
Citation: Wang, F.; Yang, Y.; Zhou, J.;

Zhang, W. An Onboard Point Cloud

Semantic Segmentation System for

Robotic Platforms. Machines 2023, 11,

571. https://doi.org/10.3390/

machines11050571

Academic Editor: Dan Zhang

Received: 18 April 2023

Revised: 17 May 2023

Accepted: 20 May 2023

Published: 22 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

An Onboard Point Cloud Semantic Segmentation System for
Robotic Platforms
Fei Wang , Yujie Yang, Jingchun Zhou * and Weishi Zhang

College of Information Science and Technology, Dalian Maritime University, Dalian 116000, China;
feiwang@dlmu.edu.cn (F.W.)
* Correspondence: zhoujingchun@dlmu.edu.cn

Abstract: Point clouds represent an important way for robots to perceive their environments, and
can be acquired by mobile robots with LiDAR sensors or underwater robots with sonar sensors.
Hence, real-time semantic segmentation of point clouds with onboard edge devices is essential for
robots to apprehend their surroundings. In this paper, we propose an onboard point cloud semantic
segmentation system for robotic platforms to overcome the conflict between attaining high accuracy
of segmentation results and the limited available computational resources of onboard devices. Our
system takes raw a sequence of point clouds as inputs, and outputs semantic segmentation results
for each frame as well as a reconstructed semantic map of the environment. At the core of our
system is the transformer-based hierarchical feature extraction module and fusion module. The two
modules are implemented with sparse tensor technologies to speed up inference. The predictions are
accumulated according to Bayes rules to generate a global semantic map. Experimental results on the
SemanticKITTI dataset show that our system achieves +2.2% mIoU and 18× speed improvements
compared with SOTA methods. Our system is able to process 2.2 M points per second on Jetson AGX
Xavier (NVIDIA, Santa Clara, USA), demonstrating its applicability to various robotic platforms.

Keywords: semantic segmentation; point cloud; transformer; sparse tensor; robot

1. Introduction

A point cloud is a set of 2D or 3D points, describing the geometric characteristics of
objects in a scene. With the development of sensor technology, it has become more and
more convenient for robots to collect point clouds from the environment [1]. For example,
ground mobile robots can collect a 3D point cloud through LiDAR (light detection and
ranging) devices; and underwater robots can use sonar devices to acquire a 2D point
cloud of the sea environment. Hence, from both an academic and industrial perspective,
point-cloud-based scene perception has attracted great attention [2,3].

Despite the tremendous potential of point cloud semantic segmentation, it faces
significant challenges that must be addressed to make it practical for real-world applications.
One of the primary issues is the high computational cost required to process and analyze
large volumes of point cloud data. This limitation makes it hard to deploy point cloud
segmentation systems on resource-constrained devices, especially for robotic platforms
with edge devices.

Existing methods for semantic segmentation of point clouds consist of three categories:
point-based methods, multi-view-based methods, and voxel-based methods. Each of the
three semantic segmentation methods has its own set of advantages and disadvantages.
The original point-based methods [4,5] are effective for segmenting large outdoor scenes
but are computationally inefficient. On the other hand, the multi-view-based methods [6,7]
are computationally efficient but can result in information loss and reduced segmentation
accuracy when projecting 3D structures into 2D. Meanwhile, the voxel-based methods [8,9]
perform better in 3D data, but dense convolutional neural networks are less efficient due to

Machines 2023, 11, 571. https://doi.org/10.3390/machines11050571 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11050571
https://doi.org/10.3390/machines11050571
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-3973-6037
https://orcid.org/0000-0002-4111-6240
https://orcid.org/0000-0003-0519-8397
https://doi.org/10.3390/machines11050571
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11050571?type=check_update&version=1


Machines 2023, 11, 571 2 of 13

sparsity. While combining this method with sparse operations can improve efficiency, exist-
ing methods still cannot meet both efficiency and accuracy requirements simultaneously.

To realize real-time prediction for devices such as robots, we propose a real-time
semantic segmentation system for point clouds based on use of a transformer and sparse
convolution (TSR-Net). Firstly, we pre-process the data collected by LiDAR to obtain 3D
data based on the sparse tensor. Next, we propose a sparse convolutional neural network
involving two parts: feature extraction and fusion. To improve the ability of the network
to learn global semantic features, we present a global feature extraction module (GFEM)
in the feature extraction section. The GFEM helps to capture global semantic information
from the point cloud data to improve the precision and accuracy of the segmentation
results. Additionally, we introduce a channel attention module (CAM) in the feature fusion
section to fuse different levels of semantic features, further enhancing the accuracy of the
segmentation results. Finally, we obtain local segmentation maps by post-processing the
data and further construct a global semantic map. Our main contributions are:

(1) We propose a real-time semantic segmentation system of point clouds for robotic
platforms to achieve both high accuracy and high efficiency with limited computa-
tional onboard devices. Our system outputs predictions for each point cloud and a
reconstructed global semantic map.

(2) We present a global feature extraction module and a channel attention module based
on a transformer for hierarchical feature extraction and fusion. The two modules are
lightweight in design and implemented with spare representations to speed up the
inference time.

(3) Experimental results show that our system outperforms existing state-of-the-art meth-
ods on the SemanticKITTI dataset by 2.2% mIoU (mean intersection over union) and
18× speedup. It can process 2.2 million points per second on NVIDIA Jetson AGX
Xavier, demonstrating its applicability to a variety of robotic platforms.

2. Related Work

Existing semantic segmentation of point cloud methods fall into the following three
main categories:

Raw point-based methods usually learn features directly from unordered point cloud
data, such as STPC [4], and PAConv [5]. In particular, PAConv’s convolution kernel is
a combination of multiple weight matrices. During the process, the coefficients of these
weights are obtained by adaptive learning of the location relationships of the points. This
data-driven approach to constructing convolutional kernels gives PAConv great flexibility
to deal better directly with the point cloud data.

Multi-view-based methods typically involve projecting 3D data onto 2D images [10]
and processing them using convolutional operations, as seen in PolarNet [6] and Squeeze-
SegV3 [7]. To address the problem of different feature distributions at different locations in
the LIDAR images, SqueezeSegV3 proposes a spatially adaptive convolutional technique
that adjusts the weights based on the input and location within the image.

Voxelization-based methods convert point cloud data into a dense grid and use 3D
convolution for processing. Several methods have been developed to improve the com-
putational efficiency of dense convolution, such as SPVNAS [8], Minkowski-Net [9], and
MVASPP [11]. Minkowski-Net handles high-dimensional data by employing generalized
sparse convolution and 4D spatio-temporal convolution. On the other hand, MV-ASPP
extends PolarNet by using a pyramidal structured network to combine feature information
at multiple scales and an ASPP module to expand the perception field.

The above is a division based on different representations of the data. In order to
decrease the computational effort of the rasterization method, we introduce a sparse tensor
into the system. Sparse convolution is a powerful technique utilized in some deep learning
models to reduce the computational effort of point cloud data processing by performing
convolutions only on non-empty regions. This technique reduces the computation quantity
by computing convolutions only on the effective raster. Models such as Latticenet [12]



Machines 2023, 11, 571 3 of 13

and Cylinder3d [13] have successfully implemented sparse convolution. In particular,
Cylinder3d is a 3D object detection model that uses sparse convolution and a columnar
segmentation network to improve the prediction accuracy for objects such as vehicles and
pedestrians, by leveraging an asymmetric residual module.

To increase the segmentation accuracy, we introduced the transformer module into the
system. The transformer architecture, based on the self-attentive mechanism, has yielded
great results in language processing (NLP). By abandoning convolutional operations and
capturing global dependencies in the input sequence through attention only, this architec-
ture is highly scalable. Building upon the success of the transformer model in NLP, many
researchers have introduced it into the field of image recognition [14]. For example, models
such as Segmenter [15] and TransUNet [16] have been proposed. TransUNet combines the
advantages of the UNet model and the transformer structure, adding local accuracy to the
extraction of global information.

In addition, transformers have also been introduced in the field of point cloud data
processing, such as PST2 [17] and P4Transformer [18]. P4Transformer captures dynamic
information in point cloud data by uses the transformer to self-attention on local features,
while PST2 adopts a two-module approach consisting of STSA and RE to effectively capture
both temporal and spatial information in of point cloud sequences.

The point-based method is able to segment large outdoor scenes, but is computa-
tionally inefficient. The multi-view-based method is computationally efficient, but the
dimensionality reduction projection process causes information loss and accuracy degrada-
tion. The voxel-based method is less efficient for dense convolutional neural networks. In
addition, the time and space complexity of computing the self-attentive mechanism in the
transformer structure is high, and it is difficult to apply the transformer structure directly
to the original data. Therefore, in order to achieve real-time prediction for devices such as
robots, we propose a real-time semantic segmentation system for point clouds based on a
transformer and using sparse convolution.

3. Method

This section provides an introduction to our proposed TSR-Net system. The system
comprises several modules, including point cloud data pre-processing, feature extraction,
feature fusion, post-processing, and semantic map construction.

3.1. Overview

The framework of the TSR-Net system is shown in Figure 1. Firstly, the system
preprocesses LiDAR data to obtain a sparse tensor-based representation.

Secondly, we propose a network that uses a transformer module for feature extraction
and fusion. In this regard, the feature extraction network learns semantic features of point
clouds at different scales by expanding the receptive field of the network through multiple
3 × 3 convolutions, ReLU functions, and down-sampling convolutions with a stride of 2.
The feature fusion network combines the results of deconvolution with the corresponding
features in the feature extraction layer through concatenation operations. The global feature
extraction block (GFEB) and channel attention module (CAM) are designed on this basis.
We use the GFEB to learn the importance of different regions of the higher-order semantic
features and adjust the corresponding weights to perform feature enhancement. The CAM
is used to fuse the different levels of semantic features.

After prediction, the TSR-Net system transforms the sparse tensor-based raster repre-
sentation into a point cloud and generates a semantic segmentation map of the local scene.
After point cloud registration, the TSR-Net system updates semantic labels using Bayes’
rule and eventually obtains a global semantic map.



Machines 2023, 11, 571 4 of 13

Machines 2023, 11, x FOR PEER REVIEW  4  of  13 
 

 

scene. After point cloud registration, the TSR-Net system updates semantic labels using 

Bayes’ rule and eventually obtains a global semantic map. 

 

Figure 1. Architecture of our onboard point cloud semantic segmentation system. 

3.2. Feature Extraction Module 

In this module, we expand the perceptual field of the network by multiple 3*3 con-

volutions, ReLU functions, and subsampling convolutions with a stride of 2 to learn the 

semantic features of point clouds at different scales. 

To obtain remote information from the data, we added the transformer encoder mod-

ule to the deeper layers of the feature extraction network. This module creates an associ-

ation for each element in the higher-order feature map and distinguishes the importance 

of features in different regions. It is structured as described below, starting with a given 

input feature X∈RN×C. Positional encoding of the input feature X is achieved by a sparse 

convolutional operation conv with kernel size equal to stride. Thus, the feature XP∈R
N’×C’

 

is obtained. The formula is as follows: 

X
P=conv(X)  (1)

The feature XL  is obtained by adding the normalization function  LayerNorm  after 

the feature XP, where XL∈RN’×C’

: 

XL=LayerNorm(XP)  (2)

The attention layer then receives the feature XL. The attention function computes the 

query and the dot product of all keys and then divides each dot product by ඥdk. We com-

bine these queries to form a matrix Q∈RN’×h×dk,  Cᇱ ൌ h ൈ d୩. The keys and values are also 

combined to form a matrix K∈RN’×h×dk  and V∈RN’×h×dv,  Cᇱ ൌ h ൈ dv. The formula of the 

attention function is as follows: 

Q=X
L·Wq  (3)

Figure 1. Architecture of our onboard point cloud semantic segmentation system.

3.2. Feature Extraction Module

In this module, we expand the perceptual field of the network by multiple 3× 3 convolutions,
ReLU functions, and subsampling convolutions with a stride of 2 to learn the semantic
features of point clouds at different scales.

To obtain remote information from the data, we added the transformer encoder module
to the deeper layers of the feature extraction network. This module creates an association for
each element in the higher-order feature map and distinguishes the importance of features
in different regions. It is structured as described below, starting with a given input feature
X ∈ RN×C. Positional encoding of the input feature X is achieved by a sparse convolutional
operation conv with kernel size equal to stride. Thus, the feature XP ∈ RN′×C′ is obtained.
The formula is as follows:

XP = conv(X) (1)

The feature XL is obtained by adding the normalization function LayerNorm after the
feature XP, where XL ∈ RN′×C′ :

XL = LayerNorm(XP) (2)

The attention layer then receives the feature XL. The attention function computes
the query and the dot product of all keys and then divides each dot product by

√
dk. We

combine these queries to form a matrix Q ∈ RN′×h×dk , C′ = h× dk. The keys and values
are also combined to form a matrix K ∈ RN′×h×dk and V ∈ RN′×h×dv , C′ = h× dv. The
formula of the attention function is as follows:

Q = XL·Wq (3)

K = XL·Wk (4)

V = XL·Wv (5)



Machines 2023, 11, 571 5 of 13

Atten = Softmax

(
Q·KT
√

dk

)
·V (6)

where Wq, Wk and Wv are shared parameter matrices, dk denotes the dimension of query
and key, dk denotes the dimension of value, and the output dimension of the attention
function is RN′×h×dv .

To enhance the computational speed of the self-attentive layer, we use a multi-head
attention structure with the number of heads set as 8. Firstly, h different linear mappings of
queries, keys, and values are performed. Then the new queries, keys, and values obtained
after each mapping are subjected to the parallel operation of the atten function, respectively,
to generate the dv dimensional output. The formula is as follows:

XM = Concat(head1, . . . , headh)W
O (7)

headi = Atten(Q ·WQ
i , K·WK

i , V·WV
i

)
(8)

where the linear transformation parameters are WQ
i ∈ RC′×dk , WK

i ∈ RC′×dk , WV
i ∈ RC′×dv

and WO ∈ Rh×dv×C′ .
XM ∈ R(N′×C′) is a multi-headed attention layer output. The final output feature

Xout ∈ R(N×C) is obtained by summing XM with the input feature X through the Layer
Norm and ReLU functions, and then recovering the position-encoded deconvolution convT.
The formula is as follows:

X′= ReLU(LayerNorm(XM +X)) (9)

Xout = convT(output) (10)

3.3. Feature Fusion Module

To enhance the fusion of semantic features at various levels, a channel attention module
has been introduced into the feature fusion network. This module creates attention masks in
the channel dimension to select critical channels. The input features are compressed to im-
prove computational efficiency. The structure is as follows: firstly, the input features
X ∈ RN×C are aggregated using global average and maximum pooling, resulting in
Xa ∈ R(1×C) and Xm ∈ R(1×C):

Xa = avg_Pool(X) (11)

Xm = max_Pool(X) (12)

The multilayer perceptron (MLP) then accepts these two features, where C is the
number of channels and r is the reduction rate. The output features of the MLP are summed
element-wise and then passed through a sigmoid function to generate the attentional
feature Mc.:

Mc = σ(MLP(Xa) + MLP(Xm)) (13)

Finally, we obtain the output feature Xout of the module by multiplying Mc and X
using the following formula:

Xout = Mc·X (14)

3.4. Semantic Map Building

In the process of constructing the semantic map, we transform each frame of the data
under the global coordinate system based on LOAM [19] and correlate the before and after
frames of the data. Then, the labels of the multi-frame data sequences are updated by Bayes’
rule to generate a global semantic predictive map for the current scene.

We use point-to-edge and point-to-plane mapping calculations to associate the current
frame with the previous frame’s point cloud. In the computation, we combine semantic



Machines 2023, 11, 571 6 of 13

labeling and mapping calculations to weight the labeled similarity and the distance of the
corresponding points. First, we denote the edge point as e and the plane point as p. The
distances from the point to the edge and plane, respectively, are:

de
i =

∣∣∣(xe
(t+1,i) − xe

(t+1,j)

)
×
(

xe
(t+1,i) − xe

(t,j)

)∣∣∣∣∣∣xe
(t,j) − xe

(t,l)

∣∣∣ (15)

dp
i =

∣∣∣∣∣∣
(

xp
(t+1,i) − xp

(t,j)

)((
xp
(t,j) − xp

(t,l)

)
×
(

xp
(t,j) − xp

(t,m)

))∣∣∣∣∣∣∣∣∣(xp
(t,j) − xp

(t,l)

)
×
(

xp
(t,j) − xp

(t,m)

)∣∣∣ (16)

The similarity of labels between corresponding points is calculated as follows:

Si = exp
(
−1

2

(
D(t+1,i) −D(t,j)

)
θ−1

(
D(t+1,i) −D(t,j)

))
(17)

where D(t+1,i) is defined as the predicted label distribution for the point x(t+1,i). The closest
point to x(t+1,i) is x(k,j). The association formula is then calculated as follows:

f(Tt+1) = ∑i∈et+1
Side

i +∑j∈pt+1
Sjd

p
j = Sd (18)

Then, the nonlinear formula is optimized using the Levenberg–Marquardt algorithm.
The final result is an optimal inter-frame transformation matrix Tk+1.

At moment t + 1, we define the label distribution in the semantic map as the conditional
probability P(zt+1

∣∣∣xt+1
0

)
. According to Bayes’ rule, the point cloud labels in the global map

are updated as:

P
(

zt+1

∣∣∣xt+1
0

)
← 1

K′t+1

P̂(zt+1|xt+1)

P(zt)
P
(
zt
∣∣xt

0
)

(19)

where Kt+1= P(zt+1

∣∣∣xt+1
0

)
.

4. Experiment
4.1. Settings

We chose SemanticKITTI as the experimental data for the TSR-Net system. This dataset
is semantically labeled with 20 objects, such as fences, motorcyclists, and sidewalks. The
dataset consists of 22 sequences scanned by LiDAR in different scenes. Each sequence
contains LiDAR point clouds ranging from 200 to 4500 frames. We used sequences 00–10
with semantic annotation for our experiments. A frame was selected from every 5 frames
for use in the experiments. The ratio of the experimental data used for training, validation,
and testing was 6:2:2.

The evaluation metrics for the TSR-Net system are accuracy (acc) and mIoU. The
accuracy is the percentage of all correct predictions made by the system over the total
experimental data. The mIoU is an average for each category of the intersection ratio in the
dataset. The calculation formula is as follows:

acc =
TP + TN

TP + TN + FT + FN
(20)

mIoU =
1

k + 1∑k
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii

(21)

Our system was implemented using the Minkowski Engine on hardware with an
Intel Core i9-10980XE (3.0 GHz) and 32 GB RAM memory. The system was parameter



Machines 2023, 11, 571 7 of 13

optimized using Adam, with a learning rate of 0.0001, momentum of 0.9, batch size of 16,
and maximum number of iterations set to 300.

4.2. Semantic Segmentation Results

The feature extraction and fusion module of the TSR-Net system uses 3D-Unet as
a baseline model. Figure 2 depicts the system and 3D-Unet’s visualization results on
SemanticKITTI.

Machines 2023, 11, x FOR PEER REVIEW  7  of  13 
 

 

 mIoU=
1

k+1
∑

p
ii

∑ p
ij
+∑ p

ji
-p

ii
k
j=0

k
j=0

k
i=0   (21)

Our system was implemented using the Minkowski Engine on hardware with an In-

tel Core i9-10980XE (3.0 GHz) and 32 GB RAM memory. The system was parameter opti-

mized using Adam, with a learning rate of 0.0001, momentum of 0.9, batch size of 16, and 

maximum number of iterations set to 300. 

4.2. Semantic Segmentation Results 

The feature extraction and fusion module of the TSR-Net system uses 3D-Unet as a 

baseline model. Figure 2 depicts the system and 3D-Unet’s visualization results on Seman-

ticKITTI. 

As can be seen from the figure, 3D-Unet is able to broadly identify predictive targets. 

For example, the model can identify pavement information such as cars, roads, and vege-

tation. However, the segmentation results of 3D-Unet are not accurate enough to delineate 

effectively the boundaries of  large-scale objects. For example,  in the first scenario, with 

multiple cars on the road, the 3D-Unet model was unable to fully recognize the outline 

information of some of the cars and confused the cars with the vegetation. In addition, the 

3D-Unet model also confused buildings at the edge of the road with vegetation and did 

not fully recognize them. In the second scene, the model was unable to identify accurately 

the location of the sidewalk in the terrain. In addition, the model is not sufficiently accu-

rate to identify other vehicles and confuses them with cars. Our system is able to effec-

tively address these issues. We have focused our segmentation efforts on the recognition 

of boundaries of large-scale objects, and the model is also able to identify effectively the 

contour information of objects such as cars, sidewalks, and parking. 

 

Figure 2. Visualization of typical segmentation results on the SemanticKITTI dataset. The red 

boxes highlight the differences in the segmentation results. 

   

Figure 2. Visualization of typical segmentation results on the SemanticKITTI dataset. The red boxes
highlight the differences in the segmentation results.

As can be seen from the figure, 3D-Unet is able to broadly identify predictive targets.
For example, the model can identify pavement information such as cars, roads, and vegeta-
tion. However, the segmentation results of 3D-Unet are not accurate enough to delineate
effectively the boundaries of large-scale objects. For example, in the first scenario, with
multiple cars on the road, the 3D-Unet model was unable to fully recognize the outline
information of some of the cars and confused the cars with the vegetation. In addition, the
3D-Unet model also confused buildings at the edge of the road with vegetation and did not
fully recognize them. In the second scene, the model was unable to identify accurately the
location of the sidewalk in the terrain. In addition, the model is not sufficiently accurate
to identify other vehicles and confuses them with cars. Our system is able to effectively
address these issues. We have focused our segmentation efforts on the recognition of
boundaries of large-scale objects, and the model is also able to identify effectively the
contour information of objects such as cars, sidewalks, and parking.

From the above analysis, it is clear that the TSR-Net system improves the real-time
semantic segmentation of the system by focusing the segmentation on the boundary recog-
nition of large-scale objects through the global feature extraction and channel attention modules.

In addition, we conducted a comparative analysis of the TSR-Net system and existing
models on the large-scale public outdoor dataset SemanticKITTI. Table 1 shows the specific
statistical results.



Machines 2023, 11, 571 8 of 13

Table 1. Evaluations of our TSR-Net and existing methods on the SemanticKITTI dataset.

Method

R
ea

l-
Ti

m
e

A
cc

/%

m
Io

U
/%

C
ar

B
ic

yc
le

M
ot

or
cy

cl
e

Tr
uc

k

O
th

er
-V

eh
ic

le

Pe
rs

on

B
ic

yc
li

st

M
ot

or
cy

cl
is

t

R
oa

d

Pa
rk

in
g

Si
de

w
al

k

O
th

er
-G

ro
un

d

B
ui

ld
in

g

Fe
nc

e

V
eg

et
at

io
n

Tr
un

k

Te
rr

ai
n

Po
le

Tr
af

fic
-S

ig
n

RPVNet [20] no - 70.3 97.6 * 68.4 * 68.7 44.2 61.1 75.9 74.4 73.4 93.4 70.3 80.7 33.3 93.5 * 72.1 86.5 75.1 * 71.8 64.8 * 61.4
FusionNet [21] no 91.8 61.3 95.3 47.5 37.7 41.8 34.5 59.5 56.8 11.9 91.8 68.8 77.1 30.8 92.5 69.4 84.5 69.8 68.5 60.4 66.5

STPC [4] no - 54.6 94.7 31.1 39.7 34.4 24.5 51.1 48.9 15.3 90.8 63.6 74.1 5.3 90.7 61.5 82.7 62.1 67.5 51.4 47.9

(AF)2-S3Net [22] yes * - 69.7 94.5 65.4 86.8 * 39.2 41.1 80.7 * 80.4 * 74.3 * 91.3 68.8 72.5 53.5 87.9 63.2 70.2 68.5 53.7 61.5 71.0 *
SPVNAS [8] yes * - 66.4 97.3 51.5 50.8 59.8 58.8 65.7 65.2 43.7 90.2 67.6 75.2 16.9 91.3 65.9 86.1 73.4 70.0 64.2 66.9

AMVNet [23] yes * - 65.3 96.2 59.9 54.2 48.8 45.7 71.0 65.7 11.0 90.1 71.0 75.8 32.4 92.4 69.1 85.6 71.7 69.6 62.7 67.2
SqueezeSegV3 [7] yes * 88.6 55.9 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9

TSR-Net (ours) yes * 92.4 * 72.5 * 92.3 36.6 59.1 85.4 * 68.8 * 45.8 79.1 63.8 94.9 * 73.8 * 84.5 * 74.0 * 90.5 78.5 * 89.2 * 58.6 82.7 * 60.7 60.9

* The value in bold is the best result for each column.



Machines 2023, 11, 571 9 of 13

Our system outperformed existing models in the mIoU metric and was 2.2% better
than the sub-optimal model based on multiple inputs [20]. Compared with the existing
voxelization method [22], which has the best segmentation performance and can be applied
in real-time, our results were 2.8% better in the mIoU metric. In terms of segmentation
accuracy, our system demonstrated and improvement of 0.6% over the voxelization-based
model [21]. Compared to a multi-view-based approach [23], our system performed 7.2%
better in terms of mIoU.

The results confirm that the system showed a significant performance improvement in
semantic segmentation. Compared with other existing models, our TSR-Net demonstrated
a significant advantage in segmenting nine classes of objects such as trucks, roads, parking,
and sidewalk.

4.3. Hyperparameters

To test the effectiveness of different modules and the effect of different raster sizes on
the system, two comparison experiments were conducted on the SemanticKITTI dataset.

Firstly, to test our proposed GFEB and CAM modules, we added them separately
to the 3D-Unet, thus constituting four systems: the baseline model, the baseline model
with GFEB added, the baseline model with CAM added, and our TSR-Net. Table 2 shows
the comparison results in terms of accuracy, mIoU metrics, and prediction time per frame.
Compared to the baseline model, the system showed improvements of 1.6% in the mIoU
metric and 16.6 ms in the per-frame prediction time with the addition of GFEB. With the
addition of CAM, the system improvements were 3.3% in the mIoU metric and 14.4 ms in
the per-frame prediction time. With the addition of both modules, the system improved by
7.6% and 0.9% in the mIoU metric and accuracy, respectively. The prediction time increased
by 22.2 ms.

Table 2. Performance comparison under different model settings.

Method Acc/% mIoU Time/ms

3D Unet 91.5 64.9 70.8
3D Unet + GFEB 92.1 66.5 87.4
3D Unet + CAM 91.7 68.2 85.2

3D Unet + GFEB + CAM (TSR-Net) 92.4 72.5 93.0

The results show that both of our proposed modules can enhance the system’s segmen-
tation performance with a small increase in prediction time, and that adding both modules
at the same time improves the system most significantly.

Secondly, to test the impact of different raster sizes on the segmentation results, we
conducted experiments based on raster sizes of 6, 10, and 20 cm. Table 3 shows the results
of our comparison in terms of accuracy, mIoU metrics, and prediction time per frame for
different raster sizes.

Table 3. Segmentation performances of our system using different voxel sizes.

Voxel Size/cm Acc/% mIoU/% Time/ms

6 92.6 71.9 115.0
10 91.8 70.3 75.7
20 89.5 65.4 42.1

The results show that the larger the raster, the shorter the prediction time for a single
frame, and the shortest time for a single frame was 42.1 ms when the raster is 20 cm.
However, in terms of the mIoU metric, the smaller the raster the better was the segmentation
performance of the system. The best results were obtained at a raster size of 6 cm, with
1.4% higher performance than at 10 cm.



Machines 2023, 11, 571 10 of 13

4.4. Efficiency Comparisons

Table 4 represents the results of the efficiency comparison between TSR-Net and the
existing model on the GTX 3090 server. Since our system uses sparse convolution for
operations, its FLOPs (floating-point operations per second) are calculated as follows:

FLOPs = 2× (Cin ×K− 1)×N×Cout (22)

where Cin and Cout are the numbers of input and output channels, N is the number
of effective rasters in the convolutional layer, and K denotes the average convolutional
kernel size.

Table 4. Comparison of the efficiency of our TSR-Net with existing methods.

Methods Params/M FLOPs/G Device Time/ms

RPVNet [20] 24.8 239 Tesla V100 1687
FusionNet [21] - - GTX 1080 900

SPVNAS [8] 12.5 147.6 GTX 1080Ti 259
SqueezeSegV3 [7] 26.2 1030.4 - 142

TSR-Net (our) 91.9 ≈65.3 GTX 3090 93

As can be seen from Table 4, the TSR-Net system has a high number of parameters
but only about 65 G of computation, which is more than half the current low [8]. Although
we increased the segmentation accuracy by adding global feature extraction and channel
attention modules, thus increasing the number of parameters, the value of the FLOPs did
not improve significantly. This is due to the fact that our system is based on a sparse tensor.
The size of the computation in the system is related to the number of effective rasters in the
convolutional layers. The computational effort of the system can be significantly reduced
depending on the sparsity of the data.

In addition, we tested the efficiency of the TSR-Net system on the NVIDIA Jetson AGX
Xavier platform. We tested the prediction times of the TSR-Net system in eight different
power modes for four sequences 00, 02, 04, and 06. Figure 3 shows the statistical average
prediction times for the different power modes.

Machines 2023, 11, x FOR PEER REVIEW  10  of  13 
 

 

different power modes for four sequences 00, 02, 04, and 06. Figure 3 shows the statistical 

average prediction times for the different power modes. 

Our system is able to achieve a prediction speed of 0.19 s per frame in MAXN mode. 

The system has a prediction speed of 0.75 s per frame in 15 W DESKTOP mode. In addition, 

the difference in prediction speed is not significant, at about 0.28 s per frame for different 

CPU cores with 30 W power. As existing LiDAR data is acquired at a frequency of 10 Hz, 

it takes an average of 0.1 s to acquire one frame of point cloud data. When the time to 

predict each frame of the point cloud is less than or equal to the acquisition time, it can be 

concluded that the system can make predictions in real-time. In practice, we sample the 

point cloud data by sampling one frame of the point cloud sequence for every two frames 

of data, to achieve a frame rate of 5 FPS. Therefore, it can be considered that a prediction 

rate of 5 FPS (0.2 s per frame) meets the requirements for real-time applications. 

 

Figure 3.  Inference  time of our  system on  the NVIDIA  Jetson AGX Xavier with different device 

modes. 

4.5. Semantic Map Building 

To visualize the real-time segmentation effect of the TSR-Net system, we constructed 

a global semantic map on the GTX 3090 server. Figure 4 shows the semantic map of our 

system for the SemanticKITTI dataset 05 sequence scenes. The left-hand side of the image 

shows a top view of the 05 sequence scene, and the right-hand side shows a zoomed-in 

view of each of the two partial scenes. During the construction of the semantic map, we 

censored the data of sequence 05 and updated the semantic labels by taking one frame 

from every three consecutive frames. 

Figure 3. Inference time of our system on the NVIDIA Jetson AGX Xavier with different device modes.

Our system is able to achieve a prediction speed of 0.19 s per frame in MAXN mode.
The system has a prediction speed of 0.75 s per frame in 15 W DESKTOP mode. In addition,
the difference in prediction speed is not significant, at about 0.28 s per frame for different
CPU cores with 30 W power. As existing LiDAR data is acquired at a frequency of 10 Hz,



Machines 2023, 11, 571 11 of 13

it takes an average of 0.1 s to acquire one frame of point cloud data. When the time to
predict each frame of the point cloud is less than or equal to the acquisition time, it can be
concluded that the system can make predictions in real-time. In practice, we sample the
point cloud data by sampling one frame of the point cloud sequence for every two frames
of data, to achieve a frame rate of 5 FPS. Therefore, it can be considered that a prediction
rate of 5 FPS (0.2 s per frame) meets the requirements for real-time applications.

4.5. Semantic Map Building

To visualize the real-time segmentation effect of the TSR-Net system, we constructed
a global semantic map on the GTX 3090 server. Figure 4 shows the semantic map of our
system for the SemanticKITTI dataset 05 sequence scenes. The left-hand side of the image
shows a top view of the 05 sequence scene, and the right-hand side shows a zoomed-in
view of each of the two partial scenes. During the construction of the semantic map, we
censored the data of sequence 05 and updated the semantic labels by taking one frame
from every three consecutive frames.

Machines 2023, 11, x FOR PEER REVIEW  11  of  13 
 

 

 

Figure 4. Visualization of the global semantic map reconstructed by our system. The staining 

scheme of Figure 4 is the same as that of Figure 2. 

5. Discussion 

Our system consists of five parts: data preprocessing, feature extraction, feature fu-

sion, data post-processing, and semantic map construction. The system takes point cloud 

data as input and outputs a global semantic map. From an efficiency perspective, the data 

preprocessing and post-processing modules take 5 ms and 1 ms per frame, respectively. 

The feature extraction and feature fusion modules take 93 ms per frame. The time con-

sumed by the semantic map construction can be neglected. Therefore, our TSR-Net system 

takes 99 ms per frame for point cloud processing, and outputs semantic segmentation re-

sults at a rate of 5 frames per second. The global semantic map module reconstructs the 

semantic map by taking one frame every two frames of data. Our system uses a grid-based 

method  for  processing. Compared with  voxel-based models,  our  system  reduces  the 

FLOPs metric by more than half. Compared with fusion models based on multiple data 

representation forms, our system reduces the FLOPs metric by 174 G. 

From a performance perspective, compared with multi-view-based models, our sys-

tem improved by 7.2% in terms of mIoU indicator. Compared with voxel-based models, 

our system improved by 6.1% in terms of the mIoU indicator. Compared with fusion mod-

els based on multiple data representation forms, our system improved by 2.2% in terms 

of the mIoU indicator. In addition, our system performs real-time segmentation of point 

cloud data. Compared with non-real-time models such as RPVNet, our system’s feature 

extraction and feature fusion modules improved by 2.2% in terms of the mIoU indicator. 

Compared with real-time models such as (AF)2-S3Net, our system improved by 2.8% in 

terms of the mIoU indicator. 

Finally,  from a system perspective,  the existing semantic segmentation system Se-

mantic SLAM [24] projects laser point clouds into depth images for semantic segmentation, 

and then performs point cloud registration and map reconstruction. The focus of the Se-

mantic SLAM system is on pose estimation and semantic map construction. This system 

utilizes only the RangeNet++ model for semantic segmentation, and our work can replace 

this. The TSR-Net system focuses on real-time semantic segmentation to solve the problem 

of real-time system accuracy. 

6. Conclusions 

We propose a method  to  solve  the problem of onboard  semantic  segmentation of 

point clouds for robotic platforms with limited computational resources. The proposed 

system includes two plug-and-play modules, GFEB and CAM, which are used for learn-

ing global contextual information and fusing semantic information at different scales, re-

spectively. After segmenting each single frame, the system uses semantic information to 

Figure 4. Visualization of the global semantic map reconstructed by our system. The staining scheme
of Figure 4 is the same as that of Figure 2.

5. Discussion

Our system consists of five parts: data preprocessing, feature extraction, feature fusion,
data post-processing, and semantic map construction. The system takes point cloud data
as input and outputs a global semantic map. From an efficiency perspective, the data
preprocessing and post-processing modules take 5 ms and 1 ms per frame, respectively.
The feature extraction and feature fusion modules take 93 ms per frame. The time consumed
by the semantic map construction can be neglected. Therefore, our TSR-Net system takes
99 ms per frame for point cloud processing, and outputs semantic segmentation results at a
rate of 5 frames per second. The global semantic map module reconstructs the semantic
map by taking one frame every two frames of data. Our system uses a grid-based method
for processing. Compared with voxel-based models, our system reduces the FLOPs metric
by more than half. Compared with fusion models based on multiple data representation
forms, our system reduces the FLOPs metric by 174 G.

From a performance perspective, compared with multi-view-based models, our system
improved by 7.2% in terms of mIoU indicator. Compared with voxel-based models, our
system improved by 6.1% in terms of the mIoU indicator. Compared with fusion models
based on multiple data representation forms, our system improved by 2.2% in terms of
the mIoU indicator. In addition, our system performs real-time segmentation of point
cloud data. Compared with non-real-time models such as RPVNet, our system’s feature
extraction and feature fusion modules improved by 2.2% in terms of the mIoU indicator.



Machines 2023, 11, 571 12 of 13

Compared with real-time models such as (AF)2-S3Net, our system improved by 2.8% in
terms of the mIoU indicator.

Finally, from a system perspective, the existing semantic segmentation system Seman-
tic SLAM [24] projects laser point clouds into depth images for semantic segmentation, and
then performs point cloud registration and map reconstruction. The focus of the Semantic
SLAM system is on pose estimation and semantic map construction. This system utilizes
only the RangeNet++ model for semantic segmentation, and our work can replace this.
The TSR-Net system focuses on real-time semantic segmentation to solve the problem of
real-time system accuracy.

6. Conclusions

We propose a method to solve the problem of onboard semantic segmentation of point
clouds for robotic platforms with limited computational resources. The proposed system
includes two plug-and-play modules, GFEB and CAM, which are used for learning global
contextual information and fusing semantic information at different scales, respectively.
After segmenting each single frame, the system uses semantic information to enhance
global map building and update labels in the global map with predictions for each frame.
To improve the computational efficiency of the system, all net operations are implemented
based on a sparse tensor, and pre-processing and post-processing are involved for data
transformation between raw 3D points and a sparse tensor.

A series of experiments with SemanticKITTI to test the performance of our system and
evaluations against state-of-the-art methods are presented. From the results, we conclude
that: (1) the two presented plug-and-play and lightweight modules, GFEB and CAM, can
significantly improve the accuracy of semantic segmentation models (+7.6% mIoU) with a
limited increase of inference time (16.2 ms per frame). (2) Our system outperforms state-
of-the-art methods by 2.2% mIoU and about 18× speedup, resulting in a better balance
between accuracy and efficiency for real-time applications. (3) Our system can classify
2.2 million points per second on NVIDIA Jetson AGX Xavier, which demonstrates its ability
for use with a variety of robotic platforms with limited computational resources.

Author Contributions: Conceptualization, W.Z.; methodology, F.W.; software, Y.Y.; validation, F.W.
and J.Z.; resources, J.Z.; writing—original draft preparation, F.W. and Y.Y.; writing—review and
editing, Y.Y. and W.Z.; funding acquisition, F.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 62103072, Dalian Excellent Youth Talent Fund Project, grant number 2022RY23, and the
Fundamental Research Funds for the Central Universities No. 3132023256.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Teixeira, M.A.S.; Nogueira, R.d.C.M.; Dalmedico, N.; Santos, H.B.; Arruda, L.V.R.d.; Neves, F., Jr.; Pipa, D.R.; Ramos, J.E.;

Oliveira, A.S.d. Intelligent 3D Perception System for Semantic Description and Dynamic Interaction. Sensors 2019, 19, 3764.
[CrossRef]

2. Limeira, M.; Piardi, L.; Kalempa, V.C.; Leitao, P.; Oliveira, A.S.d. DepthLiDAR: Active Segmentation of Environment Depth Map
Into Mobile Sensors. IEEE Sens. J. 2021, 21, 19047–19057. [CrossRef]

3. Teixeira, M.A.S.; Neves, F., Jr.; Koubaa, A.; Arruda, L.V.R.d.; Oliveira, A.S.d. DeepSpatial: Intelligent Spatial Sensor to Perception
of Things. IEEE Sens. J. 2020, 21, 3966–3976. [CrossRef]

4. Fang, Y.; Xu, C.; Cui, Z. Spatial transformer point convolution. arXiv 2020, arXiv:2009.01427.
5. Xu, M.; Ding, R.; Zhao, H. Paconv: Position adaptive convolution with dynamic kernel assembling on point clouds. In Proceedings

of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TX, USA, 19–25 June 2021.
6. Zhang, Y.; Zhou, Z.; David, P. Polarnet: An improved grid representation for online lidar point clouds semantic segmentation. In

Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 14–19 June 2020.
7. Xu, C.; Wu, B.; Wang, Z. Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud segmentation. In Proceedings of

the 2020 European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020.

https://doi.org/10.3390/s19173764
https://doi.org/10.1109/JSEN.2021.3088007
https://doi.org/10.1109/JSEN.2020.3035355


Machines 2023, 11, 571 13 of 13

8. Tang, H.; Liu, Z.; Zhao, S. Searching efficient 3d architectures with sparse point-voxel convolution. In Proceedings of the 2020
European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020.

9. Choy, C.; Gwak, J.Y.; Savarese, S. 4d spatio-temporal convnets: Minkowski convolutional neural networks. In Proceedings of the
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–21 June 2019.

10. Zhou, J.C.; Zhang, D.H.; Ren, W.Q. Auto Color Correction of Underwater Images Utilizing Depth Information. IEEE Geosci.
Remote. Sens. Lett. 2022, 19, 1–5. [CrossRef]

11. Chidanand, K.S.; Al-Stouhi, S. Multi-scale voxel class balanced ASPP for LIDAR pointcloud semantic segmentation. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 5–9 January 2021.

12. Rosu, R.A.; Schütt, P.; Quenzel, J. Latticenet: Fast point cloud segmentation using permutohedral lattices. arXiv 2019,
arXiv:1912.05905.

13. Zhu, X.; Zhou, H.; Wang, T. Cylindrical and asymmetrical 3d convolution networks for lidar segmentation. In Proceedings of the
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TX, USA, 19–25 June 2021.

14. Zhou, J.C.; Zhang, D.H.; Zhang, W.S. Underwater image enhancement method via multi-feature prior fusion. Appl. Intell. 2022,
52, 16435–16457. [CrossRef]

15. Strudel, R.; Garcia, R.; Laptev, I.; Schmid, C. Segmenter: Transformer for Semantic Segmentation. In Proceedings of the 2021
IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021.

16. Chen, J.; Lu, Y.; Yu, Q. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv 2021,
arXiv:2102.04306.

17. Wei, Y.; Liu, H.; Xie, T.; Ke, Q.; Guo, Y. Spatial-Temporal Transformer for 3D Point Cloud Sequences. In Proceedings of the 2022
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2022.

18. Fan, H.; Yang, Y.; Kankanhalli, M. Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos. In
Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA,
19–25 June 2021.

19. Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Realtime. In Proceedings of the Robotics: Science and Systems 2014,
Berkeley, CA, USA, 12–16 July 2014.

20. Xu, J.; Zhang, R.; Dou, J. Rpvnet: A deep and efficient range-point-voxel fusion network for lidar point cloud segmentation. In
Proceedings of the 2021 IEEE International Conference on Computer Vision, Montreal, QC, Canada, 11–18 October 2021.

21. Zhang, F.; Fang, J.; Wah, B. Deep FusionNet for Point Cloud Semantic Segmentation. In Proceedings of the 2020 European
Conference on Computer Vision, Glasgow, UK, 23–28 August 2020.

22. Cheng, R.; Razani, R.; Taghavi, E. (AF)2-S3Net: Attentive Feature Fusion with Adaptive Feature Selection for Sparse Semantic
Segmentation Network. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville,
TN, USA, 20–25 June 2021.

23. Liong, V.E.; Nguyen, T.; Widjaja, S. AMVNet: Assertion-based Multi-View Fusion Network for LiDAR Semantic Segmentation.
arXiv 2020, arXiv:2012.04934.

24. Chen, X.; Milioto, A.; Palazzolo, E.; Giguère, P.; Behley, J.; Stachniss, C. SuMa++: Efficient LiDAR-based Semantic SLAM.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China,
3–8 November 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LGRS.2022.3170702
https://doi.org/10.1007/s10489-022-03275-z

	Introduction 
	Related Work 
	Method 
	Overview 
	Feature Extraction Module 
	Feature Fusion Module 
	Semantic Map Building 

	Experiment 
	Settings 
	Semantic Segmentation Results 
	Hyperparameters 
	Efficiency Comparisons 
	Semantic Map Building 

	Discussion 
	Conclusions 
	References

