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Abstract: The development of high-performance mass spectrometer and vacuum coating technology
has placed higher demand on the vacuum level of turbomolecular pumps (TMPs), which are required
to possess a greater compression ratio and faster pumping speed. There exists a relation of “as
one falls, another rises” between the compression ratio and the pumping speed when traditional
improvement methods are used. How to simultaneously increase the compression ratio and pumping
speed is a very important question for the high-end turbomolecular pumps. In this study, on the basis
of a parallel blade and thin gas aerodynamic model, several types of curved blade are presented to
improve the pumping performance of TMPs. The comparison results show that the positive quadratic
surface exhibited a better pumping performance than the other curved blades. After that, a hybrid
optimization method based on a support vector machine (SVR) and particle swarm optimization
(PSO) are proposed to obtain the structural parameters of the rotor blade for the highest pumping
speed and maximum compression ratio. The optimization results show that, compared with the
parallel blades, the compression single-stage blade row with quadratic surface structure was able
to increase the maximum compression ratio by 10.35% and the maximum pumping speed factor by
4.61%. In addition, the intermediate single-stage blade row with quadratic surface structure increased
the maximum compression ratio by 9.15% and the maximum pumping speed factor by 2.53%.

Keywords: turbomolecular pump; aerodynamic model; pumping performance; blade structural
optimization

1. Introduction

Turbomolecular pumps are widely used in many fields, such as semiconductor manu-
facturing, the etching process, and mass spectrometer and high-energy physics applications,
which need clean high vacuum and ultra-high vacuum conditions [1–4]. Turbomolecular
pumps have a multi-stage cross arrangement of the rotors and stators, which relies on high-
speed rotating blades to achieve momentum transmission, and its performance indices are
mainly the maximum compression ratio and the maximum pumping speed. The develop-
ment of mass spectrometers and vacuum coating technology has placed higher demands on
the vacuum levels of turbomolecular pumps [5,6], which require higher compression ratios
and higher pumping speeds. In recent years, the optimization of the control strategy, the
study of the modal analysis and critical speed, the reduction in impeller noise and vibration
through the study of cavitation dynamics, and the improvement of the rotor strength
have allowed the turbomolecular pump to achieve higher and higher speeds [7–12], and
its pumping performance has also been correspondingly improved. The new molecular
pumps being developed are constantly moving towards an ultra-high vacuum field [13].
However, as the speed increases, the rate of increase in the maximum compression ratio
of the TMP will gradually slow down [14]. Thus, it important to study how optimizing
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the blade structure improved the pumping performance of TMP, which could lead to the
development of molecular pumps that can achieve higher vacuums in the future. The
research methodology can also be utilized to develop new molecular pumps with different
pumping performance requirements.

Among the structural parameters of the blade, the factors with great impacts on
the pumping performance of the turbomolecular pump are mainly the inclination angle
and the chord ratio. With these two parameters, it is often difficult to achieve a good
balance between the compression ratio and the pumping speed. For example, reducing
the inclination of the leaf column will allow for a high compression ratio, but will reduce
the pumping speed [15]. Sheng et al. [16] have shown that the increase in the chord
ratio causes the maximum compression ratio to decrease rapidly, while the maximum
pumping speed increases significantly. Therefore, it may be difficult to achieve the goal of
increasing the compression ratio and the pumping speed at the same time by optimizing
the two parameters of inclination and chordal ratio.

In view of the aforementioned problem of the structural optimization of turbomolec-
ular pumps, domestic and foreign scholars have carried out a large number of research
studies. Turbomolecular pumps typically operate at low pressures, where the flow state of
the gas is a free molecular state that cannot be studied using the continuous media-based
Navier–Stokes and Euler equations [17]. To calculate the pumping performance of the
molecular pumps, a random molecular method known as Monte Carlo was developed
to study the flow of thin gases in molecular pumps, and has been widely used in recent
years for the study of molecular pumps. The Monte Carlo method can be divided into
the direct simulation Monte Carlo method (DSMC) and the test particle Monte Carlo
method (TPMC).

TPMC does not consider intermolecular collisions, and uses calculations to simulate
gas flow [18]. When the state of a gas molecule is close to the transition flow, the Monte
Carlo method (DSMC), which considers collisions between molecules, will be more suitable
for simulating the flow of molecules. Versluis et al. [19] proposed a modeling method for
moving blades and used the direct simulation Monte Carlo method to study the gas flow of
molecular pumps in both free molecular flow and excessive flow. They obtained detailed
information on the change of the molecular state in the system over time, which was able
to determine various macroscopic parameters with results that were in good agreement
with the experimental data. Sengil et al. [20] used an improved direct simulation Monte
Carlo solver to simulate the pumping performance of the single-stage surface rotor, and the
results showed that the Monte Calo method was able to simulate the pumping performance
of the surface blade rows well.

However, in recent years, with the increase in molecular pump speed, the air flow in
the blade rows is expected to approach the free molecular flow soon after the molecular
pump reaches a stable speed, and TPMC, without considering the intermolecular collision,
will be more suitable for the simulation calculation of the performance of the molecular
pump. Mehrzad et al. [21] used the test particle Monte Carlo method to compare the
pumping performance of wedge-shaped vanes and parallel vanes, and the results showed
that the TPMC had high accuracy and that the pump speeds of high vanes at positive wedge
angles were improved relative to those of parallel vanes. In the range of free molecular
flow, Sun et al. [22], based on the experimental particle Monte Carlo method, wrote a
custom program to simulate the flow state of gas molecules in a turbomolecular pump,
then used another program to verify the rationality and accuracy of the calculation results
of the method.

In terms of non-parallel blade rows, Bird [23] studied the pumping performance
of the triangular cross-section blades using the direct simulation Monte Carlo method,
and the results showed that in the free molecular flow stage, the front blades would
effectively increase the maximum compression ratio if they had sharp leading edges.
Sengil [24] compared the pumping performance of several curved blades and parallel blades
in different flow fields using the direct simulation Monte Carlo method, and the results
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showed that the performance of the combination of the rotor that used the parallel blade
and the stator that used the curved blade was expected to be better than the combination of
the rotor and stator that both used the parallel blade.

In terms of model building, Yanwu Li et al. [25] studied the accuracy of three simula-
tion models at different speed ratios within the range of free molecular flow, and the results
showed that the simplified three-dimensional model was more capable of replacing the
complex three-dimensional model than the two-dimensional model.

Based on previous research, this study adopted a simplified three-dimensional model
to establish a thin gas dynamic simulation model of the single-stage blade row of a tur-
bomolecular pump using the experimental particle Monte Carlo method. The accuracy
of the simulation model was verified by comparing the results with the experimental
data. Compared with the parallel blade row, a set of blade structure parameter simulation
was carried out to analyze the influence of surface blade row parameters on pumping
performance. On this basis, the blade structural parameters of quadratic surface blades
were optimized by support vector machine regression (SVR) and particle swarm (PSO)
multi-objective optimization algorithms, with maximum pumping speed and maximum
compression ratio as the optimization goals.

2. Theoretical Model
2.1. Working Principle of Turbomolecular Pump

As part of the composite molecular pump, the working structure diagram of TMP is
shown in Figure 1. The main working parts are the composite rotor, stator, and spindle
assembly, in which the angle of the stator is opposite to the rotor and the rotor and stator
are alternately arranged. The spindle drives the rotor rotation so that the probability of gas
molecules on both sides of the blade row rotating at high speeds is different, forming a
macroscopic pumping performance. The stator assembly is fixed to the pump housing, and
due to the presence of rotors rotating at high speeds on both sides, the stator also has the
same pumping effect as the rotor. The gas is transferred from the inlet to the outlet, and the
outlet is connected to the inlet of the traction pump in the composite pump.

Machines 2023, 10, x FOR PEER REVIEW 3 of 20 
 

 

increase the maximum compression ratio if they had sharp leading edges. Sengil [24] com-
pared the pumping performance of several curved blades and parallel blades in different 
flow fields using the direct simulation Monte Carlo method, and the results showed that 
the performance of the combination of the rotor that used the parallel blade and the stator 
that used the curved blade was expected to be better than the combination of the rotor and 
stator that both used the parallel blade. 

In terms of model building, Yanwu Li et al. [25] studied the accuracy of three simu-
lation models at different speed ratios within the range of free molecular flow, and the 
results showed that the simplified three-dimensional model was more capable of replac-
ing the complex three-dimensional model than the two-dimensional model. 

Based on previous research, this study adopted a simplified three-dimensional model 
to establish a thin gas dynamic simulation model of the single-stage blade row of a turbo-
molecular pump using the experimental particle Monte Carlo method. The accuracy of 
the simulation model was verified by comparing the results with the experimental data. 
Compared with the parallel blade row, a set of blade structure parameter simulation was 
carried out to analyze the influence of surface blade row parameters on pumping perfor-
mance. On this basis, the blade structural parameters of quadratic surface blades were 
optimized by support vector machine regression (SVR) and particle swarm (PSO) multi-
objective optimization algorithms, with maximum pumping speed and maximum com-
pression ratio as the optimization goals. 

2. Theoretical Model 
2.1. Working Principle of Turbomolecular Pump 

As part of the composite molecular pump, the working structure diagram of TMP is 
shown in Figure 1. The main working parts are the composite rotor, stator, and spindle 
assembly, in which the angle of the stator is opposite to the rotor and the rotor and stator 
are alternately arranged. The spindle drives the rotor rotation so that the probability of 
gas molecules on both sides of the blade row rotating at high speeds is different, forming 
a macroscopic pumping performance. The stator assembly is fixed to the pump housing, 
and due to the presence of rotors rotating at high speeds on both sides, the stator also has 
the same pumping effect as the rotor. The gas is transferred from the inlet to the outlet, 
and the outlet is connected to the inlet of the traction pump in the composite pump. 

 
Figure 1. Turbomolecular pump structure diagram. 

2.2. Aerodynamic Modeling of Turbomolecular Pump 
To study the performance of the turbomolecular pump, it is necessary to first study 

the pumping performance of the single-stage blade row. The structure of the single-stage 
blade row of the molecular pump is shown in Figure 2. R is the outer diameter of the 

Figure 1. Turbomolecular pump structure diagram.

2.2. Aerodynamic Modeling of Turbomolecular Pump

To study the performance of the turbomolecular pump, it is necessary to first study
the pumping performance of the single-stage blade row. The structure of the single-stage
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blade row of the molecular pump is shown in Figure 2. R is the outer diameter of the blade,
l is the length of the blade, and h is the height of the blade. The unfolded diagram of the
single-stage blade row of the molecular pump is shown in Figure 3, where b is the blade
chord length, t is the blade thickness, and α is the blade angle. On the I side, the pressure is
p1, the molecular density is n1, the gas temperature is T1, and the total area of the channel
port is A1. On the II side, the corresponding pressure is p2, the molecular density is n2,
the gas temperature is T2, the total area of the channel port is A2, the blade row speed is
v, and the blade spacing is a. The probability of gas molecules passing from upstream
(I side in Figure 3) to downstream (II side in Figure 3) is the positive transmission prob-
ability M12, and the probability of gas molecules passing from downstream (II side in
Figure 3) to upstream (I side in Figure 3) is the reverse transmission probability M21. It is
the difference between the positive transmission probability and the reverse transmission
probability that reflects the macroscopic pumping efficiency of the TMP.
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The net gas flow of the gas molecules from the I side to the II side is:

n1v
4

A1H =
n1v

4
A1M12 −

n2v
4

A2M21. (1)

If A1 = A2, T1 = T2, and p1/p2 = n1/n2, Formula (1) can be written as:

H = M12 −
p2

p1
M21. (2)

According to Formula (2), when p1 = p2, the maximum pumping factor Hmax can
be obtained:

Hmax = M12 −M21. (3)

The maximum pumping Smax can be obtained by Formula (4):

Smax =
1
4

vHmaxF. (4)

In Formula (4), F is the effective channel area.
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When H takes zero, that is, when the net air flow is zero, the maximum compression
ratio Kmax can be obtained:

Kmax =

(
p2

p1

)
max

=
M12

M21
. (5)

When the pumping speed is zero, the maximum compression ratio can be obtained;
when the maximum compression ratio takes zero, the pumping speed can be obtained [26].

Generally, when calculating the pumping performance of the multistage blade row, we
deem that it can be calculated on the basis of the transmission probability of the single-stage
blade row [25]. The method used for calculating the maximum compression ratio and the
pumping speed of the multistage blade row is as follows:

Kn =
n

∏
i=1

Ki, (6)

Smax = 36.4HnF

√
T
M

(m3/3). (7)

In Formula (6), Kn is the maximum compression of n-stage combined blade rows, Ki
is the maximum compression of the i-stage blade row. In Formula (7), Hn is the pumping
speed factor of n-stage combined blade rows, F is the effective channel area of the working
blade row, M is the molecular weight of the pumped gas, and T is the ambient temperature.
The pumping speed factor of the n-stage combined blade rows is given by Formula (8).

Hn = M1n −Mn1. (8)

In Formula (8), M1n is the positive transmission probability of the n-stage combined
blade rows, and Mn1 is the reverse transmission probability of the n-stage combined blade
rows. The calculation formulae of M1n and Mn1 are given by Formulae (9) and (10):

M1n =
M1(n−1)M(n−1)n

M(n−1)n + M(n−1)1 −M(n−1)n M(n−1)1
, (9)

Mn1 =
M(n−1)1Mn(n−1)

M(n−1)n + M(n−1)1 −M(n−1)n M(n−1)1
, (10)

As can be seen from the above equation, the pumping performance of the turbomolec-
ular pump is related to the forward and reverse transmission probabilities M12 and M21
of the single-stage blade row at various levels, which mainly depend on the blade angle
α, the pitch chord ratio a/b, and the ratio of the circumferential velocity of the rotor to the
maximum velocity of the thermal motion of gas molecules C. The transmission probability
of the single-stage blade row can generally be obtained by the integral equation method,
the Monte Carlo method, and the transmission matrix method [15].

In this paper, the test particle Monte Carlo method was used to calculate the transmis-
sion probability of a single-stage TMP under different structural parameters by means of
pumping simulation. Because the calculation domains are consistent between each of the
two blades, only one of the calculation domains needs to be computationally simulated.
The schematic diagram of the blade channels and their solutions for the single-stage TMP
are shown in Figure 4. Especially, the Tip wall is the boundary of the wall of the TMP rather
than the tip circle of the blade row. According to the DN-63 TMP provided by this project,
the initial geometric parameter data of this study are shown in Table 1, and the operating
parameters are the rotor speed n = 60,000 r/min, the molecular weight of the pumped gas
M = 28 g/mol, and ambient temperature T = 300 K.
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Table 1. Initial geometric parameters of rotor blade rows.

Turbine Stage Intermediate Stage Compression Stage

No. of blades, N 16 24 32
R (mm) 67 67 67
l (mm) 11.5 9.75 7.75
α (◦) 36 25.5 20

h (mm) 6 2 1.5
t (mm) 0.55 0.55 0.55

Firstly, the von Mises stress and deformation distribution of the flexible rotor under
high-speed operation were studied. Due to the action of the backing pump and the traction
stage, in which the turbine stage blade started to operate, the vacuum degree decreased
rapidly, and the surrounding air entered the free molecular flow field, which was too weak
to solve by computational fluid dynamics. The deformation of the rotor mainly came from
the rotational force and vibration. In the case of favorable anti-vibration measures, only
considering the influence of rotation and gravity, the solid rotor module in the COMSOL
platform and the radial deep groove ball-bearing support model were used to analyze the
stress and deformation of the blade. The material of the rotor was aluminum alloy 6061-T6.
As shown in Figure 5, the maximum deformation of the blade was at the end, at 0.14 mm.
Compared with the 67 mm diameter of the blade, this blade deformation can be ignored
when calculating the pumping performance.
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3. Structure Design of a Single-Stage Blade Row with a Curved Surface
3.1. Design of Blade Row Structure

In parallel blade rows, both the positive transmission probability M12 and reverse
transmission probability M21 increase with the increase in blade angle α, which enables
the pumping speed factor to increase and the maximum compression ratio to decrease.
If the non-parallel blade row can be designed so that the blade angle near the upstream
inlet is different from the blade angle near the downstream inlet, it becomes possible to
exert a distinct degree of influence on M12 and M21 and to improve the pumping speed
and maximum compression ratio at the same time.

Firstly, we chose some common surfaces, such as quadratic, cubic, and parabolic
surfaces; defined their parameters arbitrarily; and calculated their average angles using
Formula (11). In order to better compare with the parallel blade row, for which α = 20◦, we
used the enumeration method to screen out the cross-section equations with an average
angle close to 20◦ and good performance. Thus, seven different rotor models of non-parallel
blades and of parallel blades were formed first in order to carry out the study and to improve
the pumping performance of the compression stage blade row, as shown in Table 1. The
eight blade models are exhibited in Figure 6, namely, parallel, quadratic surface, elliptical
surface, cubic surface I, cubic surface II, exponential surface, and hyperbola surface. The
quadratic surface blade models were divided into groups of those with positive quadratic
surfaces and those with reverse quadratic surfaces according to the direction of bending,
while the cubic surface blade models were divided into I and II according to whether the
linear coefficient was zero or not. In Figure 6, v represents the rotation direction of the rotor,
and the grid area represents the effective working region. “y/(m)” and “z/(m)” refer to
the two axes of the blade clearance in three-dimensional space, according to Figure 4. The
cross-sectional equations of the rotor models are listed in Table 2. The calculation method
of the average angle is given by Formula (11):

α =
π

2
− arctan

(∫ h

0
y′(z)

√
1 + y′2(z)dz/

∫ h

0

√
1 + y′2(z)dz

)
, (11)

Table 2. Section equations of blades with different shapes.

Blade Shape Upper Wall Lower Wall Average
Angle/(◦)

Parallel y = 2.7475z + 0.0035 y = 2.7475z 20
Positive quadratic surfaces y = 2.1445z + 400z2 + 0.0035 y = 2.1445z + 400z2 19.765
Reverse quadratic surfaces y = 3.32z − 400z2 + 0.0035 y = 3.32z − 400z2 19.925

Elliptical surface y = (h2 × 82 − 82/22 × z2)1/2 + 0.0035 y = (h2 × 82 − 82/22 × z2)1/2 19.808
Cubic surface I y = 2.5z − 400z2 + 3.6 × 105 × z3 + 0.0035 y = 2.5z − 400z2 + 3.6 * 105 × z3 19.903
Cubic surface II y = 1800z2 − 1.9 × 105 × z3 + 0.0035 y = 1800z2 − 1.9 × 105 × z3 20.018

Exponential surface y = 0.001 × exp(1000 * z) + 0.0035 y = 0.001 × exp(1000 * z) 20.536
Hyperbola surface y = (0.452 + 0.452 × z2/(h2 * 122))1/2 + 0.0035 y = (0.452 + 0.452 × z2/(h2 × 122))1/2 39.846

3.2. Simulation Analysis of the Pumping Performance of Blade Rows

The eight blade rows exhibited in Figure 6 were simulated separately, and the results
are shown in Table 3. It is worth mentioning that the parameters of these models were
preliminarily selected to approximate the pumping performance of parallel blade rows, so
that the simulation results would reflect the potential of different kinds of surfaces, to a
certain extent.

Among these, cubic surface I was able to change M12 almost without changing M21,
and had a better performance. The pumping performance of the positive quadratic surfaces
was slightly better than that of parallel blade rows. For cubic surface II and elliptical surface
blade rows, a part of the compression ratio was discarded to obtain higher pumping speeds;
in other words, they corresponded to parallel blade rows with larger angles. The same was
true for reverse quadratic and exponential surfaces, but with smaller variations in pumping
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performance. For the hyperbola surface, the pumping performance was worse than that of
the parallel blade rows, and the average blade angle was far from optimal.
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Table 3. Pumping performance of blade rows with different shapes.

Indicator Parallel Positive Quadratic Reverse Quadratic Elliptical Surface
Result Improvement Result Improvement Result Improvement

M12 0.3606 0.3635 0.804% 0.3694 2.440% 0.4048 12.26%
M21 0.1436 0.1447 0.766% 0.1482 3.203% 0.1724 20.06%
Hmax 0.2170 0.2188 0.829% 0.2212 1.936% 0.2324 7.097%
Kmax 2.5111 2.5121 0.040% 2.4926 −0.737% 2.3480 −6.495%

Cubic Surface I Cubic Surface II Exponential Surface Hyperbola Surface
Result Improvement Result Improvement Result Improvement Result Improvement

0.3712 2.940% 0.4346 20.52% 0.4320 2.440% 0.3468 −3.980%
0.1437 0.070% 0.1948 35.66% 0.1964 3.203% 0.1409 −1.916%
0.2275 4.839% 0.2498 15.12% 0.2356 1.936% 0.2059 −5.391%
2.5832 2.871% 2.2310 −11.15% 2.1996 −0.737% 2.4613 −2.023%

It can be considered that cubic surface I and blade rows with positive quadratic
surfaces may be superior to parallel blade rows. Considering that cubic surfaces are
more difficult to manufacture than quadratic surfaces, we chose to study quadric surfaces
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further. A detailed analysis of the blade rows with quadratic surfaces was carried out as
described below.

To further explore the properties of quadratic surface blade rows, only the quadratic
term coefficient of the cross-section equation was changed, and the simulation calculations
were performed separately. In the resulting data, the quadratic term coefficient is expressed
in n and the linear term coefficient is expressed in m. The simulation results for a subset of
surface blade rows are listed in Table 4, and the comparison of quadratic blade rows with
parallel blade rows based on a congruous average angle is shown in Figure 7. It can be
seen from Table 4 and Figure 7 that the quadratic blade rows performed better than the
parallel blade rows when n was taken as −60 to 60. Therefore, in order to further optimize
the structural parameters of the blade rows, it is necessary to consider the surface structure
parameters n and m with the blade row height h for parameter optimization.

Table 4. Pumping performance of quadratic surface blade rows, with different parameters.

m n Average Angle/(◦) Hmax Kmax

2.7475 −60 20.615 0.2262 2.4775
2.7475 −40 20.407 0.2340 2.5425
2.7475 −20 20.202 0.2272 2.5691
2.7475 20 19.8 0.2212 2.5994
2.7475 40 19.603 0.2185 2.5937
2.7475 60 19.408 0.2177 2.78
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4. Structure Parameter Optimization of Blade Rows with Quadratic Surfaces
4.1. Experiment Design

Based on the results of analysis above, the three factors of blade row height h and
blade row structural parameters m and n were taken as the input factors. The maximum
compression ratio Kmax and the maximum pumping speed Hmax were taken as the output
objectives of an orthogonal simulation experiment. The levels of the optimization parame-
ters are presented in Table 5. Other constant structural parameters are consistent with the
compression blade rows of the DN-63 TMP.
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Table 5. Levels of input factors.

Factor
Level

1 2 3 4 5

h 1.3 1.4 1.5 1.6 1.7
m 2.4751 2.6051 2.7475 2.9042 3.0777
n −200 −100 0 100 200

4.2. Simulation Experiment Results and Discussion

According to the experimental design, a series of simulation experiments were carried
out. The results of the simulation experiment are shown in Table 6. In addition, according
to the mean value analysis method, the effects of the three parameters, namely, h, m,
and n, on the maximum compression ratio and the maximum pumping speed factor are
given in Figure 8. It is obvious from Figure 8 that it is difficult to obtain a set of optimal
parameters that provide the single-stage blade row with a great compression ratio and wide
pumping speed simultaneously. Therefore, it is necessary to use an intelligent optimization
algorithm to choose the structural parameters, such as a genetic algorithm, Gaussian
process regression, or particle swarm optimization (PSO).
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4.3. SVR-PSO Multi-Objective Optimization Algorithm and Optimized Results

PSO is a global optimization algorithm derived from the simulation of the foraging
movement behavior of bird and fish populations. It has the advantages of a good global
search ability and ease of implementation when dealing with multi-objective optimization
problems. However, it is difficult to obtain the precise optimal result via PSO because
the solution may remain hovering around the global optimal solution, which prompted
researchers to adopt other parameters and modeling algorithms to improve the search
capabilities of particle swarm optimization algorithms such as support vector machines
(SVRs) [27]. SVRs use an algorithm to solve regression and fitting problems after improving
on the basis of SVM. Some researchers have employed the hybrid optimization algorithm
based on SVR and PSO to solve the problem of parameter optimization, and it has been
proven that the SVR-PSO optimization algorithm performs well in multi-objective optimiza-
tion problems [28,29]. In this study, the hybrid optimization algorithm based on SVR and
PSO, programmed in MATLAB, was applied to search the optimal quadratic surface struc-
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ture parameter combination for a high compression ratio and a wide maximum pumping
speed. The SVR-PSO model establishment process is shown in Figure 9.

Table 6. The results of the simulation experiments.

No. h (mm) m n Hmax Kmax

1 1.3 2.4751 −200 0.251 1.86
2 1.3 2.6051 −100 0.259 2.15
3 1.3 2.7475 0 0.232 2.27
4 1.3 2.9042 100 0.216 2.61
5 1.3 3.0777 200 0.185 2.87
6 1.4 2.4751 −100 0.251 2.07
7 1.4 2.6051 0 0.239 2.34
8 1.4 2.7475 100 0.215 2.54
9 1.4 2.9042 200 0.19 2.89
10 1.4 3.0777 −200 0.220 2.50
11 1.5 2.4751 0 0.239 2.29
12 1.5 2.6051 100 0.221 2.58
13 1.5 2.7475 200 0.189 2.71
14 1.5 2.9042 −200 0.234 2.45
15 1.5 3.0777 −100 0.206 2.69
16 1.6 2.4751 100 0.230 2.64
17 1.6 2.6051 200 0.184 2.59
18 1.6 2.7475 −200 0.244 2.40
19 1.6 2.9042 −100 0.216 2.66
20 1.6 3.0777 0 0.186 3.03
21 1.7 2.4751 200 0.207 2.91
22 1.7 2.6051 −200 0.249 2.33
23 1.7 2.7475 −100 0.229 2.66
24 1.7 2.9042 0 0.188 2.69
25 1.7 3.0777 100 0.162 3.12Machines 2023, 10, x FOR PEER REVIEW 12 of 20 
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The simulation experimental data from Table 6 are utilized to acquire the SVR training
model, based on which we obtained the prediction data. Figure 10 shows the error between
experimental data and the predicted data by SVR. The average relative error between the
experimental data and the predicted data of Hmax was 1.08%, and the average relative error
between the experiment data and the predicted data of Kmax was 1.41%, demonstrating
that the SVR training model possesses a great prediction effect.
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Based on the SVR-PSO multi-objective optimization algorithm, the structure parameter
optimization of blade rows with quadratic surfaces was carried out. Figure 11 illustrates
the Pareto optimal solution sets of Hmax and Kmax. In Figure 11, it is evident that Hmax and
Kmax are negatively correlated, that is, there is no combination of structural parameters that
can enable both Hmax and Kmax to reach their maximum values concurrently. However,
from the Pareto optimal solution sets of Hmax and Kmax, structural parameters can be
selected according to a specific requirement, such as a higher compression ratio, while the
pumping speed remains constant or slightly increase.
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From the Pareto optimal solution sets of Hmax and Kmax, six sets of structural pa-
rameters were selected and verified by simulation experiments. Table 7 shows that the
relative error between the experiment data and the predicted data of ranged from 0.46% to
4.11%, demonstrating the high precision and reliability of the Pareto optimal solution from
SVR-PSO. Compared with the data prior to optimization, the degree of improvement in
pumping performance is given in Table 8. It can be seen that (1) as shown in No. 1 of Table 8,
Hmax was found to be increased by 4.6% while Kmax was found to be increased by 10.35%.
(2) As shown in No. 2 of Table 8, Hmax was found to be increased by 6.91% while Kmax
was found to be increased by 7.53%. This demonstrates that, compared with the parallel
blades, the compression single-stage blade rows with quadratic surface structures were
able to effectively increase the maximum compression ratio and the maximum pumping
speed factor simultaneously. In addition, the SVR-PSO optimization algorithm achieved
admirable multi-objective optimization of the structure parameters of blade rows with
quadratic surfaces.

Table 7. Multi-objective optimization validation data.

No.
Parameters Hmax Kmax

h (mm) m n Experimental
Data

Predicted
Data

Relative
Error%

Experimental
Data

Predicted
Data

Relative
Error%

1 1.693 2.761 −79.9 0.222 0.227 2.20 2.657 2.771 4.11
2 1.700 2.628 −26.6 0.225 0.220 2.27 2.649 2.555 3.70
3 1.700 2.685 −29.2 0.218 0.217 0.46 2.687 2.584 3.99
4 1.697 2.687 −65.4 0.227 0.232 2.16 2.628 2.700 2.67
5 1.662 2.709 −115.7 0.235 0.238 1.26 2.529 2.619 3.44
6 1.668 2.930 −101.8 0.214 0.211 1.42 2.721 2.779 2.09

Table 8. The comparison of experimental simulation data and the Parato optimal solution sets.

No.
Pre-Optimization Data Optimized Data Improvement

Hmax Kmax Hmax Kmax Hmax Kmax

1
0.2170 2.5111

0.222 2.657 4.6% 10.35%
2 0.214 2.721 6.91% 7.53%

4.4. Optimization of Turbine-Stage and Intermediate-Stage Blade Rows

Through the optimization results of the surface parameters of the compression-stage
blade rows, it can be seen that the quadratic surface blade had a certain effect on improving
the pumping performance of the single-stage TMP, so the same optimization treatment
was considered for the turbine stage and the intermediate stage, which were listed in
Table 1. The pumping performance values of the turbine-stage and the intermediate-stage
blade rows are listed in Table 9. The levels of the optimization parameters for turbine-
stage blade rows are presented in Table 10. The levels of the optimization parameters for
intermediate-stage blade rows are exhibited in Table 11.

Table 9. Pumping performance of parallel blade rows.

Hmax Kmax

Turbine stage 0.2849 2.2196
Intermediate stage 0.2565 1.9277

The simulation data of the orthogonal experiment are used for the model training of
the SVR. As shown separately in Figures 12 and 13, the prediction results of the trained
SVR model were compared with the experimental simulation data for the turbine stage and
the intermediate stage. The average relative errors of the predicted and true values of the
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SVR model for the Hmax and Kmax of the turbine stage were 1.13% and 2.27%, respectively.
The average relative errors of the predicted and true values of the SVR model for the Hmax
and Kmax of the intermediate stage were 0.35% and 0.77%, respectively. This shows that the
SVR prediction models for the pumping performance of turbine stage and the intermediate
stage both possess a certain level of reliability.

Table 10. Levels of input factors for the turbine stage.

Factor
Level

1 2 3 4 5

h 5.4 5.7 6.0 6.3 6.6
m 1.1918 1.2799 1.3764 1.4826 1.6003
n −400 −200 0 200 400

Table 11. Levels of input factors for the intermediate stage.

Factor
Level

1 2 3 4 5

h 1.8 1.9 2.0 2.1 2.2
m 1.8418 1.9626 2.0965 2.246 2.4142
n −200 −100 0 100 200

Machines 2023, 10, x FOR PEER REVIEW 15 of 20 
 

 

 
(a) 

 
(b) 

Figure 12. Comparison of experimental data with SVR prediction results for the turbine stage. (a) 
Hmax; (b) Kmax. 

 
(a) 

 
(b) 

Figure 13. Comparison of experimental data with SVR prediction results for the intermediate stage. 
(a) Hmax; (b) Kmax. 

Based on the SVR-PSO multi-objective optimization algorithm, the structure param-
eter optimization of blade rows of turbine stage and intermediate stage with quadratic 
surface could be carried out. In Figure 14 and Figure 14b illustrate the Pareto optimal so-
lution sets of the Hmax and Kmax of the turbine stage and the intermediate stage separately. 

 
(a) 

 
(b) 

Figure 12. Comparison of experimental data with SVR prediction results for the turbine stage.
(a) Hmax; (b) Kmax.

Based on the SVR-PSO multi-objective optimization algorithm, the structure parameter
optimization of blade rows of turbine stage and intermediate stage with quadratic surface
could be carried out. In Figures 14 and 14b illustrate the Pareto optimal solution sets of the
Hmax and Kmax of the turbine stage and the intermediate stage separately.

In order to verify the effectiveness of the SVR-PSO optimization algorithm for the
turbine stage and the intermediate stage, the optimization results of the turbine and
intermediate stages were simulated and verified. Table 12 shows that the relative error
between the experiment data and the predicted data for turbine stage ranged from 0.11%
to 9.48%, proving the certain precision and reliability of the Pareto optimal solution by
SVR-PSO.
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Figure 14. Multi-objective optimization results. (a) Turbine stage; (b) intermediate stage.

Table 12. Multi-objective optimization validation data for the turbine stage.

No.
Parameters Hmax Kmax

h (mm) m n Experimental
Data

Predicted
Data

Relative
Error%

Experimental
Data

Predicted
Data

Relative
Error%

1 5.667 1.537 0.646 0.286 0.2741 4.34 2.307 2.286 0.92
2 5.677 1.539 6.913 0.285 0.2647 7.67 2.352 2.293 2.57
3 5.652 1.558 11.517 0.284 0.2714 4.64 2.395 2.400 0.21
4 5.665 1.559 12.756 0.283 0.2585 9.48 2.407 2.335 0.31
5 5.664 1.532 11.958 0.284 0.2751 3.24 2.373 2.399 0.11

Compared with the pumping performance of the parallel blade rows listed in Table 9,
it can be seen from No. 1 in Table 12 that (1) Hmax was found to be decreased by 0.87%,
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while Kmax was found to be increased by 4.1%. (2) No. 5 in Table 12 shows that Hmax was
found to be decreased by 0.51%, while Kmax was found to be increased by 6.94%. For the
turbine stage of the DN-63 TMP, although using the blade rows with quadratic surface
structure improved the compression ratio, it caused the loss of some of the pumping speed.
Considering that the pumping speed is crucial for the turbine stage, in this stage, it is still
more appropriate to use parallel blade rows.

Table 13 shows that the relative error between the experimental data and the predicted
data for the intermediate stage ranges from 1.80% to 5.18%, proving the high precision
and reliability of the Pareto optimal solution from SVR-PSO. Compared with the pumping
performance of the parallel blade rows listed in Table 9, it can be seen from No. 1 in Table 13
that (1) Hmax was found to be decreased by 2.53% while Kmax was found to be increased
by 9.15%. (2) No. 5 in Table 13 shows that Hmax was found to be decreased by 1%, while
Kmax was found to be increased by 7.53%. It is obvious that for the intermediate stage of
the DN-63 molecular pump, the maximum compression ratio can be improved without
reducing the pumping speed by using blade rows with quadratic surfaces.

Table 13. Multi-objective optimization validation data for the intermediate stage.

No.
Parameters Hmax Kmax

h (mm) m n Experimental
Data

Predicted
Data

Relative
Error%

Experimental
Data

Predicted
Data

Relative
Error%

1 2.180 1.990 49.103 0.263 0.263 0 2.065 2.104 1.85
2 2.179 2.082 26.672 0.259 0.251 3.19 2.093 2.056 1.80
3 2.192 2.065 39.033 0.258 0.241 7.05 2.110 2.006 5.18
4 2.192 2.033 −24.982 0.267 0.254 5.12 1.994 1.918 3.96
5 2.195 2.082 50.771 0.255 0.249 2.41 2.142 2.104 1.81

According to Formula (6), when a quadratic surface blade row is utilized on a com-
pression stage blade row and a transition stage blade row, the DN-63 turbomolecular pump
can increase the maximum compression ratio by 61.2%. According to Formulas (8)–(10),
this results in a slight increase in pumping speed, but for the turbine stage, it is still better
to use parallel blade rows. The DN-63 compression stage rotor and the transition stage
rotor can effectively improve the performance of the molecular pump by using quadratic
surface blade rows. Compared with the quadratic surface structure in Table 3, the hybrid
optimization SVR-PSO method can increase the maximum compression ratio by 9.52% and
the maximum pumping speed factor by 4.57%.

5. Verification of the Model
5.1. Test Method

The experimental data used to verify the accuracy of the model in this paper were
derived from the experimental data on the pumping performance of Sawada’s publicly
available single-stage TMP [30]. In his experiment, the main part of the experimental
device consisted of a stainless-steel vacuum vessel and a rotor driven by a high-frequency
induction motor, while the measurement of vacuum pressure was conducted by hot-
filament ionization gauges. By controlling the air flow of the leakage valve on both the
upstream and downstream sides, the relationship between the pressure ratio and the
pumping speed factor were obtained. Six-inch and two-inch diffusion pumps served
as auxiliary devices to provide a backing vacuum and to prevent exhaust from the coil
and motor bearings from affecting the results of the experiment, respectively. The device
measurement diagram is shown in Figure 15 [30].
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After obtaining the experimental data, the pressure ratio and pumping factor were
plotted at different blade speeds, which were approximately straight lines. The extrapolated
values of the maximum compression ratio and the maximum pumping factor were obtained
by extending the straight line, that is, the intersection of the straight line and the horizontal
and vertical axes.

5.2. Performance Testing of TMP Rotor

A comparison of the pumping performances of the three blades was conducted, the
geometric parameters of which are shown in Table 14 [30]. The pumping performances of
the three blade rows, as calculated by simulation, are shown in Figure 16 [30], and detailed
data are listed in Table 15. The relative error with experimental data is listed in Table 16.
Table 16 shows that the relative error between the simulation data and the experimental
data for the aerodynamic model ranged from 2.47% to 4.83%, proving the high precision
and reliability of the aerodynamic model established in this study.

Table 14. Geometric parameters of the rotor [30].

Blade No. 1 Blade No. 2 Blade No. 3

No. of blades, N 24 36 48
R (mm) 90 90 90
l (mm) 18 18 18

α (◦) 20 30 40
h (mm) 8 8 8
t (mm) 3.17 3.10 2.94
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Table 15. Comparison of pumping performances.

Blade No. 1 Blade No. 2 Blade No. 3

No.
Experiment Simulation Experiment Simulation Experiment Simulation

Kmax Hmax Kmax Hmax Kmax Hmax Kmax Hmax Kmax Hmax Kmax Hmax

C1 1.506 0.046 1.416 0.042 1.464 0.062 1.322 0.058 1.297 0.071 1.300 0.074
C2 1.786 0.073 1.761 0.069 1.672 0.090 1.550 0.090 1.496 0.112 1.466 0.110
C3 2.087 0.093 2.126 0.093 1.801 0.118 1.789 0.118 1.672 0.143 1.639 0.140
C4 2.515 0.118 2.503 0.113 2.107 0.146 2.018 0.148 1.805 0.168 1.864 0.175
C5 2.981 0.146 3.050 0.138 2.435 0.179 2.386 0.179 1.979 0.205 2.106 0.209

Table 16. Average relative error with experimental data.

No.
Average Relative Error (%)

Kmax Hmax

Blade No.1 2.4663 4.8325
Blade No.2 4.7943 2.4717
Blade No.3 2.6949 2.9694

6. Conclusions

1. Several types of curved blade were presented with the ability to improve the pumping
performance of TMP. Compared with parallel blades and other curved blades, the
positive quadratic surface blades showed better pumping performances, with good
promotion and application value for practical engineering.

2. The hybrid optimization SVR-PSO method was proposed in order to obtain the
structural parameters of the rotor blade for the highest pumping speed and maximum
compression ratio. This increased the maximum compression ratio by 10.35% and the
maximum pumping speed factor by 4.61%.

3. The relative errors of the maximum pumping speed factor and the maximum compres-
sion ratio between the results of the aerodynamic model simulation and the experimen-
tal data were 2.47–4.83% and 2.47–4.79%, respectively. This means that the thin gas
aerodynamic model showed good precision. Therefore, the model can also be utilized
to develop new molecular pumps with different pumping performance requirements.
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