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Abstract: Quadrotors possess traits such as under-actuation, nonlinearity, and strong coupling.
Quaternions are primarily used for attitude calculations in drones, with error quaternions seldom
being employed directly in the control of specific quadcopter drones. This paper focuses on the
low tracking accuracy and weak anti-interference ability of quadcopter drones in trajectory-tracking
control. By establishing the quadcopter quaternion model, a controller based on quaternion error
is designed through a combination of fractional-order PID control with S-plane control. Trajectory-
tracking experiments demonstrate that, in comparison with fractional-order PID, this method exhibits
strong wind disturbance resistance and high tracking accuracy.
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1. Introduction

The quadrotor is an unmanned aerial vehicle with extensive uses in multiple fields.
In comparison to other rotorcrafts, the quadrotor boasts a simpler structure and is more
commonly used. The aircraft is composed of four rotors that control its flight by regu-
lating the speed of rotation. Additionally, it is compact in size, easy to maintain, highly
maneuverable, and considered safe and reliable. The quadrotor is cost-effective and can be
accessorized by mechanical arms as per mission requirements.

Despite its extensive use, the quadrotor is a complex system to model and for which
to design control systems. This is due to its six-degrees-of-freedom flight control with only
four rotor inputs and six-space-degrees-of-freedom outputs, which result in a strongly
coupled, underactuated, and nonlinear system.

Based on the above problems, researchers have proposed many control algorithms for
quadrotors, such as PID control [1], fractional-order PID control [2], backstepping control [3],
active disturbance rejection control [4,5], sliding mode control [6], fuzzy control [7], etc.

Muro et al. [8] proposed a sliding mode control algorithm based on a super twisting
algorithm and used unit quaternion feedback in the dynamic model of the quadrotor.
The accurate first-order differentiator was used to obtain the derivative of the virtual
control input, and the sliding mode observer was used to estimate the aerodynamic forces
and moments acting on the quadrotor, ensuring robustness against external disturbance
and model uncertainty. The results showed that the control method based on quaternions
needed less time than the method using Euler angles.

Chen Pengyun et al. [9] proposed an expert S-plane controller and introduced it
to the motion control system of UAVs. The controller, combined with expert control,
has a good nonlinear control effect and can achieve good UAV motion control. Based
on this, the motion control system of UAV was designed. Field tests showed that the
proposed controller has the characteristics of a high control accuracy, fast response speed,
good dynamic performance, and strong adaptability to environmental interference, and is
suitable for the motion control of UAVs.
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P.D. MANDIĆ et al. [10] studied the stability problem of the fractional-order PD con-
troller controlling the Furuta pendulum. The mathematical model of the rotary-inverted
pendulum was derived, and the fractional-order PD controller was introduced to sta-
bilize this. Here, the D-decomposition method can be successfully used to solve the
asymptotic stability problem of the inverted pendulum system, which is controlled by the
fractional-order controller. The fractional-order controller can be applied to underactuated
system control.

Liu Tong [11] quoted the fractional-order operator in the fuzzy controller of the
quadrotor and constructed an adaptive fuzzy fractional-order PID controller, which is used
in the quadrotor control system. The experimental results show that this method has a
better control performance compared with PID and fractional-order PID controllers.

Due to the underactuated nature of the quadrotors, the stability of the model and the
complexity of the dynamic model become more prominent when subjected to vibration,
noise, and interference. In addition, the overlapping of the axes during the high maneuver-
ing of the UAV can cause singularities [12]. In order to address this, Reference [13] suggests
using a reverse-saturation, adaptive, fixed-time, sliding-mode controller for second-order
nonlinear systems with saturation constraints. This approach involves designing a new,
non-singular, fast, fixed-time sliding surface, which helps to avoid singularity and achieve
faster convergence rates. Islam et al. [14] used model predictive control (MPC) for the
trajectory-tracking control of a quadrotor based on quaternions. A new cost function was
developed for the MPC controller using quaternions. The simulation results showed that
using the MPC method for quadrotor trajectory tracking can effectively avoid directional
singularity. Another option is to utilize quaternions to establish the UAV model. This article
demonstrates the effectiveness of using quaternions to directly control specific quadrotor
UAVs. To overcome the influence of wind disturbance on quadrotor trajectory-tracking
control, a new control method is proposed in this paper. This method is based on traditional
PID control and proposes a quadrotor-tracking control method based on fractional-order
PID and S-plane. The structure of this paper is as follows: first, according to the force and
torque of the quadrotor, the kinematic and dynamic equations of the UAV are established
using quaternions. Then, a fractional-order S-plane control is designed. Finally, simulation
experiments are carried out using Matlab Simulink.

2. Quaternions Model for Quadrotor UAV

This article describes the motion state of a quadcopter with six degrees of freedom
(DOF) and uses the Newton–Euler formula to establish the quadcopter’s kinematic and
dynamic models. To establish the kinematic equations, coordinate systems need to be
constructed. Therefore, this article constructs the Earth-fixed coordinate system and the
body-fixed coordinate system. The Earth-fixed coordinate system Oexeyeze is an inertial
coordinate system, and the origin of the coordinate system can be set to the initial position
at which the quadcopter takes off. The body-fixed coordinate system Obxbybzb is a fixed
coordinate system, and the origin of the coordinate system is the center of gravity of the
quadcopter. The position of the quadcopter can be described by [x, y, z]T , and the rotation
along the axis (i.e., roll, pitch, and yaw) can be represented by [φ, θ, ψ]T .

The transformation matrix between the Earth-fixed coordinate system and the body-
fixed coordinate system is Q. Typically, the rotation matrix from the Earth-fixed coordinate
system to the body-fixed coordinate system obtained using the Euler angle method, as
follows [15]:

Qe
b =

cosψcosθ cosψsinφsinθ − cosφsinψ sinφsinψ + cosφcosψsinθ
cosθsinψ cosφcosψ + sinφsinψsinθ cosφsinψsinθ − cosψsinφ
−sinθ cosθsinφ cosφcosθ

 (1)

Since drones need to constantly solve trigonometric functions during flight, the con-
version matrix in Equation (1) increases the runtime of the onboard processor. Using
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quaternion conversion matrix to represent the rotation of the aircraft not only reduces the
running time of the drone’s processor, but also effectively avoids gimbal lock during flight.

Quaternions are mathematical tools used to represent affine transformations, rotations,
and projections, and are widely used in aircraft control [16], robotic arm positioning [17] and
transformation control [18], autonomous underwater vehicle control, helicopter attitude
control, and other fields. Quaternions are an extension of complex numbers, consisting of
one real part and three imaginary parts, represented as: q = q0 + q1i + q2 j + q3k ,where
ijk = −1.

According to the basic definition of quaternions, we can derive an important property
of quaternions in rotational transformations: any vector v̄ rotated by an angle θ along the
rotation axis ū defined by a unit vector can be obtained by multiplying a unit quaternion,
resulting in a new vector v̄′ [19]:

v′ = qvq∗, (2)

where v and q represent quaternions, q∗ represents the conjugate of q̇, v = [0, v̄],
q = [cos θ/2, (sin θ/2)ū]. v′ = [0, v̄′].Therefore, the rotation matrix from the Earth-fixed
coordinate system to the body-fixed coordinate system can be derived from the above
equation [20]:

Qe
b =

1− 2q2
2 − 2q3

2 2q1q2 − 2q0q3 2q0q2 + 2q1q3
2q0q3 + 2q1q2 q0

2 − q1
2 + q2

2 − q3
2 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q0q1 + 2q2q3 1− 2q1
2 − 2q2

2

. (3)

By combining Equations (1) and (3), we can obtain the conversion relationship between
Euler angles and quaternions. The representation of Euler angles in terms of quaternions is
given by Equation (4) [20]:φ

θ
ψ

 =

atan2
(
2q0q1 + 2q2q3,−2q1

2 − 2q2
2 + 1

)
asin(2q0q2 − 2q1q3)

atan2
(
2q0q3 + 2q1q2,−2q2

2 − 2q3
2 + 1

)
. (4)

Similarly, quaternions can also be obtained from Euler angles [20]:
q0
q1
q2
q3

 =


sin φ

2 sin ψ
2 sin θ

2 + cos φ
2 cos ψ

2 cos θ
2

cos ψ
2 cos θ

2 sin φ
2 − cos φ

2 sin ψ
2 sin θ

2
cos φ

2 cos ψ
2 sin θ

2 + cos θ
2 sin φ

2 sin ψ
2

cos φ
2 cos θ

2 sin ψ
2 − cos ψ

2 sin φ
2 sin θ

2

. (5)

To obtain the kinematic equations of quaternions, it is also necessary to combine the
derivative of the quaternion q̇ with the angular velocity ω = [p, q, r]T of the quadcopter,
as shown in Equation (6) [20]:

q̇ =
1
2


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0




0
p
q
r

. (6)

Based on the above transformation matrix and using the Newton–Euler formula, the kine-
matic equation of a quadcopter based on quaternions can be established [21]:
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ẍ = −K1vx−u1(2q0q2+2q1q3)
m

ÿ = −K2vy+u1(2q0q1−2q2q3)
m

z̈ = − gm−u1(q0
2−q1

2−q2
2+q3

2)+K3vz
m.

q0 = − pq1
2 −

rq3
2 −

qq2
2.

q1 = pq0
2 + rq2

2 −
qq3
2.

q2 = pq3
2 −

rq1
2 + qq0

2.
q3 = rq0

2 −
pq2
2 + qq1

2
ṗ =

Iy−Iz
Ix

qr− K4
Ix

p + lu2
Ix

q̇ = Iz−Ix
Iy

pr− K5
Iy

q + lu3
Iy

ṙ = Ix−Iy
Iz

qr− K6
Iz

p + lu4
Iz

, (7)

where vx, vy, and vz are velocity vectors in the ground coordinate system, and p, q, and r
are angular velocity vectors in the body coordinate system, K1, K2, K3 are the air resistance
coefficients, and Ix, Iy, Iz are the moments of inertia of the quadcopter along the three
coordinate axes of the body coordinate system. K4, K5, K6 are the air resistance moment
coefficients, which affect the air resistance moment of the quadcopter in the three coordinate
axes directions. u1 is the total lift generated by the four rotors of the quadcopter, u2 is the
roll moment formed by the difference in lift between the left and right rotors, u3 is the pitch
moment formed by the difference in lift between the front and rear rotors, u4 is the yaw
moment formed by the difference between the twisting moment of the clockwise rotating
rotor and the counterclockwise rotating rotor. The expressions of u1, u2, u3, and u4 are
shown below [22]: 

u1
u2
u3
u4

 =


b b b b
0 −lb 0 lb
−lb 0 lb 0

d −d d −d




ω2
1

ω2
2

ω2
3

ω2
4

, (8)

where ωi are the rotational speeds of the i-th rotor, b is the lift coefficient of the rotor, l is
the distance from the rotor axis to the quadrotor’s center of gravity, and d is the rotor’s
torque coefficient.

There are various types of disturbances that unmanned aerial vehicles can experience.
The quadrotor model referenced in [23,24] accounts for uncertainties in the model, external
disturbances, actuator faults, and input delays, and creates control schemes that are tolerant
to faults. Model (7) in this paper does not factor in external wind disturbances, but a
random square wave detection system was included in the Simulink model to improve its
anti-interference abilities, which will be discussed in Section 4.2.

3. Design of Controller
3.1. S-Plane Control

As the S-plane function is a type of nonlinear function, it can be applied to the control
algorithm of a quadcopter. The required control output is a smooth surface. The surface
is directly used to represent the coefficients of the control force; that is, the relationship
between deviation, derivative of deviation, and control force is represented by the curve.
When the deviation and derivative of deviation are large, the control output is also large.
When the deviation and derivative of deviation are small, the control output is also small.
Finally, the deviation, the rate of deviation change, and the control force are all zero.
During changes in deviation and deviation rate, due to the smoothness of the actual
movement, the output of control force is also smooth, and its function is to reduce deviation
and deviation rate. At the same time, the magnitude of control force itself is also reduced.
S-plane control proved to be effective in USV control systems, which grants the USV the
ability to resist model parameter changes and marine environment disturbances [25].

Generally, the Sigmoid curve function is:

y = 2/(1 + exp(−kx))− 1. (9)
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So, the Sigmoid curve function is:

z = 2/(1 + exp(−k1x− k2y))− 1. (10)

Thus we can design control model of S-surface control method [26]:

u =
2

1 + exp(−k1e− k2 ė)
− 1 + ∆u, (11)

where e and ė are the deviation and deviation change rate; k1 and k2 are control parameters
used to adjust the control convergence speed or overshoot [27]. u is the control output,
and ∆u is the deviation adjustment term used to represent external environmental interfer-
ence. In this paper, ∆u = 0. The parameter definition of the proportional-derivative (PD)
controller is similar to this. The parameter definition of the S-plane controller can refer
to the tuning idea of the PD controller, and the two parameters k1 and k2 can be adjusted
to achieve optimal control of the target. The output range of the S-plane controller u is
u ∈ [−1, 1]. Therefore, the actual output of the S-plane controller is U = K · u, where K is
the output gain. A three-dimensional structure diagram of the S-plane control is shown
in Figure 1.

2

0
-1

-0.5

-2

0

-1.5 -1 -0.5 -2

0.5

0 0.5 1

1

1.5 2

Figure 1. 3D structure diagram of S plane.

3.2. Fractional-Order Calculus

Fractional calculus is an extension of real calculus that can describe fractional-order
calculus operations. Unlike integer-order calculus, the derivative and integral of fractional
calculus can have any order. The future state of an integer-order dynamic system depends
only on the current state (no memory). However, for fractional-order systems, the current
state depends on the entire history of the system [28] (long-term memory). The main
definitions of fractional calculus in modern control fields are Riemann–Liouville, Grunwald–
Letnikov, and Caputo definitions [11].

For a function f (t), its fractional-order Cauchy integral formula is:

Dγ
t f (t) =

Γ(γ + 1)
2π j

∮
C

f (τ)

(τ − t)γ+1 dτ, (12)

where the order γ can be any positive real number, while the definition of a unified
fractional calculus operator t0Dα

t is:

t0Dα
t f (t) =


dα

dtα f (t), α > 0
f (t), α = 0∫ t

t0
f (τ)dτ−α, α < 0

. (13)

In the equation, if α ≥ 0 and t0 = 0, the notation t0 can be omitted. If the independent
variable is t and there are no other variables, t can also be omitted. If α > 0, the operator
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t0Dα
t represents the α-th derivative of the function with respect to the independent variable

t. α = 0 represents the original signal, and if α < 0, it represents the −α-th integration.
The Grunwald–Letnikov fractional-order differentiation of the αth order derivative of

the function f (t) is defined as follows:

GL
t0
Dα

t f (t) = lim
h→0

1
hα

[(t−t0)/h]

∑
j=0

(−1)j
(

α
j

)
f (t− jh), (14)

where, [·] represents rounding to the nearest integer.

3.3. Fractional-Order Control

Traditional PID control model:

u = kPe + kI

∫ t

t0

edt + kD ė. (15)

In the formula, kP, kI , and kD are three adjustable parameters.
The fractional-order PIλDµ controller has two additional parameters λ and µ compared

to the traditional PID controller [29]. The transfer function of this controller is:

Gc(s) = kP +
kI

sλ
+ kDsµ. (16)

In Equation (16), the parameters that need to be adjusted are kP, kI , kD, as well as the
orders λ and µ. In actual fractional-order PIλDµ controllers, due to the fact that the integral
part is approximated by a filter, steady-state errors cannot be completely eliminated when
λ < 1, so it is necessary to reconstruct the integral part. The transfer function of the new
fractional-order PIλDµ [29] controller is:

Gc(s) = kP +
kIs1−λ

s
+ kDsµ. (17)

Perform the inverse Laplace transform on Equation (16) and combine S-plane control and
FOPID control to obtain the actual control input formula

u = e
(

kDt−µ−1

Γ(−µ)
+ kP +

kI tλ−1

Γ(λ)

)
+

2
1 + exp(−k1e− k2 ė)

− 1. (18)

where
Γ(z) =

∫ ∞

0
e−ttz−1 dt (19)

This article focuses on the quadrotor unmanned aerial vehicle, using a fractional-order
S-shaped fusion control system. The specific control system is shown in Figure 2.

Controller1 Quaternion
Error Plant

3, ,d d dy qx

3 ,, ,d d d dy qx z
0 1 2 3, , ,a a a aq q q q

0 1 2, ,d d dq q q

0 1 2 3, ,,,d d d d dq q q zq
,a az z

, ,p q r
Trajectory

New
Trajectory Controller2

Figure 2. Structure of quadrotor dual closed-loop control system.

In the control system shown in the figure above, qid represents the expected value of
qi in the quaternion, while qia represents the quaternion obtained after model calculation.
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The error quaternion qe represents the difference between the measured attitude and the
expected attitude, and can be expressed by the following equation:

qe = qdq∗a . (20)

4. Simulation and Result Analysis
4.1. Semi-Physical Simulation

As shown in the Figure 3, this article uses the hardware-in-the-loop simulation method
to conduct trajectory-tracking experiments on a quadrotor unmanned aerial vehicle. The use
of Raspberry Pi can provide powerful computing abilities for drones. The Ubuntu system
it carries allows for users to freely modify the interface settings between the Raspberry Pi
and the drone. By programming the Raspberry Pi, the control algorithm can be directly
written into the ROS system. Through the Pixhawk, the quadcopter can be driven to fly
along a predetermined trajectory, ultimately achieving the effect of trajectory tracking.

Quadrotor

Pixhawk

Raspberry Pi

Ground Control Station

Figure 3. Schematic diagram of hardware in the loop simulation system.

The main hardware equipment and their uses are introduced as follows:

1. Host computer with a virtual machine of Ubuntu 22.04 and ROS system installed.
2. Z410 drone, an experimental model designed for the entry-level development of drones.
3. Pixhawk2.4.8 flight controller, necessary hardware for the normal flight of the drone,

controlling the attitude of the drone.
4. Raspberry Pi 4B, running external control programs and other system integrations,

sending external control commands or network signals to the flight controller.
5. Electronic speed controller (ESC), receiving the output signal of the flight controller,

processing it and driving the motor to rotate.
6. T-motor 2216 motor, where the motor rotation drives the propeller blades, providing

upward power to the drone.
7. Battery, the power source of the drone.
8. Current meter, a component that supplies a dependable power source to the flight

controller while detecting real-time voltage levels. It also takes preset actions for
autonomous landing or return when the battery voltage is too low.

9. UBEC, providing stable power supply to the Raspberry Pi.
10. Receiver: paired with the remote controller, this receives the control signal from the

remote controller to control the flight of the drone.
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4.2. Matlab Simulation

To verify the effectiveness of the proposed method in this article, trajectory-tracking
control simulation experiments were conducted based on a spiral trajectory. The experi-
mental conditions were as follows: SIMULINK (MATLAB 2021a); the initial point of the
drone was set to [0,0,0], i.e., the initial state was zero; and the simulation time was set to
40 s. The reference trajectory was given as follows:

xd = 100 cos(t/2)
yd = 100 sin(t/2)
zd = 20 + 5t

. (21)

4.3. Results Analysis

The parameters of the quadcopter can be initialized as follows:
In Table 1, we present the essential symbols, along with their corresponding param-

eters, which are referred to later in the document. Researchers injected white noise into
the system attitude control input and position control input from 15–20 s in SIMULINK.
The overall simulation results are shown in Figure 4:

Table 1. Parameters and initial conditions.

Representation Symbol Value Unit

Mass m 0.65 kg
Acceleration of gravity g 9.8 m/s2

Moment of inertia Ix 7.5× 10−3 m/s2

Moment of inertia Iy 7.5× 10−3 m/s2

Moment of inertia Iz 1.3× 10−2 m/s2

Arm length l 0.32 m
Lift coefficent b 3.1× 10−5

Torque coefficent d 7.5× 10−7

Air resistance coefficent K1 0.1
Air resistance coefficent K2 0.1
Air resistance coefficent K3 0.15

Air resistance moment coefficent K4 0.1
Air resistance moment coefficent K5 0.1
Air resistance moment coefficent K6 0.15

0

50

100

100

150

z
(m

)

50

150

100

y(m)

200

500

x(m)

250

0
-50-50

-100-100 -150

Ideal path
FOPID
FOPID-SPlane

Figure 4. Spiral trajectory-tracking plot.

The trajectory-tracking results of the quadcopter in the x, y, and z directions are shown
in Figures 5–13.
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0 5 10 15 20 25 30 35 40

t(s)

-150

-100

-50

0

50

100

150

x
(m

)

Ideal Path
FOPID
FOPID-SPlane

Figure 5. Tracking effect in the x direction.

0 5 10 15 20 25 30 35 40

t(s)

-150

-100

-50

0

50

100

150

y
(m

)

Ideal Path
FOPID
FOPID-SPlane

Figure 6. Tracking effect in the y direction.

0 5 10 15 20 25 30 35 40

t(s)

0

50

100

150

200

250

z
(m

)

Ideal Path
FOPID
FOPID-SPlane

Figure 7. Tracking effect in the z direction.

From Figure 7, it can be seen that the overall tracking effect of the designed controller
is good. Zooming in on the tracking effect of 0∼3 s in the above figure, the following graph
is obtained:

0 0.5 1 1.5 2 2.5 3

t(s)

0

20

40

60

80

100

x
(m

)

Ideal Path
FOPID
FOPID-SPlane

Figure 8. Initial tracking in the x direction.
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0 0.5 1 1.5 2 2.5 3

t(s)

-20

0

20

40

60

80

100

120

y
(m

)

Ideal Path
FOPID
FOPID-SPlane

Figure 9. Initial tracking in the y direction.
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0
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30
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)

Ideal Path
FOPID
FOPID-SPlane

Figure 10. Initial tracking in the z direction.

Enlarging the perturbation part in Figure 4, the resulting graph is as follows:

15 16 17 18 19 20 21

t(s)

-150

-100

-50

0

50

x
(m

)

Ideal Path
FOPID
FOPID-SPlane

Figure 11. Anti-disturbance effect in the x direction.

15 16 17 18 19 20 21

t(s)

-100

-50

0
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y
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)

Ideal Path
FOPID
FOPID-SPlane

Figure 12. Anti-disturbance effect in the y direction.
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15 16 17 18 19 20 21

t(s)

90

95

100

105

110

115

120

125

130

z
(m

)

Ideal Path
FOPID
FOPID-SPlane

Figure 13. Anti-disturbance effect in the z direction.

The expected path can be subtracted from the tracked trajectory results to obtain the
error graphs for each direction as follows:

This article uses Equation (22) to quantitatively calculate the overall anti-interference
quality of the fractional-order S-plane controller:

Qi =
∫ ts

0
| ei|dt, (22)

where Qi represents the accumulated tracking error in the i direction. The calculation
results are shown in the following table:

From Table 2, it can be seen that the fractional-order S-surface control is significantly
smaller than the fractional-order PID control for tracking cumulative error, which is ap-
proximately 51.18% of the fractional order PID.

Table 2. Comparison of anti-interference quality between FOPID and FOPID-Splane control.

Methods Qx Qy Qz ∑ Qi

FOPID 200.56 98.36 33.8 332.72
FOPID-SPlane 90.54 53.59 26.14 170.27

From Figure 4, it can be seen that, compared to traditional PID control, the fractional-
order S-plane control not only quickly tracks the expected path with high precision, but also
has the advantage of a high tracking accuracy. Figures 5–7 show that the tracking effect
of fractional-order S-plane control is significantly better than that of fractional-order PID
control at the initial stage. When external wind disturbance is introduced from 15–20 s,
the trajectory-tracking diagram of each coordinate axis and the trajectory-tracking error
diagram of each coordinate axis in Figures 11–16 that the fractional-order S-plane control
designed in this paper has an excellent performance in terms of resisting wind disturbance.
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Figure 14. Tracking error in the x direction.
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Figure 15. Tracking error in the y direction.
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Figure 16. Tracking error in the z direction.

5. Conclusions
5.1. Overall Summary

This article proposes a quaternion-based fractional-order S-surface fusion control
strategy for the trajectory-tracking of quadrotor unmanned aerial vehicles. Simulation
experiments were conducted using Matlab SIMULINK, and the following conclusions
were drawn:

1. The quaternion-based control model can effectively avoid singularity problems and
facilitate the calculation of attitude angles.

2. The designed fractional-order S-surface controller inherits the advantages of conven-
tional PID controllers and can finetune the control system order to make the control
process smoother.

3. The simulation results show that, compared with fractional-order PID control, the
fractional-order S-surface controller can give the control system a higher control
accuracy and stronger robustness.

5.2. Further Research

Future research should consider the challenges of analysing the designed control
system using math tools. Researchers resort to numerical methods to solve these equations
because of their complexity, which can be time-consuming and computationally expensive.
Fractional-order calculus is not as well-known as traditional integer calculus and requires
a different approach to solve problems. The lack of familiarity with non-integer calculus
makes it difficult for researchers to apply it to real-world problems, which often involve
complex equations that are difficult to solve analytically. Therefore, mathematical analysis
should be considered to verify the stability of the designed control system in future studies.
For example, we will study the linearization of a nonlinear system to simplify the equations.
An analysis of Lyapunov stability will be discussed in future work.
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