

ṙ = −Hr + J−1Kmso. (38)

If no telescopic arm is stuck, then so = 0, the residue r exhibits asymptotically stable
dynamics. Let the j-th arm be the stuck one, i.e., let soj(t) 6= 0 and soi(t) = 0 for i 6= j. The
residue dynamics are then

ṙ = −Hr + (J−1Kmej)soj (39)

= −Hr + (J−1Dju)soj, (40)

and because (J−1Dju)soj 6= 0, r(t) does not converge to the origin.
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4.2. Fault Isolation

Following again a simplified version of [22], we approach the fault isolation problem
as follows. Let C1, . . . , Ck be fault classes to isolate, and let us denote with C0 the absence of
faults. We assume in every instant of time one Ci is active for some unknown i, while Cj is
not active for every j 6= i.

Definition 2. A (fault isolation) residual generator for C1, . . . , Ck is a dynamical system with
the structure

ż = f (z, u, pF, ṗF, ω, η),

ri = hi(z, u, pF, ṗF, ω, η), i = 1, . . . , k,
(41)

where z(t) ∈ Rnz and ri(t) ∈ R, such that

1. whenever C0 occurs, ri(t) exhibits convergent dynamics for i = 1, . . . , k;
2. whenever Ci occurs, for i ∈ {1, . . . , k}, ri(t) does not exhibit convergent dynamics, while

rj(t) exhibits convergent dynamics for each j 6= i.

If (41) is a (fault isolation) residual generator for C1, . . . , Ck, then r(t) = col(r1(t), . . . , rk(t))
is a (directional observer-based) fault isolation residue.

In our purpose, we define the fault classes

C0 : if so1 = so2 = so3 = so4 = 0, (42)

C1 : if so1 6= 0 or so3 6= 0, (43)

C2 : if so2 6= 0 or so4 6= 0. (44)

Consider the dynamical system

ΣFDI :

ż1 = −krvT
1 ω− vT

1 (ω× Jω) + vT
1 v(u) + vT

1 Km(u)ln + H1(vT
1 Jω− z1)

ż2 = −krvT
2 ω− vT

2 (ω× Jω) + vT
2 v(u) + vT

2 Km(u)ln + H2(vT
2 Jω− z2)

r1 = vT
1 Jω− z1

r2 = vT
2 Jω− z2,

(45)

where H1, H2 > 0, v1 = −e1 + e2 and v2 = e1 + e2.

Proposition 2. If u 6∈ ker(vT
1 Di) for i = 1, 3 and u 6∈ ker(vT

2 Dj) for j = 2, 4, then ΣFDI is a
(fault isolation) residual generator for C1, C2.

Proof. We have

ker(DT
1 ) = ker(DT

3 ) = span{e1 + e2, e3}, (46)

ker(DT
2 ) = ker(DT

4 ) = span{e1 − e2, e3}, (47)

therefore, vT
1 D2 = vT

1 D4 = vT
2 D1 = vT

2 D3 = 0 and

vT
1 D1 6= 0 vT

1 D3 6= 0 vT
2 D2 6= 0 vT

2 D4 6= 0. (48)

By differentiation, we have

ṙ1 = −H1r1 + (vT
1 D1u)so1 + (vT

1 D3u)so3 (49)

ṙ2 = −H2r2 + (vT
2 D2u)so2 + (vT

1 D4u)so4. (50)
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In the absence of faults, we have soi(t) = 0 for i = 1, . . . , 4, and, therefore, both r1(t)
and r2(t) exhibit asymptotically stable (mutually decoupled) dynamics. In case of a fault of
class C1, we have soi(t) 6= 0 for i ∈ {1, 3}, and the residue dynamics are

ṙ1 = −H1r1 + (vT
1 Diu)soi (51)

ṙ2 = −H2r2, (52)

hence r2(t) exhibits an asymptotically stable dynamics, while r1(t) does not. Finally, in the
case of a fault of class C2, we have soj(t) 6= 0 for j ∈ {2, 4}, and the residue dynamics are

ṙ1 = −H1r1 (53)

ṙ2 = −H2r2 + (vT
2 Dju)soj, (54)

hence r1(t) exhibits an asymptotically stable dynamics, while r2(t) does not.

Remark 15. The fault signature matrix provided by Proposition (2) is summarized in Table 1. In
practice, the isolation is provided through a threshold-based policy.

Table 1. Fault signature matrix of the fault classes C1, C2 provided by ΣFDI . The isolation is achieved
through the evaluation of the non-zero value of r1(t), r2(t).

C0 C1 C2

r1(t) 0 6= 0 0
r2(t) 0 0 6= 0

Remark 16. Without a specific control input, the filter ΣFDI is not able to isolate which arm
is stuck, but just to isolate the pairs (1, 3) and (2, 4). This is a consequence of the symmetries
of the system, and the motivation for achieving active isolation in the following. The diagnostic
information provided by r1(t) and r2(t) can, however, lead to finer isolation.

Let us split C1 and C2 into two subclasses each, considering that the overall fault classes

C0 : if so1 = so2 = so3 = so4 = 0, (55)

C+1 : if so1 > 0 or so3 < 0, (56)

C−1 : if so1 < 0 or so3 > 0, (57)

C+2 : if so2 < 0 or so4 > 0, (58)

C−2 : if so2 > 0 or so4 < 0. (59)

The residue generator ΣFDI can be modified for the isolation of the fault classes
C+1 , C−1 , C+2 , C−2 . To this end, consider the function ramp : R→ R defined as

ramp(x) =

{
x x ≥ 0
0 x < 0.

(60)

Note that the function ramp(x) provides the absolute value of the arguments x when-
ever x is positive, while the function ramp(−x) provides the absolute value for x < 0. From
now on, we will consider the following assumption.

Assumption 1. The inequalities

fi(t)− m̄( f1(t) + f2(t) + f3(t) + f4(t)) ≥ γi, i = 1, 2, 3, 4, (61)

are satisfied for each t and for some γ1, γ2, γ3, γ4 > 0.
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Remark 17. In practice, we have fi(t) ≥ 0 for each i. Then, noting that f1(t) + f2(t) + f3(t) +
f4(t) is the upward lift force at time t, Assumption (61) bounds the displacement between the fi(t)s.
Thus, it bounds the motor torques, which is coherent with the saturation, as well as with the fact
that during the flight the quadrotor exhibits relatively small angles. Additionally, because fi(t) 6= 0
for each i, strictly positive control inputs are implied.

Lemma 1. Consider ΣFDI as in Proposition (2) and let C be the actual fault class.

1. If C = C0, then r1(t) and r2(t) exhibits asymptotically stable dynamics.
2. If C = C+1 , then r2(t) exhibits asymptotically stable dynamics, while r1(t) > 0 is achieved in

finite time.
3. If C = C−1 , then r2(t) exhibits asymptotically stable dynamics, while r1(t) < 0 is achieved in

finite time.
4. If C = C+2 , then r1(t) exhibits asymptotically stable dynamics, while r2(t) > 0 is achieved in

finite time.
5. If C = C−2 , then r1(t) exhibits asymptotically stable dynamics, while r2(t) < 0 is achieved in

finite time.

Proof. Point 1 has been proven in Proposition (2), so let us discuss point 2. Direct calcula-
tions lead to

vT
1 D1u(t) =

√
2( f1(t)− m̄( f1(t) + f2(t) + f3(t) + f4(t))) ≥

√
2γ1, (62)

vT
1 D3u(t) = −

√
2( f3(t)− m̄( f1(t) + f2(t) + f3(t) + f4(t))) ≤ −

√
2γ3, (63)

vT
2 D2u(t) = −

√
2( f2(t)− m̄( f1(t) + f2(t) + f3(t) + f4(t))) ≤ −

√
2γ2, (64)

vT
2 D4u(t) =

√
2( f4(t)− m̄( f1(t) + f2(t) + f3(t) + f4(t))) ≥

√
2γ4. (65)

Since C+1 is a sub-case of C1, we have already proved that r2(t) converges to zero. Let
so1(t) be strictly positive, that is, let so1(t) ≥ smin > 0. The rate of r1(t) is

ṙ1 = −H1r1 + (vT
1 D1u)so1 ≥ −H1r1 +

√
2γ1smin, (66)

implying

r1(t) ≥
(

r1(0)−
√

2γ1smin
H1

)
e−H1t +

√
2γ1smin

H1
, (67)

which becomes strictly positive in finite time, depending on r1(0) and H1. Let us now
explore the remaining possibility for C+1 , that is, so3(t) ≤ −smax, for some smax > 0. The
rate of r1(t) is

ṙ1 = −H1r1 + (vT
1 D3u)so3 ≤ −H1r1 +

√
2γ3smax, (68)

implying

r1(t) ≥
(

r1(0)−
√

2γ3smax

H1

)
e−H1t +

√
2γ3smax

H1
, (69)

which becomes strictly positive in finite time, depending on r1(0) and H1. The remaining
points proceed identically.

Proposition 3. Consider u(t) 6∈ ker(vT
1 Di) for i = 1, 3 and u(t) 6∈ ker(vT

2 Dj) for j = 2, 4.
Then, the system ΣFDI together with the new output functions

r+1 = ramp(vT
1 Jω− z1) (70)

r−1 = ramp(−vT
1 Jω + z1) (71)

r+2 = ramp(vT
2 Jω− z2) (72)

r−2 = ramp(−vT
2 Jω + z2) (73)
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is a (fault isolation) residual generator for C+1 , C−1 , C+2 , C−2 .

Proof. Just merge Lemma (1) with the fact that

r+1 (t) = ramp(r1(t)), r−1 (t) = ramp(−r1(t)), (74)

r+2 (t) = ramp(r2(t)), r−2 (t) = ramp(−r2(t)). (75)

Remark 18. The fault signature matrix provided by Lemma (1) and Proposition (3) is summarized
in Table 2. In practice, the isolation is provided through a threshold-based policy.

Table 2. Fault signature matrix of the fault classes C+1 , C−1 , C+2 , C−2 provided by ΣFDI . The first part
of the table refers to the evaluation through the sign of r1(t), r2(t), while the lower part refers to the
evaluation through the non-zero value of r+1 (t), r−1 (t), r+2 (t), r−2 (t).

C0 C+1 C−1 C+2 C−2
r1(t) 0 > 0 < 0 0 0
r2(t) 0 0 0 > 0 < 0

r+1 (t) 0 6= 0 0 0 0
r−1 (t) 0 0 6= 0 0 0
r+2 (t) 0 0 0 6= 0 0
r−2 (t) 0 0 0 0 6= 0

4.3. Active Fault Isolation and Identification

Based on the residue evaluation, the isolation and identification are here discussed.
The isolation is undertaken through an active approach. Fault isolation is said active if the
isolation is provided through a restriction of the control input behavior, i.e., the control
input is constrained to a subclass of signals. In the study case, the overall control inputs are
the lift forces u = col( f1, f2, f3, f4) and the nominal arm lengths ln = col(ln1, ln2, ln3, ln4).
Because the overall system stability is strongly affected by forces, the input restriction is
inspected for ln only.

Lemma 2. Let C+1 be the actual fault class.

1. If so1(t) > 0 and ln1(t), ln3(t) are strictly increasing, then r+1 (t) becomes strictly decreasing
after a finite time.

2. If so3(t) < 0 and ln1(t), ln3(t) are strictly decreasing, then r+1 (t) becomes strictly decreasing
after a finite time.

Proof. We discuss the first point. Let so1(t) > 0 and l̇n1(t), l̇n3(t) ≥ dmin > 0. The stuck
arm is the first, and ṡ01(t) = l̇1(t)− l̇n1(t) = −l̇n1(t) ≤ −dmin. Then

s01(t) = s01(t0) +
∫ t

t0

ṡ01(τ)dτ ≤ s01(t0)− dmin(t− t0), (76)

and

ṙ+1 = −H1r+1 + (vT
1 D1u)s01 (77)

≤ +(vT
1 D1u)s01(t0)− dmin(vT

1 D1u)(t− t0) (78)

≤
√

2γ1s01(t0)−
√

2dminγ1(t− t0). (79)

Point 2 proceeds in the same way.
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Remark 19. We actively set increasing/decreasing ln1(t) and ln3(t), and then the stuck arm is
determined based on which motion leads to r+1 (t) ≈ 0. Not only the isolation is finally provided,
but also an estimation of the stuck arm is provided. Indeed, when lni(t) ≈ li we have s01(t) ≈ 0,
and as discussed, all the residual components convergence to zero.

Remark 20. The active isolation is described for the class C+1 . However, mirrored results hold for
C−1 , C+2 , C−2 due to the system symmetries, following the same steps.

Then, the supervisor can be described as a discrete event system, where the nominal
arm lengths ln(t) represents the output, and it depends on the system state. The set of the
supervisor states is

S = {S0, S1, S2, S3, S4, S++
13 , S+−

13 , S−+13 , S−−13 , S++
24 , S+−

24 , S−+24 , S−−24 }, (80)

where:

• S0: no fault is detected or isolated. The output is ln(t) = l?(t);
• S1, S2, S3, S4: the i-th arm has been isolated (respectively, for some i = 1, 2, 3, 4) and the

corresponding stuck fault is estimated as l̄. Denoting the stuck arm with i, the output
is lnj(t) = l?j (t) for j 6= i and lni(t) = l̄i;

• S++
13 and S+−

13 : the fault class C+1 for the first or C−1 for the second has been isolated
(as described by the second “+” and “−” signs, respectively). Denoting the switching
time with t0, the supervisor overrides l?n1(t) and l?n3(t) with the increasing commands
(as described by the first “+” sign in both system states)

lni(t) = lni(t0) +
lmax − lni(t0)

T
(ramp(t− t0)− ramp(t− t0 − T)), i = 1, 3; (81)

• S−+13 and S−−13 : the fault class C+1 (for the first) or C−1 (for the second) has been isolated.
Denoting the switching time with t0, the supervisor overrides l?n1(t) and l?n3(t) with
the decreasing commands

lni(t) = lni(t0) +
lmin − lni(t0)

T
(ramp(t− t0)− ramp(t− t0 − T)), i = 1, 3; (82)

• S++
24 and S+−

24 : the fault class C+2 (for the first) or C−2 (for the second) has been isolated.
Denoting with t0 the switching time, the supervisor overrides l?n2(t) and l?n3(t) with
the increasing commands

lni(t) = lni(t0) +
lmax − lni(t0)

T
(ramp(t− t0)− ramp(t− t0 − T)), i = 2, 4; (83)

• S−+24 and S−−24 : the fault class C+2 (for the first) or C−2 (for the second) has been isolated.
Denoting the switching time as t0, the supervisor overrides l?n2(t) and l?n4(t) with the
decreasing commands

lni(t) = lni(t0) +
lmin − lni(t0)

T
(ramp(t− t0)− ramp(t− t0 − T)), i = 2, 4; (84)

The set of events is

E = {C0, C+1 , C−1 , C+2 , C−2 , lmax
13 , lmin

13 , lmax
24 , lmin

24 }, (85)

where:

• C0: no fault class is currently isolated from the ΣFDI ;
• C+1 , C−1 , C+2 , C−2 : the corresponding fault class has been isolated from the ΣFDI ;
• lmax

13 and lmin
13 : ln1(t) = ln3(t) = lmax is achieved for the former, while ln1(t) = ln3(t) =

lmin for the latter;
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• lmax
24 and lmin

24 : ln2(t) = ln4(t) = lmax is achieved for the former, while ln2(t) = ln4(t) =
lmin for the latter.

The graphical supervisor transition map is reported in Figure 3.

Figure 3. Supervisor. The active fault isolation is undertaken during S++
13 , S+−

13 , S−+13 , S−−13 , S++
24 , S+−

24 ,
S−+24 , S−−24 . The events which triggers the active fault isolation are C+1 , C−1 , C+2 , C−2 , while the only
event which ends it is C0.

Remark 21. The override signals let the related reference lni(t) be piece-wise continuous, with piece-
wise constant derivative (i.e., piece-wise constant speed). Moreover, lni(t + T) = lmax (resp.
lni(t + T) = lmin) is achieved in case of increasing (resp. decreasing) signal.

Remark 22. The isolation is ideally achieved by the evaluation of the non-zero values of r+1 (t),
r−1 (t), r+2 (t), r−2 (t). However, for robustness issues, a threshold-based evaluation is considered.
More precisely, two thresholds are actually set, a first one denoted th1 > 0 is considered during
S0, S1, S2, S3, S4 (i.e., when no active isolation is achieved), while a second threshold th2 > 0 is
considered for the remaining states (i.e., during the active isolation). In order to avoid high-frequency
triggering events, we set th1 > th2 . The difference th1 − th2 , together with th1 and th2 themselves is
a trade off between the robustness, the false negative/positive triggering events, and final estimation
error of the stuck arm.

Remark 23. The supervisor should be able to trigger whenever an event occurs. However, due to
the noise, the residuals r+1 (t), r−1 (t), r+2 (t), r−2 (t) can pass the thresholds (up and down) with high
frequency, causing high rate triggering events. Then, once a transition to a new state is achieved,
a minimum time tmin > 0 is waited before the evaluation of any event. Formally, we could model
this by adding a new (temporized) condition

oktmin =

{
true if the current state is active for at least tmin seconds,
f alse otherwise.

(86)

Then, each event e ∈ E is replaced with the new one

e′ = e and oktmin . (87)

Remark 24. Figure 4 represents the graphical point of view about the active isolation and stuck
estimation. Based on the isolated fault class (C+1 , C−1 , C+2 , C−2 ), the supervisor starts to provide
increasing or decreasing nominal arm lengths of the involved pair. The procedure stops when
all the residual components are under the threshold. As it can be seen in Figure 3, livelocks are,
however, possible. Then, a correct evaluation of the thresholds and the residual generator gains
H1, H2, H3, H4 is needed.

Remark 25. The overall active isolation procedure does not affect u(t) (directly). Then, there is no
need to stop the system motion or force hovering.
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Figure 4. During the active fault isolation (and estimation), both the arms in the isolated axis are
increased/decreased.

5. Fault-Tolerant DOBC Control

The feedback linearization fault-tolerant tracking controller is based on [25], where a
DOBC approach is adopted for wind estimation and compensation [21].

Remark 26 (Disturbance observer). Let F̃E
w(t) = FE

w(t)− F̂E
w(t) be the estimation error. The

disturbance observer

ΣDO :
ṡ = −Hs− H(Φ + HṗF)

F̂E
w = ms + mHṗF,

(88)

where −H ∈ R3×3 is a Hurwitz matrix and

Φ = −RE
BS(rB

G)J−1S(ω)Jω− RE
BS2(ω)rB

G + ge3 +
1
m

fzRE
Be3 + RE

BS(rB
G)J−1MB

m, (89)

makes the estimation error dynamics

˙̃FE
w = −HF̃E

w + ḞE
w , (90)

which is a bounded input bounded output linear time-invariant system (with respect to ḞE
w = 0)

(see [25] for details).

Remark 27 (Inner loop). Let v(t) = col(vz(t), vη(t)) be an auxiliary input, where vz(t) ∈ R
and vη(t) ∈ R3. If F̃E

w(t) = 0, the regular static state feedback

u = F−1 A−1(g(ω, η, l) + v) (91)

provides the input–output decoupling between (zF, η) and (vz, vη), where

g(ω, η, l) =
[
−eT

3 (−RE
BS(rB

G)J−1S(ω)Jω− RE
BS2(ω)rB

G + ge3)− 1
m eT

3 F̂E
w

−(Ṫ(η)ω− T(η)J−1S(ω)Jω)

]
, (92)

A =

[
− 1

m eT
3 RE

Be3 eT
3 RE

BS(rB
G)J−1

0 T(η)J−1

]
. (93)

Moreover, let zFr(t) ∈ R and ηr(t) = col(ϕr(t), θr(t), ψr(t)) ∈ R3 be the time varying
reference signals for zF(t) and η(t). The controls

vz = z̈Fr − αz1(żF − żFr)− αz0(zF − zFr), (94)

vη = η̈r − αη1(T(η)ω− η̇r)− αη0(η − ηr), (95)

make the overall closed-loop error system bounded input bounded output with respect to
ḞE

w whenever the coefficients αz1, αz0, αη1, αη0 solve the pole placement (see [25] for details).
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Remark 28 (Outer loop). Let us assume near hovering conditions (i.e., ϕ(t) ≈ θ(t) ≈ 0) and
let ex(t) = xF(t)− xFr(t) and ey(t) = yF(t)− yFr(t) be the error variables between xF(t) and
yF(t) and their references xFr(t) and yFr(t). The control law[

ϕr
θr

]
=

m
fz

[
sψ −cψ

cψ sψ

](
−
[

eT
1

eT
2

]
(Γ +

1
m

F̂E
w) +

[
vx
vy

])
, (96)

where

Γ = −RE
BS(rB

G)J−1S(ω)Jω− RE
BS2(ω)rB

G + ge3 + RE
BS(rB

G)J−1MB
m, (97)

τx = ẍFr − αx1(ẋF − ẋFr)− αx0(xF − xF), (98)

τy = ÿFr − αy1(ẏF − ẏFr)− αy0(yF − yF), (99)

forces the tracking error dynamics

ëx + αx1 ėx + αx0ex ≈ eT
1 F̃w (100)

ëy + αy1 ėy + αy0ey ≈ eT
2 F̃w. (101)

The coefficients αx1, αx0, αy1, αy0 are then chosen according to a pole placement (see [25] for
details).

The overall control scheme is reported in Figure 5.

Disturbance 
Observer

Inner 
Loop

Outer
Loop

Telescopic
Quadrotor

Supervisor

Residual
Generator

Servomotors

Figure 5. Control scheme. The vector l? describes the optimal/desired arm lengths provided
by external software (e.g., an onboard artificial intelligence or a planning algorithm). Based on the
residue r = col(r+1 , r−1 , r+2 , r−2 ), the supervisor detects/isolates/identificates a fault (l̄i), and eventually
overrides l? with a new reference ln. Based on a stuck fault in the servomotors, the actual arm lengths
l could differ from ln.

6. Numerical Simulations

The solution is tested in simulation using MATLAB under the following settings.

Frequencies. The simulation is carried out for a total of 30 s. According to the double-
loop structure, faster inner loop dynamics are achieved by both control parameters
and different sample times. This solution takes into consideration computational
limitations on a future implementation. In particular, the inner loop is simulated at
1 kHz, while the outer loop runs at 10 Hz. A zero order hold is applied for ϕr(t) and
θr(t) between consecutive samples.
Plant parameters. The frame and fixed arms are those of a DJI Flamewheel 450,
the telescopic arms are of the same size and mass as the fixed ones, and the electric
motors are the T-Motor AirGear 350. Table 3 summarizes the geometric dimensions
and the dynamic parameters.
Sensors and Inertial Measurement Unit (IMU). The commonly adopted MPU-9250
IMU [28] is taken into consideration. Additive white Gaussian noise is applied to
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accelerations and gyroscopes, with standard deviation 7.8480 · 10−2 and 5.5192 · 10−3,
respectively. Finally, due to Kalman filtering, a smaller noise is assumed for simplic-
ity on attitude, linear velocity, and linear position (i.e., 2.7596 · 10−3, 1.5696 · 10−2,
7.8480 · 10−3, respectively).
Input saturation. A saturation 0 ≤ fi(t) ≤ 9 N is considered for each actual lift force.
The total mass of the system is 1.448 kg, resulting in a thrust-to-weight ratio equal
to 2.5.
Control parameters. All the control parameters have been heuristically set. The
parameters for both the control law and the observer are summarized in Table 3.

Table 3. Geometric dimensions, dynamical parameters, and control parameters (see [29] for lift and
drag coefficients).

Parameters Variables Value Unit

Frame width and length w0, l0 0.1 (m)
Frame height h0 0.5 (m)
Fixed and telescopic arm widths wi,j (i ≤ 4, j ≤ 2) 0.2 (m)
Fixed and telescopic arm lengths li,j (i ≤ 4, j ≤ 2) 0.025 (m)
Motor radius ri,3 (i ≤ 4) 0.012 (m)
Rotor radius ri,4 (i ≤ 4) 0.12 (m)
Fixed and telescopic arms heights hi,j (i ≤ 4, j ≤ 2) 0.01 (m)
Motor heights hi,3 (i ≤ 4) 0.03 (m)
Rotor heights hi,4 (i ≤ 4) 0.003 (m)
Minimum arm length lmin 0.2 (m)
Maximum arm length lmax 0.4 (m)

Frame mass m0 0.8 (kg)
Fixed and telescopic arm masses mi,j (i ≤ 4, j ≤ 2) 0.05 (kg)
Motor masses mi,3 (i ≤ 4) 0.054 (kg)
Rotor masses mi,4 (i ≤ 4) 0.008 (kg)
Total system mass m 1.448 (kg)
Gravitational acceleration g 9.81 (m/s2)
Linear friction coefficient kt 10−3 (N·s/m)
Angular friction coefficient kr 10−2 (N·s·m)
Lift coefficient cL 3.13 · 10−5 (N·s2)
Drag coefficient cD 7.5 · 10−7 (N·m·s2)

Inner loop frequency 103 (Hz)
Outer loop frequency 10 (Hz)
Control input lower saturation 0 (N)
Control input upper saturation 9 (N)

xF and yF closed loop poles −1,−2 (−)
zF closed loop poles −1,−2 (−)
ϕ and θ closed loop poles −10,−20 (−)
ψ closed loop poles −1,−2 (−)
Residual generator gains H1, H2 10 (−)
Observer gain H 4 I (−)
Threshold 1 th1

10 (−)
Threshold 2 th2 3 (−)
Minimum time for each state tmin 1 (s)

In the following, four scenarios are simulated using the same tracking reference and
the same control law parameters.

6.1. Scenario 1

A stuck fault on l1 is injected at t = 10 s, meanwhile, all the arm lengths commands
l?i (t) are decreasing after the fault injection. The overall demanded trajectory is an ascending
helix for the first half of the simulation, and a descending helix for the second half of the
simulation, as shown in Figure 6. The yaw angle is always kept at zero (i.e., ψr(t) ≡ 0).
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Figure 6. Trajectory of pF(t). The red plot represents the reference, while the black one represents the
actual position.

The tracking performances of the linear positions and the yaw angle are reported in
Figure 7. Linear position tracking errors are negligible, and the error on the yaw angle ψ is
acceptable: such error magnitude is up to 0.1 rad, and this is a consequence of the chosen
control law parameters.

Figure 7. Tracking of xF(t), yF(t), zF(t) and ψ(t).

The roll and pitch are reported in Figure 8. The effect of the zero-order hold is visible
since the references are step-wise signals. The inner loop is able to achieve the goal, almost
reaching the reference components before the successive sample time.

Figure 8. Tracking of ϕ(t) and θ(t). The reference signals are provided by the outer loop, which runs
at a lower frequency. A zero-order hold is used between consecutive samples.
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The actual wind components and their estimations are reported in Figure 9. The distur-
bance observer is slower than the disturbance (due to the bandwidth of the observer), but it
is able to provide a good estimation. Indeed, tracking is achieved with no displacement
due to wind.

Figure 9. Wind components and their estimations.

The overall control inputs are reported in Figure 10. The saturation constraints are
always matched.

Figure 10. Control inputs.

Let us now compare the active isolation and diagnosis for the simulated scenarios.
Actual arm lengths, estimations, and residues are plotted in Figure 11. Each arm starts
with its maximum extension, while a shrinking phase on each arm is demanded starting
from t = 10 s. The first arm is stuck, hence the decreasing desired arm length leads to
so1(t) > 0, and the triggering of r+1 (t) > 0. The supervisor enters the active isolation phase
(state S++

13 , precisely) and overrides the arm length command for the pair (1, 3). During the
increase of ln1(t) and ln3(t) the residue r+1 (t) decreases (while the remaining residues are
approximately null), hence when r+1 (t) ≤ th2 the event C0 triggers. The correct isolation is
then achieved, together with an estimation of the stuck l̄1. The isolation is quite fast since
the state S++

13 directly moves the commanded signals toward the actual stuck arm length.

6.2. Scenario 2

In this scenario, each arm starts with its minimum extension, while an enlarging phase
on each arm is demanded starting from t = 10 s. A stuck fault on l1 is injected at t = 10 s.
Plots about fault isolation are summarized in Figure 12, while the plots about tracking
performances will be not analyzed, as they are close to those of the first scenario. The stuck
leads to r−1 (t) > 0 (in practice, r−1 (t) > th1), hence the supervisor enters the active fault
isolation phase (state S+−

13 , precisely). The demanded arm lengths l?n1(t) and l?n3(t) are then
again overrided with increasing signals. However, during this phase, the residues r−1 (t)
will increase. When both ln1(t) and ln2(t) reach the maximum length, the supervisor state
transition to S−−13 happens, leading to decreasing references. Finally, as ln1(t) approaches
to l̄1, the residue decreases, until r−1 (t) < th2 . Then, the events C0 triggers, the first arm is
isolated as stuck and the actual arm length is estimated.



Machines 2023, 11, 511 20 of 26

Figure 11. Actual arm lengths, nominal arm lengths, and residual components in Scenario 1.

Figure 12. Actual arm lengths, nominal arm lengths, and residual components in Scenario 2.

6.3. Scenario 3

In this scenario, each arm starts with its maximum extension, while a shrinking phase
on each arm is demanded starting from t = 10 s. A stuck fault on l3 is injected at t = 10 s.
From the isolation and identification point of view, this scenario is interesting: even if the
stuck fault is on the third arm, the same fault class of Scenario 2 needs to be isolated by the
residual generator, while the final result provided by the active fault isolation is expected to
be different. Plots about fault isolation are summarized in Figure 13, while the plots about
tracking performances will be not analyzed, as they are close to those of the earlier scenarios.
The supervisor detects a fault and isolates the fault class C+1 . Differently from the Scenario
2, the supervisor policy is now an optimal one: by shrinking each arm, the triggered residue
suddenly decreases, the scenario is isolated in less time, and fault isolation is achieved
through the states sequence S0, S+−

13 , S3 (the minimum number of transitions).
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Figure 13. Actual arm lengths, nominal arm lengths, and residual components in Scenario 3.

6.4. Scenario 4

Finally, we consider a scenario where each arm starts with its minimum extension,
while an enlarging phase on each arm is demanded starting from t = 10 s. From the
isolation and identification point of view, this scenario is the symmetric counterpart of
Scenario 1. Plots about fault isolation are summarized in Figure 14, while the plots about
tracking performances will be not analyzed, as they are close to those of the earlier scenarios.
The overall isolation is accomplished through the state sequence S0, S++

13 , S−+13 , S3. The
active policy demands an enlarging phase, which does not lead to a residue reduction: the
transition to S−+13 (shrinking phase) is required for the goal. The supervisor policy is not
optimal, but isolation and identification are achieved, and no stability issues arise during
the active isolation.

Figure 14. Actual arm lengths, nominal arm lengths, and residual components in Scenario 4.
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7. Conclusions

The fault tolerant control of a telescopic quadrotor has been discussed. The fault
diagnosis problem has been faced for servo motor stuck faults by exploiting the system
symmetries. A residual generator provides the isolation into four fault classes, which
in turn triggers an active fault isolation/identification phase, which finally solves the
problem without constraining the lift forces. Indeed, such an active policy is handled
by the supervisor, which has the main role of directly providing increasing/decreasing
arm reference signals, ending the diagnosis. The wind is also taken into account and
managed through a DOBC approach. The proposed solution is finally tested in simulation,
where it can be seen how the goal is reached even under noise, actuators saturation, and
model approximation.

Among the possible limitations which still affect the solution, we mention how the
scheme is designed under the assumption of stuck faults only. Then, distinguishing between
propeller faults and stuck servo faults is a future work, as well as extending the morphing
degree of freedoms, and, finally, a hardware implementation of the solution.
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Appendix A

Appendix A.1. Proof of Remark 9

For compactness, consider the functions

cx(δ) =
cos(δ)
| cos(δ)| , cy(δ) =

sin(δ)
| sin(δ)| , (A1)

where δ 6= k π
2 . For the symmetry of the rigid body B0 ∪ B1,1 ∪ B1,2 ∪ B1,3 ∪ B1,4, we have

rB
1,1 = −rB

3,1, rB
2,1 = −rB

4,1 and m1,1 = m2,1 = m3,1 = m4,1. Moreover, rB
0 = 0, hence
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1
m

(
m0rB

0 +
4

∑
i=1

mi,1rB
i,1

)
= 0. (A2)

Additionally, we have RB
1,1e1 = −RB

1,3e1 and RB
2,1e1 = −RB

3,3e1. For each arm i, we have

rB
i,4 = rB

i,3 = cx(δi)
w0

2
e1 + cy(δi)

l0
2

e2 + liRB
i,1e1, (A3)

rB
i,2 = rB

i,4 −
wi,2

2
RB

i,1e1, (A4)

hence

4

∑
i=1

rB
i,4 =

4

∑
i=1

rB
i,3 =

4

∑
i=1

cx(δi)
w0

2
e1 +

4

∑
i=1

cy(δi)
l0
2

e2 +
4

∑
i=1

liRB
i,1e1 (A5)

=
4

∑
i=1

liRB
i,1e1, (A6)

4

∑
i=1

rB
i,2 =

4

∑
i=1

rB
i,4 −

4

∑
i=1

wi,2

2
RB

i,1e1 (A7)

=
4

∑
i=1

rB
i,4 − 4

w1,2

2

4

∑
i=1

RB
i,1e1 (A8)

=
4

∑
i=1

rB
i,4. (A9)

Finally,

rB
G =

1
m

(
m0rB

0 +
4

∑
i=1

4

∑
j=1

mi,jrB
i,j

)
(A10)

=
1
m

(
m0rB

0 +
4

∑
i=1

mi,1rB
i,1

)
+

1
m

4

∑
i=1

4

∑
j=2

mi,jrB
i,j (A11)

=
1
m

(
4

∑
i=1

mi,2rB
i,2 +

4

∑
i=1

mi,3rB
i,3 +

4

∑
i=1

mi,4rB
i,4

)
(A12)

=
1
m

(
m1,2

4

∑
i=1

rB
i,2 + m1,3

4

∑
i=1

rB
i,3 + m1,4

4

∑
i=1

rB
i,4

)
(A13)

=
m1,2 + m1,3 + m1,4

m

4

∑
i=1

rB
i,4 (A14)

=
m1,2 + m1,3 + m1,4

m

4

∑
i=1

liRB
i,1e1 (A15)

= KGl, (A16)

where, in the last step, it is noted that KG can be rewritten as

KG =
m1,2 + m1,3 + m1,4

m

[
RB

1,1e1 RB
2,1e1 RB

3,1e1 RB
4,1e1

]
, (A17)
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or, in a matrix fashion, as

KG =
m1,2 + m1,3 + m1,4

m

cos(δ1) cos(δ2) cos(δ3) cos(δ4)
sin(δ1) sin(δ2) sin(δ3) sin(δ4)

0 0 0 0

. (A18)

Appendix A.2. Proof of Remark 10

First, note that
(RB

i,1e1)× e3 = −RB
i,1(e3 × e1) = −RB

i,1e2. (A19)

We have

−
4

∑
i=1

rB
i,4 fi × e3 = −

4

∑
i=1

fi

(
cx(δi)

w0

2
e1 + cy(δi)

l0
2

e2

)
× e3 −

4

∑
i=1

filiRB
i,1e1 × e3 (A20)

= −
4

∑
i=1

fi

(
cy(δi)

l0
2

e1 − cx(δi)
w0

2
e2

)
+

4

∑
i=1

filiRB
i,1e2 (A21)

and

4

∑
i=1

rB
G × fie3 =

(
4

∑
i=1

fi

)
rB

G × e3 = −
(

4

∑
i=1

fi

)
S3KGl. (A22)

The thrust torque is

MB
thrust = −

4

∑
i=1

(
(rB

i,4 − rB
G)× fie3

)
(A23)

= −
4

∑
i=1

( firB
i,4)× e3 +

4

∑
i=1

rB
G × fie3 (A24)

= −
4

∑
i=1

fi

(
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2

e1 − cx(δi)
w0

2
e2

)
+

4

∑
i=1

filiRB
i,1e2 −

(
4
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fi

)
S3KGl, (A25)

and, considering that MB
m = MB

drag + MB
torque, we have MB

m = v + Kml, where

v =
4

∑
i=1

cwi

cD
cL

fi −
4

∑
i=1

fi

(
cy(δi)

l0
2

e1 − cx(δi)
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2
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(A26)

=
4

∑
i=1

fi

(
cwi

cD
cL

e3 − cy(δi)
l0
2

e1 + cx(δi)
w0

2
e2

)
(A27)

= Kvu, (A28)

and

Km =
[

f1RB
11e2 f2RB

21e2 f3RB
31e2 f4RB

41e2
]
−
(

4

∑
i=1

fi

)
S3KG. (A29)

It is indeed noted that Kv can be rewritten in a matrix fashion as

Kv =

−cy(δ1)
l0
2 −cy(δ2)

l0
2 −cy(δ3)

l0
2 −cy(δ4)

l0
2

cx(δ1)
w0
2 cx(δ2)

w0
2 cx(δ3)

w0
2 cx(δ4)

w0
2

cw1
cD
cL

cw2
cD
cL

cw3
cD
cL

cw4
cD
cL

. (A30)

For i = 1, . . . , 4, we have
fiRB

i,1e2 = RB
i,1E2,1u (A31)
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and (
4

∑
j=1

f j

)
RB

i,1e2 =

(
4

∑
j=1

f jRB
i,1e2

)
(A32)

=
[

RB
i,1e2 RB

i,1e2 RB
i,1e2 RB

i,1e2

]
u (A33)

= RB
i,1(E2,1 + E2,2 + E2,3 + E2,4)u. (A34)

Finally, the i-th column of Km(u) is

Ki
m(u) = fiRB

i,1e2 −
m1,2 + m1,3 + m1,4

m

(
4

∑
j=1

f j

)
S3RB

i,1e1 (A35)

= fiRB
i,1e2 −

m1,2 + m1,3 + m1,4

m

(
4

∑
j=1

f j

)
RB

i,1e2 (A36)

= RB
i,1E2,iu−

m1,2 + m1,3 + m1,4

m
RB

i,1(E2,1 + E2,2 + E2,3 + E2,4)u (A37)

= Diu. (A38)

References
1. Pütsep, K.; Rassõlkin, A. Methodology for Flight Controllers for Nano, Micro and Mini Drones Classification. In Proceedings of

the 2021 International Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkey, 27–28 October 2021;
pp. 1–8. [CrossRef]
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