
Citation: Noroozi, F.; Daneshmand,

M.; Fiorini, P. Conventional, Heuristic

and Learning-Based Robot Motion

Planning: Reviewing Frameworks of

Current Practical Significance.

Machines 2023, 11, 722.

https://doi.org/10.3390/

machines11070722

Academic Editors: Nicola Ivan

Giannoccaro, Ramiro Velázquez

and Gianfranco Parlangeli

Received: 17 May 2023

Revised: 4 July 2023

Accepted: 4 July 2023

Published: 7 July 2023

Correction Statement: This article

has been republished with a minor

change. The change does not affect

the scientific content of the article and

further details are available within the

backmatter of the website version of

this article.

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Review

Conventional, Heuristic and Learning-Based Robot
Motion Planning: Reviewing Frameworks of Current
Practical Significance
Fatemeh Noroozi 1,* , Morteza Daneshmand 1,† and Paolo Fiorini 2

1 Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway; morteza.daneshmand@nibio.no
2 Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;

paolo.fiorini@univr.it
* Correspondence: fatemeh.noroozi@nibio.no
† M.D.’s affiliation is previously with Institute of Technology, University of Tartu, 50411 Tartu, Estonia.

Abstract: Motion planning algorithms have seen considerable progress and expansion across various
domains of science and technology during the last few decades, where rapid advancements in path
planning and trajectory optimization approaches have been made possible by the conspicuous en-
hancements brought, among others, by sampling-based methods and convex optimization strategies.
Although they have been investigated from various perspectives in the existing literature, recent
developments aimed at integrating robots into social, healthcare, industrial, and educational contexts
have attributed greater importance to additional concepts that would allow them to communicate,
cooperate, and collaborate with each other, as well as with human beings, in a meaningful and
efficient manner. Therefore, in this survey, in addition to a brief overview of some of the essential
aspects of motion planning algorithms, a few vital considerations required for assimilating robots
into real-world applications, including certain instances of social, urban, and industrial environments,
are introduced, followed by a critical discussion of a set of outstanding issues worthy of further
investigation and development in future scientific studies.

Keywords: motion planning; mobile robots; social robots; self-driving cars; humanoid robots

1. Introduction

Artificial Intelligence (AI)-based utilities and techniques have their most prevalent
applications in robotics, where agents possessing computing capabilities gather, analyze,
and use information from their environment to make and act upon informed decisions.
Despite the usual lack of sufficiently reliable information about their environment, a robotic
agent has to make rational decisions or at least be capable of autonomously making a
sequence of moves that optimize the expected values of indicators of certain functional
criteria to an acceptable extent, while minimizing the costs incurred. The environment may
change during the course of executing a motion plan, which motivates the incorporation
of the capability for modifying the plan based on the aforementioned variations. Taking
into account the fact that it is not feasible to compute reactions to all possible scenarios
in advance, it is common to instead perform replanning computations and optimizations
based on the specific scenario at hand. This may include various factors, such as model and
tracking errors, as well as different types of constraints, according to the sensor feedback
and user inputs [1,2].

An autonomous (e.g., robotic) system might involve multiple rigid parts connected
using numerous types of links, hinges, and joints. They may be either dependent or
independent in terms of their movement [3]. The navigation of an autonomous system
requires localization, perception and cognition, and motion planning [4], with the latter
constituting the central focus of this review. A schematic representation of the role of
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motion planning within the workflow of AI-based systems is shown in Figure 1, together
with more specific illustrations of its place in the structure governing the performance
of robotic systems and self-driving cars. The figure was inspired by the definitions and
representations provided in [1,5].

Figure 1. A schematic representation of the place of motion planning within a general AI-based
pipeline (middle), with more specific illustrations of self-driving cars (top) and robotics sys-
tems (bottom). The figure was inspired by the conceptions and diagrams reported in [1,5].

Motion planning in cluttered environments is important in various applications relying
on autonomous systems. A basic motion planning problem for an autonomous system with
the shape known from the outset deals with a 2D or 3D environment, which may include
obstacles with known shapes and positions, where the aim is to determine a collision-free
route for the autonomous system from an initial position and orientation (pose) to the final
one, if a route exists [3].The pose needs to be estimated throughout the operation using,
e.g., image processing techniques, to rectify the path, and correspondingly the control
commands, based on the actual situation. Various types of robotic manipulators, such
as spatial and tentacle-like, require motion planning, with considerable uncertainties
arising from size limitations, compliance and collision-avoidance requirements, and sensing
unreliability [6]. Thus, finding a suitable path depends on a variety of experimental
factors, such as the presence of static or dynamic obstacles and other types of uncertainties,
and must be handled using relevant control strategies, e.g., Dynamic Programming (DP) [7].

Perception of the surrounding environment by the robot may be achieved using var-
ious sensory modalities, such as sound signals. In this configuration, a set of audition
capabilities enable the robot to locate a sound source, among other functionalities. For ex-
ample, a microphone array installed on a robot may be utilized to measure the angle of
arrival, thereby estimating the location of the sound source, where the front–back ambiguity
may be alleviated based on the robot’s motion, even in noisy and reverberant environments,
potentially with moving sources, using, e.g., Kalman filtering [8].

The results include a set of locations, i.e., via points, at which the autonomous system
may be positioned, as well as rule sets intended to constrain the movements of the au-
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tonomous system between them [9]. Generally, path planning aims to find the intermediate
points, such that the final pose can be reached within the shortest possible period, while
taking into account an environmental and spatial model [10].

Path planning may be performed either in the joint space or in the operating space.
It is limited to kinematic planning, and the criteria for evaluating performance mostly
concern the computational costs, meaning that it does not account for the physics-based
requirements of the problem [11]. Therefore, subsequently, trajectory planning needs to
be performed, which incorporates the time information into the plan, to determine the
dynamic aspects of the motion, as well as the time at which each of the via points are passed.
The resulting system is often called a Kinodynamic motion Planning (KP) algorithm.

The importance of such concepts stems from the fact that inertial forces and torques are
affected by the robot’s acceleration, where jerk, which is mathematically represented as the
derivative of acceleration, has a direct impact on mechanical vibrations. Thus, a trajectory
planning method may concentrate on optimizing one or several factors, including execution
time, energy consumption, jerk, route length, safety, computation time, and smoothness [12],
and this can be achieved using, e.g., an artificial bee colony algorithm for a local search,
as well as evolutionary programming for refining the path [13]. While planning a trajectory,
the relevant constraints, including temporal, physical, geometric, and friction-related,
as well as joint limits and equilibrium requirements, where applicable, should also be
satisfied [2,10,14]. Mathematically, a broad category of classical problems concern motion
planning under differential constraints [15].

Motion planning considering dynamics can be significantly challenging; since, due to
the lack of a local planner, the only primitive toward the state space comes from the controls
being forward-propagated. This has been alleviated in the literature through employing
propagation of random controls in each iteration, utilizing tree Sampling-Based Motion
Planning (SBMP) techniques, leading to asymptotic optimality, i.e., ultimate optimality in
terms of the cost of the path, as the number of points grows toward infinity. Nevertheless,
the convergence of the resulting approaches to suitable trajectories may be unacceptably
slow [16,17].

Adjustable links and joints can be considered to model trajectories for improved flexi-
bility against unexpected dynamic obstacles, such that the trajectory can be conveniently
modified by creating multiple obstacle trajectories based on the relationships between them
and using queries along the link chains [18].

Despite the above geometric perspectives, practical use cases may entail technical
complexities of different sorts, including functional uncertainties and noise during sensing
and control, probabilistic incompleteness, nonholonomic constraints, optimality require-
ments such as time or vibration minimization [19], dynamic constraints, error recovery
concerns, route caching preconditions, and a lack of essential information about the scene
and obstacles. Therefore, during the last four decades, researchers from several commu-
nities, such as computational geometry and robotics, have been engaged in developing
suitable frameworks for this purpose [3].

A certain aspect of the problem concerns robot autonomy, which is necessary for en-
hancing the robot’s safety and its performance, in terms of delivering insightful information
about the scene it is supposed to navigate through [20]. This, in turn, gives rise to extra
factors and requirements regarding the fact that the robot has to be capable of capturing
and processing some or all of the information for determining its actions.

Another challenge underlying the task of motion planning arises from the intricacy of
achieving onboard implementation of the procedures required for handling the dynamics
of using the robot’s computational resources [21], as well as the lack of sensory capabilities
that are required for a consistent performance across different situations, i.e., where the
robot needs to make inferences about possible valid configurations [22]. Additionally,
different configuration parameters may affect the quality of the trajectory returned by a
motion planning algorithm, and these are usually adjusted beforehand [23].
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As a common practice, the problem of motion planning is converted from the Cartesian
space (workspace) to the higher-dimensional configuration space, which is often referred
to as the C-space. The goal is to reduce the problem of checking for 3D collisions between
spatial objects to that of simpler point-like tests. Nevertheless, making the required map in
the C-space may become intractable computationally and memory-wise with the higher
dimensions of the C-space. This may stem from factors such as high numbers of Degrees of
Freedom (DoF), or from the time-dependency of the environment, e.g., because of obstacles
dynamically appearing, disappearing, or moving, and requirements for being incorporated
online into the C-space [24].

Other challenges may also be presented by the necessity of finding a probabilistic
compromise between safety and speed in collision checking at the edges of the sensing
field [25]. It should, however, be noted that forcing a robot to perform as fast as possible may
undermine its accuracy and repeatability. Therefore, it is vital to plan trajectories that can
be performed quickly and highly efficiently, and which are smooth enough not to require
excessive acceleration or extreme actions, which would otherwise damage mechanical parts
such as actuators or control modules, because of, e.g., extreme vibrations [12].

Once a trajectory has been planned, a low-level controller needs to be employed so the
autonomous system follows it, while maintaining the safety and compensating for tracking
errors using, e.g., sum-of-squares programming for upper-bound limits of the tracking
error [26].

Furthermore, completeness and exactness are considered essential properties of any
motion planning algorithm [27]. Probabilistic completeness refers to the property of an
algorithm, where the probability of it being unable to return a solution if at least one exists
decays to zero as the number of samples grows to infinity [28]. Similarly, a motion plan
needs to be singularity-free, meaning that the end-effector should not reach regions of the
workspace where it is not able to move along one or more of its DoF or where it could move
irrespective of the input joint positions. It is worth noting that avoiding local coordinates
may be useful for tackling singularities or ambiguities [29].

Generally, a navigation package consists of two main modules: a global planner
that finds the optimal path according to prior knowledge of the environment and the
static obstacles, and a local planner that refines the path, to avoid collisions with dynamic
obstacles [30].

Motion planning algorithms involve loosely coupled multilayered designs that aim
at dynamically feasible solutions, which are found quickly enough to be suitable for
online planning. Lower-dimensional projection spaces are used for approximating a lead
path from the start to the goal configuration. The results are then employed as initial
guesses for the second planner, considering the dynamic constraints and possible cases
of Inevitable Collision State (ICS). This is also fundamental when it comes to leveraging
the computational cost by performing calculations up to a reasonable horizon at each
interval, and focusing on regions where high-quality solutions are deemed most likely to
be found [21].

SBMP, which will be further discussed in the upcoming sections, is highly reliable,
in terms of avoiding obstacles, and is therefore useful in cases where the task must be
performed while inferring and trying to satisfy a set of dynamic constraints. Instead of
specifically and numerically programming a robot, planning its motions and performing a
certain task may be accomplished through learning the actions and constraints. For example,
expert demonstrations may be used within a Demonstration-Guided Motion Planning
(DGMP) framework for tasks involving, e.g., holding an object in an upright or horizontal
position while moving it or cleaning a surface [31].

Motion planning algorithms have been extended and refined to improve their effi-
ciency, reliability, energy and time consumption, computational cost, physical feasibility,
robustness, and stability. However, most types of robot are not yet capable of working
in close contact, while cooperating, and collaborating with each other and with human
beings. Thus, efficiently incorporating them into practical contexts involves unresolved
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challenges. For example, social robots should behave seamlessly, smoothly, and similarly
to humans. This necessitates additional performance indicators measuring their aptness
for social interactions.

Motion planning is of great value in, e.g., search and rescue, Simultaneous Localization
And Mapping (SLAM) exploration, teleoperation, inspection, construction, and architecture.
For example, it could be utilized for searching collapsed buildings that are considered
either hazardous or unreachable. Applications of robots in home and office environments
also abound. Given the fact that teleoperation may become temporarily unavailable, it is
essential to equip a robot with autonomy, where distances are predicted using regression
and ranking with a steer function, and the two-point boundary value problem is solved
using, e.g., non-linear parametric models benefiting from constant-time inferences. Each
motion planning problem aimed at optimizing a robot’s performance needs to be set
up based on the mission’s representative indicators. For example, when it comes to
SLAM, the goal is to determine a sequence of motions that yield a set of viewpoints
suitable for making reasonably accurate models, suffering the least from known obstacles,
such as holes [32,33].

The remainder of this review is organized as follows: First, in Section 2, relevant studies
and taxonomies are reviewed, to clarify the differences and advantages of the present survey
in comparison with similar surveys. Then, a brief overview of a set of motion planning
techniques widely applied to robots in the existing scientific and technical literature is
presented in Section 3. Next, we review some of the most fundamental aspects of their
practical applicability to different types of robot in Section 4. Finally, a list of concluding
remarks and hints for possible future research and development directions are outlined
in Section 5.

Overall, the contributions of the present review are as follows:

• By analyzing the frequency of use of conventional, heuristic, and learning-based
algorithms, we demonstrate the current transition, whereby more and more studies
have recently embraced learning-based models instead of older heuristic approaches,
while the conventional techniques are still being utilized at a similar ratio as before;

• We provide two different categorizations of these algorithms, one based on being
conventional or heuristic, and the other based on being global or local. To the authors’
knowledge, our categorizations are the most comprehensive proposed in the litera-
ture to date, thereby enabling a sound and quick judgment of the role, importance,
and relevance of each technique for a given application;

• By identifying and studying the most common motion planning pipelines of cur-
rent practical significance, we exclude algorithms that are no longer being actively
employed as of the time of writing or that have not yet proven useful in real-world
applications. Considering the large amount of literature being published on the topic
of motion planning every year, the materials presented throughout this survey are of
essential value for readers whose purpose is to grasp an overall understanding of the
field, as opposed to deeply analyzing the mathematical and theoretical backbones.

2. Related Work and Taxonomy

The taxonomies developed to classify motion planning techniques include different
types. In this section, a selection of the most recent reviews will be briefly discussed, to
provide a broad insight into the taxonomies, as well as their relevance and applicability.

From the broadest perspective, collision-avoiding motion planning techniques belong
to two main categories; namely, SBMP methods and trajectory optimization approaches [34].
Historically, each motion planning method can considered classical or heuristic, the former
being represented by RoadMap (RM), cell decomposition, subgoal networks, and potential
fields, as popular examples. These are deemed to be capable of handling simplified motions
and environments only [17]. It is widely perceived that the classical methods are simple,
but their main disadvantages are being computationally expensive or intractable, and they
may fail to tackle uncertainties appropriately [4].
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Motion planning has always been dependent on computer science, aiming at devising
solutions that ensure a good level of reliability, accuracy, and precision. Nevertheless,
one of the predicaments in motion control is that, in modeling, different frameworks are
required for motion planning and obstacle avoidance [27].

Assuming that proper safety considerations are incorporated, robots may improve
various factors, such as mobility, transportation convenience, and efficiency in people’s
daily lives. This applies to numerous types of robots and self-driving vehicles. More clearly,
a system needs to be planned to work smoothly, safely, conveniently, and efficiently, e.g., in
terms of energy consumption, within a dynamic environment that may include objects,
agents, and live beings. Actions are either decided or rethought based on the feedback
received about the present state. For an informative review of motion planning and control
techniques aimed at urban environments, see [35]. By discussing and contrasting the
associated motion models and the extent of applicability of the methods for certain types
of environments and computational resources, we provide insights into possibilities for
improving the system design.

Onboard sensors and networks communicating information between the agents and
the environment, as well as between the agents themselves, can play essential roles in
automating the functionalities of intelligent vehicles. This gives rise to the possibility,
and in a broader context, the necessity, of having agents cooperate for the application to be
viable within complex real-world environments involving Vulnerable Road User (VRU)s.
For a comparative study of motion planning frameworks for intelligent vehicles, see [36].

A survey of 3D path planning techniques for robots was provided in [10]. Algorithmic
motion planning techniques dealing with simple problems, as opposed to heuristic practical
techniques, were reviewed in [3], which offers a theoretical analysis of the methods from
the point of view of computational and combinatorial geometry, as applied to surfaces and
curves, as well as the worst-case asymptotic bounds.

From another perspective, the problem of motion planning can be viewed focusing
on whether the autonomous system targeted is holonomic or nonholonomic. In simple
words, if the number of controllable DoF an autonomous system possesses is the same as
its overall number of DoF, then it is considered holonomic, and if not, it is nonholonomic.
Due to the extremely high level of complications arising in nonholonomic motion planning,
it has attracted significantly more attention. A survey of motion planning and obstacle
avoidance techniques for nonholonomic mobile robots was reported in [27].

Due to the recent increasing interest in autonomous driving, numerous studies have
surveyed the state of the art of self-driving vehicles. An informative review of motion plan-
ning techniques for on-road intelligent vehicles and transportation systems was provided
in [1]. It first explored the related concepts from the point of view of motion planning for
mobile robots and then clarified the nuances and necessary considerations for employing
the inferences in the context of autonomous vehicles.

Another survey of motion planning and control techniques for intelligent vehicles in
urban environments was reported in [35], where different strategies toward mobility model
and various environment structures were discussed, along with the relevant implications
regarding the computational aspects, aiming at providing a more insightful perspective on
the role of choices made at the system design level.

In [36], a review of motion planning for self-driving cars was presented, covering
overtaking maneuvers. A study of the feasibility and optimality of different methods under
various environmental conditions was provided in [37].

Randomized path planning algorithms may be either single-query or multiple-query.
The methods falling under the former category try to solve a single path planning problem
quickly, without performing or requiring preprocessing, while the methods belonging to the
latter intend to solve multiple path planning problems in the same environment. Thus, in
the case of multiple-query path planning methods, data structures containing information
from preprocessing could help achieve a faster performance [38]. The basic Rapidly-
exploring Random Trees (RRT) construction procedure is summarized in Algorithm 1,
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where the EXTEND operation is illustrated in Figure 2. Moreover, the RRT-connect is
shown in Algorithm 2.

Algorithm 1: Basic RRT construction. This algorithm was taken from [38].

1 Function BUILD_RRT(qinit)
2 T .init(qinit);
3 for k = 1 to K do
4 qrand ←RANDOM_CONFIG();
5 EXTEND(T , qrand);
6 end
7 return T
8

9 Function EXTEND(T , q)
10 qnear ←NEAREST_NEIGHBOR(q, T );
11 if NEW_CONFIG(q, qnear, qnew) then
12 T .add_vertex(qnew);
13 T .add_edge(qnear, qnew);
14 if qnew = q then
15 return Reached
16 else
17 return Advanced
18 end
19 return Trapped

Figure 2. The four steps of the EXTEND operation. The search tree is shown in its original form,
i.e., at the time of starting to find a path to a random point (a). Then the nearest neighbors are
determined (b), followed by making a new node (c), and finally, finding the random point (d).
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Algorithm 2: The RRT-Connect algorithm, which was taken from [38].

1 Function CONNECT(T , q)
2 repeat
3 S←EXTEND(T , q);
4 until (S ̸= Advanced);
5 return S
6

7 Function RRT_CONNECT_PLANNER(qinit, qgoal)
8 Ta.init(qinit); Tb.init(qgoal);
9 for k = 1 to K do

10 qrand ←RANDOM_CONFIG();
11 if EXTEND(Ta, qrand) ̸= Trapped then
12 if CONNECT(Tb, qnew) = Reached then
13 return PATH(Ta,Tb);
14 SWAP(Ta,Tb);
15 end
16 return Failure

Optimality guarantees for SBMP algorithms under differential constraints were the-
oretically evaluated and compared in [15], concentrating on drift-less control-affine dy-
namical models, where the concept of converging with probability has been introduced,
resulting in a higher flexibility and convergence rate bounds, in contrast to sure converging.

The nature-inspired approaches, fuzzy logic, Neural Network (NN)s, and hybrid
methods utilized in heuristic-based path planning were reviewed in [4]. Another general
survey of motion planning was provided in [12].

A review of the 3D motion planning techniques widely utilized for underwater,
ground, and aerial robots was conducted in [10], where the exploration mechanisms were
divided into five categories and compared in terms of their implementable areas and
time efficiencies.

The advantages and disadvantages of path planning techniques from the point of
view of special robotic operations were reviewed in [39]. Several approaches to analyzing
the safety and feasibility in path planning were investigated and compared, considering
their role in contexts involving underwater vehicles, Unmanned Aerial Vehicle (UAV)s,
Autonomous Guided Vehicle (AGV)s, and industrial robots, with applications in mountain-
ous areas, warehouses, and production lines. Examples concerning AGVs in medical and
industrial scenarios were specifically discussed, followed by a detailed analysis of a certain
robotic spray painting problem.

As aforementioned, the technical aspects of motion planning problems and pipelines
have been well studied from various perspectives in the existing literature, which seems
to have overlooked the requirements associated with the practical assimilation of these
technologies and strategies. For example, much more could be achieved in the sense of
fast, safe, and reliable communication, cooperation, and collaboration with other agents
and human beings present in the same environment. The taxonomy employed in the
present survey, therefore, concentrates on the application side, aiming at shedding some
light on additional considerations for, e.g., social, mobile, and humanoid robots, as well
as real-world frameworks involving, e.g., self-driving, object manipulation, and multi-
robot teams working in cooperation. From a technical viewpoint, on top of the path
planning and trajectory optimization components of motion planning algorithms, typical
online replanning capabilities are reviewed, along with other topics with a functional
impact, including Demonstration-Based Learning (DBL), scene uncertainties and dynamics,
stability, and computational feasibility.

As the focus of the present review is on incorporating motion planning techniques into
practical contexts, the articles’ suitability and importance were judged according to their
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significance in the field, as measured based on their number of citations, which reflects their
impact on how the relevant applications are evolving. Therefore, the basic list of studies for
this survey consisted of 200 articles, being compiled by searching the keyword “motion
planning” on Google Scholar, to ensure that no prior bias or subjective preference would
affect the type of motion planning algorithms being picked up and explored.

The period of publication for the above list was set to cover the period from 2015 to
2019, so that each article could be deemed to have had enough time to collect citations from
the time of publication, but, at the same time, would not be too old to present notions with
current practical implications. Nevertheless, some of the papers were excluded from the
basic list, due to their lack of direct relevance to present applications with real-world usage.

However, some older studies have also been included where necessary for presenting
theoretical foundations. On the other hand, newer studies have also been covered where
a similar search for articles published after 2019 indicated significantly high numbers of
citations within a short period. More clearly, these papers were considered to have made a
considerable contribution, in terms of either introducing a new approach or showing great
potential to emerge as one.

A summary of the motion planning algorithms reviewed in this survey, along with
their important characteristics, is provided in Table 1, which also lists selected references
for each approach, together with the frequency of the articles covered based on the pub-
lication year. Similarly, a graphical overview is shown in Figure 3. Moreover, the most
significant criteria involved in judging the suitability of each motion planning algorithm
are schematically listed in Figure 4.

Figure 3. A graphical summary of the motion planning algorithms reviewed in the present survey.
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Table 1. A summary of the most essential properties of motion planning algorithms discussed throughout this survey, and their selected references, along with the
number of articles covered for each publication year. The criteria used while judging the advantages and disadvantages of each algorithm are illustrated in Figure 4.

Category Description Advantages Disadvantages Selected
References

Converntional

SBMP

Analyzing alternative trajectories based on path length,
by low-dispersion or random sampling, using, e.g., RRT, RMP,
FMT, FMT*, RRT*, RRT#, RRTX, RRT-Connect, RRT*-Connect,
RRG, CBF-RRT, LBT-RRT, RRT2.0, BTT, BIT*, or MC-RRM

Not requiring a model of the environment, high reliability in
avoiding obstacles, as well as inferring and satisfying dynamic
constraints, the possibility of achieving asymptotic optimality
and probabilistic completeness, simplicity,
and quick performance

Slow convergence, unreliability in cases involving complex
motions or environments, runtime computational heaviness and
intractability, especially in the presence of obstacles, and poor
safety because of randomness

[6,8,15,17,28,32,38,
40–67]

RM

Multi-query search using a pose graph to find feasible motions
based on path length or accumulated pose uncertainty, using,
e.g., cell decomposition, a sub-goal network, PRM, PRM*,
visibility graph, or spanners

Simplicity, probabilistic completeness, asymptotic optimality,
the possibility of parallelization of collision detection over the
RM edges, and reliability in tackling dynamic obstacles
and constraints

Poor performance for complex motions or in unstructured
environments, high runtime computational cost and intractability,
weak safety due to randomness, and the possibility of excessive
growth or failure in the presence of uncertainties

[68–71]

Potential field

Guiding the motion based on repulsion from obstacles and
attraction toward the goal, with respect to the distances, thereby
handling dynamics, as well as utilizing velocity and
orientation information

Real-time performance, simplicity, high safety,
asymptotic optimally

Probabilistic incompleteness, high computational cost and
intractability, unreliability against uncertainties, narrow paths,
and dynamic environments, and the possibility of local minima

[72,73]

Heuristic

Bio-inspired Using multi-query search algorithms, such as bee colony, GA,
PSO, BBO, or the bat algorithm

Handling discrete functions and achieving convergence for
complex problems, and ease of combining with other methods

Probabilistic incompleteness, high computation cost, slowness,
weakness against dynamics and probabilities, and the possibility
of local minima

[13,74–82]

NN Making search trees by predicting the cost, based on dynamics,
heuristics, and obstacles, using ANNs, or LSTM High generalizability Challenging dataset preparation and the possibility of becoming

stuck in local minima [16,83–86]

Learning-based

DBL

Using human requests based on a kinetic model to learn
near-optimal heuristics representing the operator’s choice from
path planning, and making cost maps and features, possibly
combined with RL or IRL

Handling unseen or unstructured environments by generalizing
from primitive motions to more sophisticated ones,
without explicit task constraints, and predicting human motions
for improved speed

Requiring large datasets and powerful online adaptation [31,87–96]

DL Automatic selective sampling using, e.g., OracleNet, DeepSMP,
MPNet, GANs, or CoMPNetX

Theoretical worst-case guarantees, real-time performance,
and handling higher dimensionalities, as well as cluttered or
unfamiliar environments

Challenging requirements for training datasets [97–101]

RL
Sequential decision-making through LPV state-space
representations, using, e.g., PPO, TD3, EASE, SAC-based
methods, DDPG, or other dual architectures

Actively exploring the domain, handling unfamiliar
environments and high-dimensionalities, and tackling dynamic
obstacles accurately by identifying their boundaries and
distances to the robot

Requiring high numbers of samples, training difficulties due to
convergence and robustness issues caused by ambiguities
between Cartesian and joint spaces, continuous workspaces,
and redundant DoF

[102–114]

Frequency by year

<2015 2015 2016 2017 2018 2019 2020 2021 2022 2023 Total

17 29 37 40 28 31 7 11 8 5 213
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Figure 4. A schematic list of the main criteria considered while evaluating the suitability of motion
planning algorithms, where green and red boxes indicate positive and negative factors, respectively.
Computer science and applied mathematics constitute the theoretical backbones of motion planning,
where the and the goal is to find the optimal path from the starting point to the goal using a local or
global planner, within a dynamic or static environment.

3. Motion Planning Pipelines

Motion planning is part of a more general problem referred to as Task and Motion Plan-
ning (TMP), which typically takes place under partial observability. A symbolic decision
tree is employed, which may undergo additional branching based on new observations.
Independent optimization of the symbolic trajectories is performed using approximate path
costs, followed by picking up the best policy and optimizing a joint trajectory tree [115,116].
In what follows, the essential aspects of the most common approaches to motion planning
in robotics will be concisely discussed.

3.1. SBMP

Not requiring an explicit model of the obstacles present in environments, SBMP algo-
rithms utilize a collision-checking module, which analyzes the practicability of alternative
trajectories. Through connecting a set of collision-free configurations in space, they build a
graph of feasible trajectories [40]. On the other hand, the set of connected edges thought
to lead to the shortest path from the initial to the final configuration is called the shortest-
path-to-goal sub-tree [41]. The continuity of the algorithm depends on the configuration
space’s topological complexity [117].

A fundamental strength of data-driven SBMP algorithms arises from their relatively
low reliance on explicit mathematical models, which are not available from the outset in
most practical scenarios [42].

RRT is a well-known example of this type of motion planning algorithm. It has en-
gaged hundreds of researchers, each of whom has tried to verify and demonstrate its
applicability to an application of a certain kind. Consequently, investigating the perfor-
mance of RRT has been the subject of a substantial number of studies, where making
modifications aiming at improving the speed, fluency, accuracy, and stability were among
the main factors in evaluating the resulting functionality [43].

SBMP methods mainly depend on uninformed path sampling procedures, whose
examples include low-dispersion and random sampling. Thus, the information required for
collision testing needs to be accessible to the planner. However, this might not be feasible
in many scenarios [44].
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Occupancy maps are commonly associated with SBMP methods. Nevertheless, they
suffer from the deficiency that the resulting cost estimation is limited to the search heuristic
utilized over the unknown environment. Thus, only intermediate objectives along the
frontiers can be considered [118].

Multi-Component Rapidly-exploring RoadMap (MC-RRM) is a SBMP motion planning
method that aims to optimize a learned cost metric. It is useful for incrementally computing
a motion plan according to DBL [31], which will be further discussed in Section 3.5.

RRT* and Rapidly-exploring Random Graph (RRG) are examples of algorithms that
present slight differences with RRT. They lead to asymptotic optimality but are slower than
RRT. Performing continuous interpolation between the fast RRT and its asymptotically
optimal alternatives, with a cost function representing the path length, brings the ability to
quickly solve path planning problems, while maintaining asymptotic optimality. Taking
advantage of a sub-graph of the RM returned by RRG and an auxiliary lower-bound graph,
a parameter may be utilized and adjusted to specify how similar to RRG or RRT* the
behavior of the algorithm needs to be.

For example, Lower Bound Tree (LBT)-RRT is an efficient single-query SBMP method
taking advantage of the above strategy. It offers an asymptotically near-optimal solution
within an approximation factor 1 + ϵ of the optimal solution. It makes use of an approxi-
mation factor, which if set to 1 or infinity, makes the algorithm behave like RRG or RRT,
respectively, and for any other value, yields a compromise between the speed of RRT and
the path quality, i.e., asymptotic optimality, of RRT*. The LBT-RRT algorithm applies to
problems of DoF ranging from 3 to 12 [45]. Moreover, probabilistic belief networks result-
ing from pose SLAM could be utilized as belief RM for optimal collision-free trajectory
planning by searching through the pose graph, regardless of the map reference frame, and
considering the accumulated robot pose uncertainty as one of the criteria [46,68].

On the other hand, running multiple independent RRTs could be considered in a
context where the aim is to achieve asymptotic convergence to a minimal Collision Prob-
ability (CP) [6]. For complex motion planning problems that are in high-dimensional
configuration spaces or for problems that involve a high number of obstacles for which it is
computationally expensive to check collisions, lazy dynamic programming recursion [47]
on a prescribed number of samples that have been probabilistically determined helps
deal with the problem, through dividing it into smaller sub-problems, as well as allowing
skipping collision-checks when evaluating local connections, thereby making the problem
more tractable. Moreover, to further improve efficiency, the incremental growth of the tree
of candidate paths can be one-pass, i.e., it could take advantage of a heapsort technique to
determine the appropriate sample point systematically, and consequently, grow only in the
outward direction, thereby avoiding backtracking over sample points that have already
been evaluated.

To improve mathematical flexibility, aiming at making it possible to impose a lower
bound on the convergence rate, instead of almost sure convergence, the concept of conver-
gence in probability can be considered. The Fast Marching Tree (FMT)* algorithm is a viable
example of such a strategy, which can offer asymptotic optimality, while still converging
on the optimal solution faster than alternatives such as Probabilistic RoadMap (PRM)*
and RRT*. Under a set of considerations for the configuration spaces and tuning param-
eters, a lower bound of the order O

(
n−1/d+ρ

)
can be achieved for the convergence rate,

with n, d, and ρ being the number of sampled points, the dimension of the configuration
space, and an arbitrarily small constant, respectively. It has been shown that the FMT*
algorithm is asymptotically optimal, even in cases where a non-uniform sampling of the
configuration space is taken into account, a general cost function is used instead of the
prevalent path length, or the connections are determined according to the number of nearest
neighbors, e.g., by using the k-Nearest-Neighbor (kNN) algorithm, instead of considering
a predetermined connection radius [28].

Probabilistic SBMP algorithms, such as PRM and RRT, have proven extremely suc-
cessful, mainly because of their favorable mathematical advantages, including probabilistic
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completeness and asymptotic optimality, as well as their practical usefulness. Their prop-
erty of being probabilistic stems from the notion that they find a path through connecting
independently and identically distributed (i.i.d.) random points within the robot’s config-
uration space. However, they also entail drawbacks. For example, they may not be able
to guarantee safety and do not allow offline computations, which could otherwise help
alleviate the runtime computational intensiveness.

To counteract the above phenomena caused by the randomness of probabilistic SBMP
methods, one may think of ways to incorporate deterministic characteristics into the system.
Using deterministic low-dispersion sampling sequences, along with a suitable configuration
of tuning parameters, PRM leads to deterministic asymptotic optimality. The convergence
rate, which is represented by a sub-optimality factor, may be controlled through an upper
bound, in terms of the l2-dispersion of the sampling sequence and PRM’s connection radius.
It is worth mentioning that l2-dispersion stands for how well a set of points covers the
space. Geometrically, this represents the largest Euclidean ball that does not touch any of
the points.

The above framework is associated with a space and computational complexity that
could be arbitrarily close to O(n), which is the theoretical minimum, where n is the number
of points in the sequence. It is possible to achieve similar performances, i.e., with reasonable
success rates and path costs, on differentially-constrained problems [48].

In dynamic environments, performing offline computations to obtain prior information
may be impossible. Therefore, the ability to carry out fast replanning, while maintaining
asymptotic optimality under a single-query framework, is crucial. As soon as it is found
that the appearance or motion of an obstacle will make it collide with the robot while
following the shortest-path-to-goal sub-tree, replanning needs to be performed to modify
the graph, such that collisions are avoided. Older single-query replanning algorithms
performed the task in sch a way that the branches disconnected as a consequence of this
operation are pruned away, followed by regrowing parts or all of the graph.

However, being able to transfer information quickly is essential for a timely reaction
in dynamic environments involving unpredictable changes in the presence or location
of obstacles. Thus, the computation time could be considerably enhanced by trying to
modify and repair the existing graph instead. This may be achieved by making use of a
fast graph rewiring cascade, which incorporates new information and accordingly updates
the shortest-path-to-goal sub-tree.

Moreover, the graph and the shortest-path-to-goal sub-tree could be built in the state-
space of the robot itself, to ensure that the motion complies with the kinematics of the robot,
and gradually improve throughout the navigation. The RRTX algorithm uses this strategy.
It offers probabilistic completeness. RRTX does not perform global and local planning
separately, but it is still suitable for real-time performance in dynamic environments, due
to its capability of quickly reacting to the emergence and movement of obstacles.

A major factor affecting the competence of an algorithm to quickly react to changes
in obstacles is the information transfer time, which is the amount of time the algorithm
needs to transfer information regarding a decrease in the cost associated with a node to the
relevant parts of the graph. The time required to transfer information regarding an ϵ-cost

reduction to a graph of size n is O(n log n), Ω
(

n
(

n
log n

)1/D
)

, and ω
(

n log2 n
)

for RRTX,

RRT* and RRT#, respectively. These are all asymptotically optimal single-query algorithms.
RRT and RRT* have a O(log n) amortized iteration time in static environments. This

is ω
(

log2 n
)

in the case of RRT#. For RRTX to achieve a O(log n) amortized iteration time
in static environments, each node can bear a set of O(log n) expected neighbors and the
graph may retain ϵ-consistency for a prescribed ϵ [41].

Combining the virtues of some of the aforementioned randomized algorithms, new
ones such as RRT*-connect have been devised for solving single-query problems using a
bidirectional search. They are faster than RRT* but , despite RRT-Connect, are capable of
converging to the theoretical optimum, i.e., offering asymptotic optimality. Such a strategy
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is particularly useful for a faster performance in applications such as autonomous driving
in complex environments [49].

Asymptotic optimality or near-optimality of a broad category of SBMP algorithms
depends on the connection radius around a configuration q, which is expected to be
connected to all configurations inside the ball. To accelerate the functionality, in contrast to
algorithms operating based on connecting to the k nearest neighbors, the foregoing notion
could be adapted to non-Euclidean spaces. This is often seen in practical applications [50].

Alternatively, motion planning may be performed using the Monte Carlo algorithm,
based on criteria such as Shannon entropy or the standard deviation of the estimated belief
for the source location [8].

Despite the RRT algorithm, RRT2.0 is asymptotically optimal. Avoiding Boundary
Value Problem (BVP), which is required to establish connections between the nodes within a
tree for algorithms such as RRT*, FMT*, and Batch-Informed Trees (BIT)*, it utilizes forward
propagation, where every point in the configuration space is represented in an augmented
fashion through supplying the associated cost-to-come, which represents the aggregation
of the costs incurred by the edges constituting the path. RRT2.0 offers optimality under the
assumption that the objective function and the dynamics are Lipschitz-continuous, where
a trajectory with positive clearance from the obstacles and a piecewise-constant control
function can be approximated [51].

When it comes to SBMP algorithms in the Euclidean space with uniform random
sampling, e.g., in the case of methods such as BoTtleneck Tree (BTT), FMT*, and RRG,
as well as PRM-based methods, given n samples and d dimensions, connection radiuses
less than a critical value proportional to Θ

(
n−1/d

)
lead to failure of the algorithm in

returning asymptotically (near) optimal results. For greater values, the probability of
success will be at least 1−O

(
n−1). Additionally, instead of Θ(log n) induced by a radius

of order
(

log n
n

)1/d
, only Θ(1) connections will be required [52].

Among notable KP algorithms, Kinodynamic motion Planning by Interior-Exterior Cell
Exploration (KPIECE) has a relatively high success rate in finding time-optimal solutions,
and Synergistic Combination of Layers of Planning (SyCLoP) yields comparatively high
levels of power-optimality [11].

Although numerous SBMP strategies offer asymptotic optimality, they may suffer
from a slow convergence, which could be alleviated through intelligence contributed by
certain heuristics aimed at faster exploration. More clearly, once a tentative solution is
found, further sample points can be taken from a collection of points commonly referred to
as the “informed set”. The heuristic needs to be chosen paying due attention to providing a
reasonable estimate of the cost associated with the solution. Further focusing the search is
possible based on metrics such as cost-to-come, thereby determining more limited point
sets such as the “relevant region” proposed in [53].

3.2. Trajectory Optimization

Although SBMP algorithms may be able to offer feasible solutions to the problem
under high-dimensional configuration spaces, the resulting solutions might entail unde-
sired properties, such as unnecessary movements or jerk, which is further worsened in the
presence of tight navigation constraints or sparsely scattered obstacles. As a remedy for the
foregoing shortcomings, by analyzing the problem from a probabilistic viewpoint, smooth
continuous-time trajectories can be obtained as samples from a Gaussian Process (GP) [119].

Trajectory optimization may target criteria such as the time required to follow the tra-
jectory, velocity, jerk, curvature, or a combination of these, while the step-time is optimized
simultaneously [46].

Complex motion planning tasks for many-DoF robots can be handled using functional
gradient algorithms, which are capable of finding an optimal, smooth trajectory within a
search space, while also taking into account geometric requirements such as smoothness.
They rely on a finite parameterization of the trajectories represented by a list of waypoints.



Machines 2023, 11, 722 15 of 44

It is worth noting that the performance may suffer from drawbacks such as an extremely
small step size or a high number of iterations, which can be alleviated in adaptively lower
dimensions through avoiding waypoints by representing trajectories as linear combinations
of kernel functions within Reproducing Kernel Hilbert Spaces (RKHSs).

In the above context, optimization may be performed using different kernels such as Ba-
sis splines (B-splines), as well as Laplacian or Gaussian Radial Basis Functions (RBFs) [120].
Splines are useful for reducing a problem’s dimensions and the number of constraints,
where solving the problem with a receding horizon helps handle modeling errors and envi-
ronmental uncertainties [121]. The occupancy gradients may then be optimized considering
an update rule defined based on a stochastic process [34,122]. As a relevant point, an online
adaptation of the aforementioned plans based on experience requires differentiation [23].

Numerous adaptive bio-inspired strategies such as the bat algorithm [74] also exist,
which may be utilized for optimal motion planning.

In higher-dimensional state spaces, trajectory optimization can also be combined
with other approaches to locomotion, such as graph search, which leads to high flexibility,
dynamical feasibility, and probabilistic optimality [123].

Piecewise linear paths may be further improved in terms of curvature, tangential or
acceleration continuity, and boundedness, which are important for avoiding undesired
phenomena such as vibrations, as well as confined chord error, by utilizing interpola-
tion and performing optimization for the Curvature Variation Energy (CVE). Further-
more, additional computational costs can be alleviated using mixed linear and quartic
Bezier segments [124].

Various criteria may need to be considered and accounted for while formulating a
trajectory optimization problem. These include path continuity, infinite-norm velocities,
the joints’ maximum angles and velocities, and the possible drifts caused by redundancies.
For example, the constraints arising from the requirement that the speeds amount to zero
at the end of a task may be dealt with using frameworks such as Infinity-Norm Velocity
Minimization (INVM), Repetitive Motion Planning (RMP), or linear variational inequalities.

3.3. Bio-Inspired Algorithms

Biological structures found in nature have been the source of inspiration for various
optimization algorithms. Examples include the movement of ants and the work of honey
bees, who do not normally interfere with each other’s motion [78–80].

Genetic Algorithm (GA)-based approaches have been widely utilized in the literature
for route design problems, due to their capability for handling discrete functions. Particle
Swarm Optimization (PSO) frameworks are also inspired by biological patterns derived
from the social life of birds and their coordinated movements [75,82].

Different types of objective functions can be optimized using such bio-inspired meth-
ods. However, they are not capable of producing high-quality solutions in real time,
because of their notoriously high computational cost. Furthermore, they cannot tackle
dynamic environments and probabilities, because they typically return only one solution
and are prone to becoming trapped in local minima [81].

Nevertheless, they were still the foremost category of optimization techniques utilized
in motion planning at the time of the widespread deployment of Convolutional Neural Net-
work (CNN)s, which have dominated the field since the year 2015, and more conspicuously,
since 2020 [5,125]. This will be discussed in more detail in Section 3.5.

3.4. Online Replanning

Despite the prior considerations and predictions, actual performance is usually af-
fected by various factors that prevent a robot from correctly following the trajectory planned.
Fixing these issues requires performing execution-time replanning. On the other hand,
there may be occasions where the newly captured sensory information renders the previous
inferences invalid.
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Other factors, such as uncertainties in the robot’s kinematic model, sensor noise,
and the obstacles’ motion reinforce the necessity and importance of online replanning.
A robot’s success in carrying out its mission and the operation time are greatly dependent
on its capability for replanning, especially in environments involving unstructured terrain
or extreme occlusions.

The manner in which such problems are alleviated also depends on the source and
cause of the uncertainties, among other factors. For example, a neural dynamics design
may be employed through a pseudo-inverse-type formulation, to alleviate the impacts of
time-varying noise [126]. Parallel instances of the same planner may be utilized to search
through numerous heuristic weights and update them, thereby achieving fast replanning.
High-Frequency Replanning (HFR) performs this task while letting the robot carry out the
prior decided plan at the same time. Stochastic nonlinear dynamics are typically linearized,
for the noise and uncertainties to become tractable. Assuming the availability of sufficient
computational resources, asymptotic optimality may also be achieved [54,55].

3.5. DBL

In numerous motion planning tasks, the ideal behavior is supposed to be the that
presented by a human expert. However, due to the complexity of deriving formal de-
scriptions of the reward functions underlying expert behaviors systematically, a suitable
strategy consists in employing nonlinear Inverse Reinforcement Learning (IRL) based on
maximum entropy. In other words, it tries to extract approximate reward functions, which
however may not match the inherent unknown one perfectly, leading to a similar behav-
ior under similar conditions [87]. This can be accomplished by making cost maps from
demonstrations. For example, expert driving behaviors in a complex urban environment
can be learned based on a large number of demonstrations. This may be achieved using
raw sensor data that are converted to cost maps and features directly, without requiring
manual interference or processing. Using a Fully Convolutional neural Network (FCN)
makes it possible to handle large datasets and complex behaviors efficiently [88].

Personal robots could also learn how to plan their motions to perform simple house-
hold tasks, such as cleaning the surface of a table or moving a spoon of sugar from a bowl
to a cup, based on demonstrations [31]. Raw sensor data captured from expert demon-
strations, e.g., 2D laser range findings, could be learned and directly mapped to robotic
motion plans represented in the form of steering commands, in an end-to-end fashion.
The foregoing procedure would need to be performed using supervised learning aimed at
an existing motion planner, which may be employed for seen or unseen environments of a
virtual or real nature, using e.g., the grid-based global approach [89].

In SBMP, task constraints aimed at specific missions, e.g., holding a glass of water
upright to avoid spilling, need to be explicitly programmed. However, DBL provides the
possibility of automatically deriving task constraints, which may be hard to express or
determine manually, from the principal patterns representing the constraints, entailing less
variation across different demonstration instances [31].

Despite these challenges, predicting human motion is feasible, at least under pre-
defined task descriptions, such as single-arm reaching motions for manufacturing, and
this is very beneficial for fast and efficient performance. Assumptions include the fact
that human motion is optimal with respect to an unknown cost function and that online
iterative replanning is capable of capturing the adaptation of a human’s motion to that of a
robot. Upon detecting sample motion trajectories, inverse optimal control may be utilized
to learn the aforementioned cost function based on a human kinetic model using Stochastic
Trajectory Optimizer for Motion Planning (STOMP) [90]. Safety requirements may be
ensured by applying upper bounds to the collision probabilities based on the Gaussian
distributions according to which the predicted motion is represented [91].

On the other hand, the operator’s intentions can appear in the form of explicit requests,
which need to be disambiguated and interpreted in terms of specific motion commands,
through variable grounding based on the likelihoods of valid choices within a goal re-
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gion [92]. For more complicated tasks, user preferences in terms of, e.g., the desired
temporal or spatial constraints, may be learned and iteratively revised based on the choice
of trajectory among the existing options [93].

In various contexts, a robot’s performance may be affected by its capability for gen-
eralizing from basic motions and actions to more sophisticated ones. This would be of
substantial benefit in terms of having the robot take on responsibilities it has not been
specifically programmed to do. It would also make the robot adaptable, significantly
beyond carrying out repetitive tasks, which is not sufficient for operating in unstructured
environments. A promising approach to the foregoing task consists in combining kines-
thetic user guidance with Reinforcement Learning (RL). More clearly, once the features of
the primitive actions are captured based on the screw transformation of the end-effector,
they are mapped and employed to compose the reward function for RL by training a new
motion planning policy. The system developed in [96] takes advantage of this strategy and
offers the option of requesting further learning of basic motions if the tasks available from
the outset do not suffice for considering the new constraints. A more detailed discussion of
the role of RL in motion planning will be presented in Section 3.7.

3.6. Deep Learning

As aforementioned, SBMP may incur a significantly high computational complexity,
which grows excessive with increased problem dimensionality. One way to alleviate
the foregoing shortcoming is to sample the configuration space selectively and focus
only on regions that stand a higher chance of leading to the optimal path. Adaptive
sampling may be performed using either manual heuristics or learning. Nevertheless,
the former cannot handle higher dimensionalities and is not suitable for cluttered or
unfamiliar environments [97].

Deep Learning (DL) networks, however, do not suffer from such drawbacks and
may be trained to produce heuristics. They are capable of creating sample nodes. This
enhances the computational efficiency and helps accommodate higher dimensionalities,
where the resulting hybrid approach retains theoretical worst-case guarantees. DL can
handle kinematic constraints and produce near-optimal trajectories in real time.

The stepping Recurrent Neural Network (RNN) OracleNet [99], Deep Sampling-based
Motion Planner (DeepSMP) [97], Motion Planning Networks (MPNet) [98], Generative
Adversarial Network (GAN)s [100], and the gradients-based Constrained Motion planning
Networks x (CoMPNetX) [101] are examples of NNs that have been successfully utilized
for DL-based motion planning.

For example, DeepSMP consists of a contractive autoencoder that uses point clouds
to encode workspaces, followed by a stochastic deep feedforward NN with dropout that
recursively creates node samples for an optimal end-to-end path based on the starting and
goal configurations.

Nevertheless, preparing suitable datasets enabling the network to achieve this is
typically not straightforward. This may be alleviated by decreasing the number of samples
involved in training through active learning, where only certain samples chosen by the DL
network itself are supplied in each round of training [5,97,98].

3.7. Reinforcement Learning

Similarly to DL, RL, which is aimed at sequential decision-making, can be employed
for motion planning in unfamiliar environments. It can resolve high-dimensional problems
involving dynamic obstacles by taking into account their location over a limited number of
timestamps within the past horizon [108].

RL methods such as the Proximal Policy Optimization (PPO) algorithm [105] actively
explore the domain. They are more accurate than supervised learning approaches, which
lack data on the boundaries of obstacles [112]. However, RL suffers from the shortcoming
that the number of samples needed for training may be too high. This undermines their
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practical usefulness. Nevertheless, an efficient reward function may help reduce the amount
of data required [5,104].

Examples of the RL-based algorithms utilized in motion planning include the twin
delayed deep deterministic policy gradient (TD3) [107] and Exploitation of Abstract Sym-
metry of Environments (EASE). The latter relies on locally adopting spatial symmetry
abstractions obtained from naïvely trained agents [108].

Soft Actor Critic (SAC)-based methods constitute another category of such approaches,
where optimizing several NNs based on maximum entropy [110] can be applied for an
improved sampling efficiency. Moreover, Prioritized Experience Replay (PER) enables
a more efficient use of data for training by changing the weights of samples based on
Temporal-Difference (TD) error. Nonetheless, it should be noted that PER is computa-
tionally expensive, and inefficiently adjusting its hyperparameters may undermine the
performance of RL [111,113].

Other schemes, such as Deep Deterministic Policy Gradient (DDPG), have also been
successfully deployed [112]. Meta-learning can be accompanied by experience replay separa-
tion based on a success/failure discrimination within separate buffers randomly sampled at
a ratio determined through NN-based learning [111]. Hindsight Experience Replay (HER) is
another technique for utilizing training data more efficiently [106].

As a common approach to motion planning based on RL, a Linear Parameter Vary-
ing (LPV) state-space representation can be used to tackle dynamic obstacles. More specifi-
cally, a switching mechanism is embedded within a dual architecture, where the mode is
determined based on the distance between the robot and the obstacles. The two modes
may differ from each other in terms of, e.g., whether or not the joint positions are directly
controlled, whereby the RL planner takes control when obstacles are perceived to have
become too close to the robot [109].

As aforementioned, training RL models is challenging in terms of convergence and
robustness. The reasons for this include ambiguities in the relationship between the
Cartesian and joint spaces, continuous workspaces, and redundant DoF, which result in
unnecessary explorations [107]. This could be alleviated using a NN to produce an initial
policy for guiding the training of the RL framework [105].

3.8. Scene Uncertainties and Dynamics

Scene characteristics constitute one of the main factors influencing the performance of
motion planning frameworks. This signifies the importance of finding out unknown or un-
expected phenomena, and updating existing information regarding the environment.This
may be acquired using an autonomous system’s sensory equipment from the rest of the
autonomous systems available within a reasonably close vicinity, through communication
networks connecting them via Vehicle-to-Vehicle (V2V) protocols, or from management
centers, via Vehicle-to-Infrastructure (V2I) protocols [36]. Doing so requires further incor-
poration of transportation engineering concepts [37].

A principal component of such information concerns obstacles and their properties,
including their position and shape. These may be dynamic or even nonexistent from the
point of view of the planner, until they appear. In cases where the constraints, e.g., the
ones related to the obstacles, need to be captured and dealt with in real time, i.e., during
the runtime, they may emerge in an even more complex form, especially when affected
by sensing noise [127]. If the terrain is harsh or uneven or involves a clutter of static or
dynamic obstacles, this can result in an unstructured environment [20].

The navigational complexity of a topological space may be evaluated based on the
underlying homotopy [128]. Uneven or irregular surfaces are often encountered in the
course of carrying out search and rescue tasks and conducting space missions. They
require properties such as modularity, with which the robot adjusts its configuration
according to the terrain properties. The terrain can be extremely rough and involve various
obstacles, in which case, the area reachable by the robot is significantly limited, demanding
the generation of a higher number of locomotion gates, e.g., walking or crawling, and
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thereby enabling the robot to switch between different motion primitives, considering the
requirements arising from the number and properties of obstacles [56].

Motion planning for modular robots can greatly benefit from elementary motion
primitives. This may be realized using locomotion generators, leading to flexibility in the
shape of the robot, the environmental conditions, and the number of modules, where the
necessity for reconfiguration is also obviated [56].

Terrain dynamics can be affected by media penetration, resulting in deformations
appearing as, e.g., dirt or sand. This negatively affects the reliability of maneuvers involv-
ing walking or jumping. Closed-loop dynamics may be modeled using an added-mass
description of the grain motions, taking into account the hydrodynamic and hydrostatic
effects [129].

Foothold and motion planning could be coupled using a parameterized dynamic
model, to efficiently analyze, at whole-body level, torque and kinematic limits, as well as
the friction cones, at the same time as trajectory optimization. This enables considering the
effect of topology based on terrain normals [130].

Irregular surfaces also result in complications such as stochastic bouncing and non-
linear gravity, which may be handled by, e.g. solving Lambert’s orbital boundary value
problems, followed by propagating model and control uncertainties to compute landing
distributions, which are, in turn, utilized to figure out an energy- or time-optimal hop-
ping strategy based on a policy gradient. The final step consists in performing sequential
planning through a Markov decision process using Least Squares Policy Iteration (LSPI),
leading to an off-policy, off-line, and sample-efficient RL strategy [114].

Approximate Clearance Evaluation (ACE) is particularly useful for handling uneven
terrain, where the terrain height bounds are utilized to find out the state bounds of articu-
lated suspension systems, e.g., in the case of planetary rovers, thereby evaluating the worst
possible safety indicators based on constraint violation levels. Although ACE may lead to
extreme conservatism, a newer variant proposed in [131] has a favorable computational
cost and alleviates the pessimism, while still retaining empirically estimated probabilistic
safety guarantees based on the distributions calculated over the states.

Additionally, avoiding skidding and slippage requires proper modeling of the surface
and producing sufficient amounts of torque to carry out curvilinear motions based on
energy-efficient motion planning. Possible changes to the surface need to be accounted for
and incorporated into the model using online learning through, e.g., NNs and Extended
Kalman Filter (EKF) for the dynamic and kinematic aspects, respectively. The former has
importance in estimating the pose, and the latter in determining the constraints on the turn
radius and for producing estimates of energy consumption [20,83].

Alternatively, reasoning about the contact and motion may be handled simultaneously
through Mixed-Integer Convex Programming (MICP), which is effective in tackling other
complications such as uneven terrain, friction, and certain types of non-convexity [132].
Similarly, the motion within a free space can evolve toward motion while in contact by
letting the tree grow in the combined space through factoring it into a belief over the
configuration and the contact state [133].

Motion planning for legged robots is generally easier than for wheeled robots, due to
the fact that they provide a wider range of mobility. Nevertheless, even in the case of legged
robots, duly accounting for all the conditions and uncertainties arising from the terrain’s
unevenness is not straightforward, since it requires full-body motion plans made within a
high-dimensional space based on the limited information available about the terrain [130].

It is also worth noting that collaboration with human operators may make a significant
contribution in handling uncertainties, e.g., occlusions disrupting the robot’s perception
of the target object to be grasped. This can take place either by providing knowledge or
taking part in the execution of higher-level tasks, where a tree-shaped set of feasible plans
is created using geometric reasoning [134].
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3.9. Stability

Uncertainties of various types, including disturbances, inaccuracies of parametric
models, and environmental parameters, as well as complex geometry, may affect the per-
formance of a motion planning algorithm [127]. Therefore, path planning and trajectory
optimization may need to be followed by feedback control, to ensure stability and to over-
come the nonlinear dynamics and uncertainties. The output of such a module is a control
policy that stabilizes the system, from a bounded set of initial conditions to a goal state.
As a result, a tree of trajectories could be created and stabilized using feedback.

By exploring a bounded set based on random samples, the possible necessity of
deriving additional trajectories can be determined. Subsequently, funnels can be found
iteratively, until they cover the bounded set, meaning that the control policies can stabilize
the bounded set to the goal. The task of approximating the funnels can be performed using,
e.g., sums-of-squares verification or through sampling followed by falsification based on
simulation [57]. On the other hand, various post-processing procedures can be employed
for smoothing and improving a trajectory, as well as replanning to avoid dynamic obstacles
using model-based predictions [43]. For example, linear-quadratic-Gaussian controllers
yield reliable reference-tracking functionalities [58].

Consideration of the dynamics of a problem can be realized by performing asymp-
totically optimal KP using two-point BVP-solvers based on optimization and numerical
optimal control methods, such as Sequential Quadratic Programming (SQP) [46]. Artificial
potential fields realized through, e.g., Improved Rapidly-exploring Random Trees (I-RRT)*
constitute a viable alternative [135–137].

With information about the distance from obstacles, using the Monte Carlo (MC)
algorithm, CP may be approximated with asymptotic correctness, which enhances the
chance of finding a feasible plan.The CP can be found for each iteration for the estimated
optimal path, followed by inflating or deflating the obstacles to make the CP reach a
target value. Statistical variance-reduction techniques such as Control Variates (CV) and
Importance Sampling (IS) contribute to a faster performance or real-time functionality
through parallelization [58].

The results of CP approximation need to be transformed to the configuration space,
to estimate the location of the points with the highest CP. This could be performed using a
Newton method to determine the closest point that may cause a collision [6]. For safety-
critical tasks, Control Barrier Function (CBF) can be used to incorporate obstacle-avoidance
constraints through Quadratic Programming (QP) [59]. It is also possible to devise a
random search tree reconstruction framework by predicting the cost using NNs. This
results in asymptotic near-optimality [84].

Non-convexities in the cost functions and obstacles, as well as control and state
constraints, are handled in energy-optimal motion planning by decomposing the decision
variables and creating a convex representation of collision constraints. This results in two
QP problems, accommodating the decoupled Linear Time-Invariant (LTI) dynamics in each
axis. Assuming that an initial feasible trajectory exists, the foregoing problem may be
solved iteratively using an Alternating Quadratic Programming (AQP) algorithm, which
converges to a homotopic local optimum with respect to the initial guess faster than the
MICP alternatives [138].

Applying splines to the resulting paths, to generate a possibly complex shape while
maintaining parametric continuity, is another approach for improving the quality, in terms
of, e.g., reduced lateral accelerations, enhanced robustness against disturbances, or im-
proved tracking performance. In autonomous driving, additional benefits may include
enhanced passenger comfort, as well as reduced tire wear and mechanical failure [17].

3.10. Computational Feasibility

Physics-based motion planning, state sampling, and state steering are computationally
expensive, due to the costs of state propagation of real-time replanning performance [20],
especially for high-DoF robots [119]. High-dimensional dynamics and external disturbances
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lead to extremely high computational costs, which are often achieved for efficient, real-
time planning by sacrificing dynamical feasibility and safety. Various efforts have been
made to come up with a compromise between safety and planning efficiency, resulting in,
e.g., the modular Fast and Safe Tracking (FaSTrack) system [139], which can be used for
tracking the multi-dimensional paths devised by different trajectory optimizers. On the
other hand, using factor graphs and GP interpolation has been widely reported to improve
the computation time required for making inferences [122].

Moreover, the computational load of creating a funnel of trajectories may be allevi-
ated using convex optimization, through sums-of-squares programming [127]. For TMP
algorithms, this could be leveraged by enabling add-and-remove constraints on motion
feasibility at the task level, a successful example of which is the Iteratively Deepened Task
and Motion Planning (IDTMP) proposed in [140], offering probabilistic completeness and
scalability for plans involving several objects.

PRM* is known to minimize the computational cost of generating RMs. Nevertheless,
it may be slow, and result in excessive growth, undermining online query resolution and
storage. Incremental sparse sub-graph-based approaches, referred to as spanners, have
alternatively been proposed with asymptotic near-optimality. They yield a lower path
quality but alleviate the aforementioned shortcomings, and improve the RM density [69].
Examples of computationally heavy functions that increase overheads include checking for
nearest neighbors and possible collisions in sampling, while using, e.g., RRT. This may be
obviated by utilizing the CBF-RRT algorithm instead.

It has been stated that by discretizing the reachable state space and solving it numeri-
cally, the state sampling and nearest-neighbor search speeds can be improved. The former
can be performed online and results in a reachable map, which reduces the number of states
involved in sampling, as well as unsuccessful motion validity check queries. Moreover,
states that are not reachable or can be reached only after a certain horizon are excluded from
the nearest-neighbor search [60]. On the other hand, for problems such as motion-specific
self-calibration, using EKF may accelerate the process of approximating model parameters
or dynamics, to achieve the maximum belief informativeness based on a prescribed budget.
This is beneficial in SBMP, which is required to react to certain circumstances promptly.

For a set of robots moving in parallel and with separability, assuming that each of
them is expected to move at most d units from their initial location, the distance traveled
by each robot is O(d), i.e., constant stretch, meaning that a constant-factor approximation
is possible for the optimization problem. Moreover, NP-hardness can be maintained, even
if the robot positions are restricted to a regular grid. If separability is not guaranteed,
e.g., for densely-packed disks that may not be well separated, the stretch factor increases to
Ω
(

N1/4
)

, and with certain considerations, to O
(

N1/2
)

[141].
The distance metric is not necessarily Euclidean, and this choice greatly affects the

computational cost of RRT-based motion planning. It also influences the path quality and
space coverage. Determining this appropriately, e.g., based on learning, is essential for
achieving a reasonable computational cost [32].

Exploiting data-driven approaches for predicting the map in an unknown environment,
as opposed to relying on frontier selection heuristics, may help expedite planning [118].
In numerous applications requiring dense mapping of an unknown environment, e.g., for
agile robots possessing visual sensors and constrained embedded computational capabili-
ties, leveraging the computational cost may be accomplished by using only parts of the
existing sensory information and combining the mapping, i.e., perception, and planning
problems. In this manner, by switching between the two iteratively, each of them is updated
based on the results of the other [142].

When it comes to problems involving human motion tracking, it is basically assumed
that the subject moves according to a plan devised with a cost function. However, such
algorithms are prone to computational intractability [143]. A remedy would be to utilize
NNs learning near-optimal heuristics from path planning. For instance, the MPNet can
learn continually and actively from expert demonstrations. This reduces the amount of
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learning data required. By recursively constructing connectable paths, the workspace is
encoded based on point cloud measurements. Incorporating classical path planning algo-
rithms for a hybrid approach leads to theoretical worst-case guarantees, while maintaining
the computational and optimality advantages [94].

However, it should also be noted that long-term planning using NNs, e.g., applying
Deep Reinforcement Learning (DRL) to the Linear Temporal Logic (LTL) or Metric Interval
Temporal Logic (MITL) specifications [85], may incur computational drawbacks. This can
be alleviated through an MC tree search [86], where Model Predictive Control (MPC) is
used under a linear program for convex optimization, to achieve further robustness against
noise. This is true for scenarios involving a high number of dynamic objects and may be
improved by using Long Short-Term Memory (LSTM) [102].

Parameterized probabilistic models of human behavior can be utilized to predict
and prepare for future actions. This allows adapting a model to circumstances and ob-
servations, based on a distribution over the model parameters, obviating the necessity
for prior determination. Other alternatives include Bayesian inference and worst-case
forward reachable sets. The additional computational burden may be leveraged by solving
a stochastic reachability problem in the joint space of the human and the belief for the model
parameters. These can be deterministically approximated using a Hamilton–Jacobi frame-
work. This approach needs to be implemented allowing only a set of actions, as opposed to
the aforementioned distribution, while maintaining the belief as an explicit state.

For robots with numerous continuous states, improved scalability can be achieved
by decomposing the problem into smaller sub-problems using a lazy satisfiability modulo
theory approach. At each iteration, a coarse discretization of the workspace is carried out,
taking into account Boolean constraints, while capturing the low-level continuous dynamics,
to produce high-level discrete plans. Iterations are performed until a feasible plan is found.
Possible infeasibilities include the transitions between the workspace regions [144].

From the point of view of software development, frameworks realized using utilities
such as Motion Planning Templates (MPT) take advantage of compile-time polymorphism.
Such approaches may help to more efficiently handle the usual lack of computational
resources for small robots running on batteries, by producing individual codes tailored
to the specifications of the robot and motion planning problem, which can determine the
data structure. Although this deprives the robot of runtime flexibility, it provides extended
compile-time capabilities, such as storing robot-specific information in the resulting mo-
tion planning graphs, creating firmly packed data structures, and modifying the scalar
precision [145].

A common practice is to use a unified representation on the basis of a discrete, fi-
nite motion space and to split the problem into task and motion planning components.
The former decides what to do, and the latter determines the geometric feasibility based on
finer details. Width-based search algorithms and AI planning languages that represent the
high-dimensional problem in compact form are essential components of such frameworks.
Moreover, some problem representations enable the prediction of constraints and the trans-
fer of knowledge from one instance of the problem to another. For example, the score space
proposed in [146] provides a representation according to the performance of solutions
applied previously, where similarity indices are used sequentially [147].

Although collision detection is widely believed to be the main computational bottle-
neck in asymptotically optimal SBMP, a nearest-neighbor search may be computationally
even more expensive, depending on the experimental scenario. This has motivated the
development of more efficient nearest-neighbor search strategies and data structures that
take into account the mission specifications [50].

Given an online preparation of a set of random controls that is large enough, the com-
putational cost may be reduced by finding a balance between exploration and exploitation.
Machine learning techniques can further contribute by producing choices of maneuvers
based on the dynamics, as well as the heuristics and particularities related to obstacles [16].
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On the other hand, incorporating loop-closure constraints may help reduce the configura-
tion space to a manifold within the joint ambient space, which is higher-dimensional [61].

In numerous recent studies, using a many-core Graphics Processing Unit (GPU) has
been reported to allow fast motion planning [148,149]. Nevertheless, robot-specific circuitry
could be built to achieve scalability in motion planning and parallelization of collision detec-
tion over the RM edges [70]. Using semi-infinite nonlinear optimization, the constraints and
their gradients are calculated simultaneously, and obtaining polynomial approximations
over time helps satisfy the constraints continuously. Parallelizability arises from the fact
that the constraints and their gradients are analyzed for each time interval independently.
The rest of the computational elements, such as kinematics, dynamics, and geometry, are
also essentially parallelizable [149]. Continuous-state Partially Observable Markov De-
cision Process (POMDP) problems can also be solved faster using a GPU or a hybrid of
a GPU and Central Processing Unit (CPU), considering a multi-level formulation of the
Monte Carlo Value Iteration (MCVI) method. Balancing the workload and interleaving
the data and computations constitute the main backbones of parallelization in this context,
where the CPU prepares the data, and the GPU handles the simulations [150].

Last but not least, one may resort to a multi-resolution architecture for managing the
depth information characterizing the obstacles, where the range measurements are repre-
sented using a 2.5-dimensional projective data structure, namely an egospace, within which
motion primitives can also be expressed [151].

4. Applications

Motion planning algorithms are useful in many scenarios involving robots or au-
tonomous cars, e.g., trajectory planning for multi-legged walking robots for planetary
exploration, or for autonomous cars inside parking garages, as well as for highly actuated
service robots in mobile manipulation [49], and even in precision medicine [75]. In the
following sections, applications of motion planning algorithms realized using a certain
type of robot will be briefly reviewed, to make their importance in practical contexts more
tangible, as well as touching upon some of the relevant open problems.

4.1. Social Robots

Social robots have gained increased popularity. In particular, omnidirectional robots
are capable of performing social interactions relatively efficiently, due to their ability to
reorient their body independently from the direction of motion. Nevertheless, apart from
general objectives typically considered while framing the problem, assimilating a robot
into the social context necessitates accounting for additional requirements. Prominently,
the robot should behave cooperatively and in a similar manner to human beings, e.g., in
crowded or narrow passages. Thus, certain constraints may be derived from human
subjects, and imposing these while devising the translation and rotation profiles helps
make the robot resemble humans in a more realistic fashion [62,152].

In the absence of vocal clues implying the user’s intentions or expectations, a robot
should preferably be able to understand and handle a situation by observing the users’
behavior and predicting their actions [153]. On the other hand, mimicking and trying
to replicate the motion profiles adopted by human beings may contribute to developing
socially acceptable and cooperative behaviors for mobile robots, small-sized transportation
vehicles, and wheelchairs, thereby improving operational efficiency and safety using an
acceleration-based social force model [154].

A robot’s perceptual and decision-making capabilities should enable it to behave well
by, e.g., choosing a reasonable trajectory. Statistical models of density and velocity profiles
can be made and integrated into the robot’s resources. These are produced by analyzing
and representing the subjects’ attitudes using, e.g., a Boltzmann factor defined based on the
comfort attributed to their distance from walls and their possible preference for walking
on a certain side within a pedestrian corridor. This, in turn, provides further insights into
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the authenticity and reliability of theoretical and simulation-based pedestrian distributions
and collision avoidance models [154,155].

Modeling human behaviors is among the factors that may contribute to better motion
planning for social robots. This may not be easy, due to the underlying stochasticity.
Nevertheless, a robot should ideally be able to plan and perform its motions such that they
are predictable for nearby pedestrians [156]. More clearly, feature-matching techniques,
possibly based on maximum entropy, may fail to model the path followed by humans
under scenarios involving different subjects or different instances of the same path being
followed by a given subject. Therefore, utilizing DRL may be considered to avoid violations
of social norms, as well as for achieving motion at normal human walking speed, while
avoiding extended computation times [103].

Assuming that a motion is planned and performed in a human-like manner, the above
facilitates the prediction of the robot’s motions by the human, thereby enabling more
convenient joint navigation. Nevertheless, the principles governing Human-Human In-
teraction (HHI) are unlikely to be readily applicable to Human-Robot Interaction (HRI),
due to the different circumstances arising from the usual interest presented by humans in
getting to know more about various aspects of a robot’s behavior [156].

HRI may be enhanced in an adaptive and online manner in dynamic and unknown
environments, through utilizing communicative means of locomotion, where, based on the
Artificial Potential Field (APF), the velocity and orientation information is utilized to take
advantage of patterns represented by the motions of household animals [72].

It is worth noting that human-likeness is measured based on social spatial attention
models indicating the capture time and direction as a consequence of a cue, e.g., a head
turn [157]. When it comes to replicating human motions intended to resemble an emotion,
analyzing upper-body motions inspired by human gait, along with the trajectory and the
center-of-mass, has been shown to have a significant influence from the vertical oscillations
of the human subjects’ perceptions of the emotional states and the corresponding confidence
levels [158].

On the other hand, the motion diversity produced independently from the subject’s
intentions and incorporated into the android’s behavior could contribute to the soundness
of the resulting impressions, in terms of the interpersonal skills required for natural inter-
action [159]. The congruence based on the balancing motions of the robot, which could
be achieved by, e.g., a human-like inverted pendulum mechanism, could greatly affect
these impressions and swaying [160]. Last but not least, motion planning for persons with
reduced mobility, such as those with visual impairment, may require further considerations;
e.g., of the constraints imposed based on their capability for handling crowded areas, wet
floors or roadblocks, or avoiding undesirable items, such as stairs.

4.2. Self-Driving Cars

In principle, self-driving cars are a type of mobile robot, as they take advantage of
similar technology in terms of autonomy. Likewise, the problem of avoiding hitting other
cars or pedestrians is, in fact, tantamount to that of avoiding dynamic obstacles dealt with
in the motion planning for mobile or humanoid robots [1].

They also need to perceive the world, make maps and update them, and plan their
motion with several layers of hierarchy. Nevertheless, unlike mobile robots, which may
be utilized under considerably more flexible setups, the motions of self-driving cars are
restricted to predefined roads and are further constrained by traffic regulations and good
practices of driving, e.g., while navigating intersections [86]. This leads to both advantages
and disadvantages in motion planning [1].

Improved convenience, efficiency, accessibility, and safety, as well as reduced overall
costs and manpower, constitute the significant advantages of self-driving cars in automotive
transportation settings [35], where, from the point of view of urban administration, they
also contribute to tackling congestion and reducing emissions [37]. Moreover, due to their



Machines 2023, 11, 722 25 of 44

capability for utilizing redundant sensors, they reduce the risk of accidents due to possible
late reactions, faulty perceptions, or a lack of attentiveness from the human driver [1].

Tasks for a self-driving car can be extremely safety-critical, and performing them may
demand making use of feedback control [35]. Real-time speed control of navigating a self-
driving car through an occluded crosswalk may be achieved by modeling the problem as a
partially observable Markov decision process and optimizing the longitudinal acceleration
using dynamic programming, on the basis of the belief of the crosswalk [161].

In order to enhance the speed for reliable performance under real-world scenarios, rule-
template sets may be created. These make it possible to determine an appropriate decision
for the traffic scene at hand. The CommonRoad benchmark was proposed in [162], where
for each real or artificial experimental scenario, constraints, goals, the cost function, and a
vehicle model are provided. For example, autonomous parking is modeled as a dynamic
optimization problem and solved using an interior-point simultaneous algorithm [163].

Algorithms such as A∗, which are designed to work in unstructured environments, are
useful for handling highly constrained environments where on-road trajectory planning
may not suffice. Node expansion algorithms are utilized to obtain trajectories that are subse-
quently refined using a pure-pursuit controller producing edges, as short motion primitives,
which ensure the general adherence of the vehicle to the trajectory. Using this strategy,
a vehicle can exploit explorative advantages in challenging scenarios, e.g., reversing to pass
another vehicle that suddenly stops.

After extracting motion primitives from real-world driving data, they can be con-
nected, followed by applying Expectation-Maximization (EM) and an initial segmentation.
The Dynamic Movement Primitives (DMPs) may then be inferred probabilistically, thereby
correlating the independent motion plans for a smooth transition and improving the
tracking accuracy [164].

Finally, it should be noted that more complex maneuvers, such as changing lanes,
parking, and overtaking, also require modeling the reactions of human drivers and are
computationally disproportionately heavy. This could be remedied using prior knowledge
obtained by training neural networks [95].

4.3. Humanoid Robots

Humanoid robots are characterized by their relatively high DoF. Classically, their
high-level motion plans resulted from path planning, and their trajectory optimization used
to be transformed into a dynamic locomotion plan for the whole body in a later stage. More
recent approaches have tired to take advantage of simultaneous optimization of the low-
level and high-level motion specifications where applicable. This will be further elaborated
later in this section. While analyzing the generalized inverse kinematics, the joint limits,
foot positions, and balance need to be considered. A motion planner should be able to
manipulate massive objects, take appropriate actions with the unforeseen appearances of
obstacles in cluttered environments, and plan footsteps by means of variable kinematic
modeling of the footholds [165]. On the other hand, state space representations are used to
apply the existing SBMP techniques with biased sampling to humanoid robots, followed
by steering using inverse kinematics [62].

Motion planning for humanoid robots may be performed using a hierarchical strategy,
such that, first, a collision-free path is obtained for the End-Effector (EE), followed by search-
ing for collision-free points in the case of each of the via-points for the elbow, resulting in an
asymptotically-optimal raw path consisting of straight lines, further refined for kinematic
smoothness and feasibility using an online Cartesian calculator and controller [24].

The Contact-Invariant Optimization (CIO) approach aims to optimize whether or not
contact forces should be active during each phase of presenting a behavior, simultaneously
with the behavior itself. This could be utilized in conjunction with ensembles of perturbed
models to achieve robustness against model uncertainties while performing behaviors such
as turning, as well as sideways and forward walking [166]. Moreover, human experience



Machines 2023, 11, 722 26 of 44

may be exploited by considering multiple operational phases and optimizing the specific
contact configurations separately [2].

Gait primitives for a humanoid robot may be extracted as limit-cycle behaviors, then
being arranged into a switched, discrete-time system. Nevertheless, the frequency of
switching needs to be limited, in order to achieve fluent performance. This can then be
utilized in conjunction with Hybrid Zero Dynamics (HZD) to enhance the stability through
dimensional reduction and sums-of-squares programming [167].

Motions limited to the sagittal plane constitute the main element in pick-and-place
tasks [168]. A more challenging scenario would be to move toward a target stance pose,
and after reaching it, perform a prescribed manipulation task. The complexity arises from
requirements such as finding a stable stance pose that not only is collision-free but also
leads to a full-body configuration that is robustly maintained during manipulation. Using
inverse dynamic reachability maps and assuming that the feet are positioned close to
each other on a flat surface, a solution can be found with a success rate dependent on the
coverage density of the sampling space. Obviously, the map size should not exceed the
memory capacity.

Nevertheless, the map may not offer samples with a high enough variety from the high-
dimensional configuration space to handle real-world applications involving, e.g., uneven
terrain. Therefore, a paired forward-inverse dynamic reachability map needs to be utilized
to achieve a wider modularity, if the robot’s kinematic structure allows. This would help
achieve a given number of composed configurations, while requiring storing a smaller
number of samples. For a given memory capacity, this would lead to a more diverse set
of possible configurations. Consequently, taking advantage of whole-body redundancy,
a higher level of flexibility would be achieved in planning the motion to reach an end-pose
in the presence of constraining factors such as obstacles and uneven terrain [169].

Humanoid robots are widely used in scenarios involving HRI. One of the challenges
typically encountered in haptic interactions arises from the inevitable impact of the robot’s
own motions on the sensory data supposed to represent the user’s tactile input. A possible
partial remedy to the latter problem could be to estimate and subtract the effect of the
robot’s motions based on a sequence of joint values, through linearizing the underlying
posture sub-spaces [170].

Various strategies using the safety of the operator may be accommodated within a mo-
tion planning framework that can be assessed based on, among other things, the technical
specification ISO/TS 15066 [171] and the principle of energy absorption by the operator
body. In this context, the regulated body movements are simulated for an experimental
setup, bearing in mind the fundamental consideration that the relative velocity needs
to be predicted, estimated, and bound to improve the operators’ safety, by preventing
the robot from harming them, according to the prescribed trajectory and the relevant
velocity limits [172].

Multi-limbed robots can take part in missions such as climbing. For example, a six-
legged robot could climb up two walls, where numerous constraints on parameters such as
posture, contact force, and torque need to be taken into account, in order for the robot to be
able to perform the task using the friction between its end-effectors and the wall surfaces.
One approach to tackle this problem consists in utilizing a NonLinear Programming (NLP)
solver. Alternatively, the problem could be decoupled into parts: one concerning the torso
posture, and the other dealing with contact forces. The former could be solved by means of
NLP or MICP, while the latter needs to be worked out as a series of convex optimization
problems. Introducing angled walls, uneven surfaces, and obstacles could be considered as
further challenges to expose the robot to [173].

4.4. Object Manipulation

Multi-arm robotic systems require task- and joint-level coordination, where the former
is meant to make the arms coordinated with an object or with each other, and the latter is
aimed at preventing self-occlusions. The space of free motion may be learned using sparse
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non-linear kernel classification approaches. Whether the robots are expected to coordinate
with each other to reach a moving object simultaneously or only to perform independent
point-to-point motions determines the synchrony requirements, which need to be properly
considered, especially for possible transitions between different scenarios [174].

The higher-dimensionality and multi-modality of the configuration and search spaces
involved in motion planning problems for multi-object manipulation tasks give rise to addi-
tional challenges, due to kinematic and geometric constraints. To tackle different placements
of objects, FastForward (FF) planners such as FFRob use multi-query RM structures to assess
reachability. They handle rearrangement planning problems using an Extended Action
Specification (EAS) representation suitable for conditions involving, e.g., arbitrary predi-
cates. They are capable of solving strip planning problems, e.g., delete-relaxations. More
specifically, by means of batch sampling of the manipulation primitives, the motion planning
problem is iteratively discretized, resulting in a probabilistically complete planner with the
finite runtime required for estimating the distance to goal [71,175]. The primitives may be
generated using a graph-search under a linear quadratic minimum time problem [176].

In cluttered environments with objects blocking the path to grasping an object, it may
be necessary to move the objects first. This may require robot–object and object–object
interactions of a dynamical multibody nature, involving varying object poses, and using
algorithms such as KPIECE and p-KPIECE [63,64].

4.5. Cooperation and Multi-Robot Motion Planning

Autonomous systems may benefit greatly from communication with their peers,
as well as management centers. This would help them make more efficient decisions.
For example, self-driving cars may park close to each other, which saves space, or cooperate
with each other to alleviate congestion [1]. Moreover, a self-driving car can be equipped
with sensors and processing units enabling it to obtain and share valuable information
regarding, e.g., the duration of each color of traffic lights, as well as their locations. Cloud-
based networks enabling such communications could help them to calculate an Estimated
Time of Arrival (ETA) more efficiently. Similarly, the information could be analyzed to
allow an improved understanding of traffic patterns and alternative routes [177].

Although setting up global restrictions on robots’ movements based on worst-case
scenarios may suffice for ensuring safety, this may result in longer operation times. This could
be alleviated by incorporating safety considerations at the motion planning level [172,178].

Multi-Robot (MR) teams are useful where, e.g., a robot’s own reachable workspace or
payload does not suffice for handling large loads [179], and for missions such as patrolling
rooms, or in handling deadlocks, e.g., where a moving obstacle hinders the robot’s mo-
tion [180]. LTL formulas are widely utilized in this context. To this end, robot dynamics and
specifications can be captured for convex and Boolean constraints within a feasibility prob-
lem, to be decomposed and solved using, e.g., Satisfiability Modulo Convex (SMC) [181].

Even the aerial transportation of large loads, including cable-suspended, could be
achieved using teams of robots, where, e.g., Parametric Dynamic Movement Primitives
(PDMPs) are used to coordinate the robots and their manipulators. This could be sub-
sequently transformed into an explicit parameterization of motions using statistical ap-
proaches with a Bayesian property, such as Gaussian Process Regression (GPR) [66]. Con-
straints can be imposed on the relative positions of the robots, where onboard, real-time
localization detects the relationships between neighboring robots [42,67].

Hybrid approaches only take advantage of centralized planning at a global level
based on a consensus, where distributed controls are applied to individual robots to avoid
obstacles and transfer forces to the rest of the robots through the object being manipulated.
Typically, a receding horizon planner is employed to achieve velocity control via a convex
optimization problem [182]. In cooperative missions, a network topology controller is
required to ensure connectivity [73].

Centralized strategies may be adopted under optimal control formulations. Al-
though computationally more expensive, these yield higher quality solutions [183]. They
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also improve the robustness against possible changes in the environment, avoid dead-
locks, and obviate the necessity of decoupling. This problem may be discretized using,
e.g., orthogonal collocation direct transcription, resulting in a large-scale NLP [184].

In unlabeled Multi-Robot Motion Planning (MRMP) scenarios, robots need to be
placed interchangeably, such that each of the prescribed positions is filled by one of them.
In contrast, in labeled cases, each position is associated with a specific robot. For unit-square
robots maneuvering within an environment involving polygonal obstacles, this problem is
PSPACE-hard [185].

For optimal formation trajectory tracking, finite-term performance can be achieved by
optimizing a cost function in the presence of control and state-variable constraints, as well
as invertible conditions, over Euclidean rigid body motions, using Pontryagin’s maximum
principle for Lie groups. The optimality of the performance index is guaranteed if, and
only if, the linear dynamic systems are controllable [186,187].

Complexity issues may be partially alleviated by utilizing a priority assignment algo-
rithm to divide a team of robots into smaller groups. This can be more robustly dealt with
using incremental approaches, based on, e.g., Satisfiability Modulo Theories (SMT) solvers.
Robots with the same priority are in the same group, and, regarding motion planning,
handled simultaneously. Robots taking higher priorities are treated as dynamic obstacles,
collisions with which are avoided using a relatively small delay [188]. Priorities are also
assigned dynamically to avoid collisions between the robots, using a Minimum Linear
Ordering Problem (MLOP).

The total length, i.e., the summation of the lengths of the individual paths can be
considered as an optimization criterion. This results in a computational complexity of
Õ
(
m4 + m2n2), with m and n standing for the number of robots and the workspace’s total

complexity, respectively. The maximum length is OPT+4m, where OPT denotes the cost of
the optimal solution [189].

Population-based stochastic optimization approaches such as PSO or Biogeography-
Based Optimization (BBO), which are inspired by group behaviors observed in wildlife,
may be utilized to find a global solution, i.e., to avoid local minima, through position
updating strategies applied to diverse populations. The Normalized Step Cost (NSC) can
be used to initialize the optimization procedure, which may also benefit from previously
optimized parameters. Upon violation of the constraints, the parameters are replaced
with those of the solution that is the closest to the query vector [76,77]. Moreover, path-
finding through geometrically embedded discrete graphs can be combined with an implicit
representation of the RMs for a reliable performance [65].

The metric utilized for finding the nearest neighbors within a certain configuration
may have a considerable impact on the perception of connectivity of the RMs, as well
as the path quality. Recently, other metrics have been adopted from the field of shape
matching. Combining different metrics might lead to a preferable number of vertices within
the RMs [190].

When it comes to computations, the cost functions related to collision testing can be en-
hanced by summarizing the most salient data through probabilistic modeling [44]. Directly
searching a dense motion planning RM is run in O(V log V + E) ≈ O

(
n2) time, where n

is the number of vertices. For a large n, it can be alleviated through successively shorten-
ing the path by making the r-disk sub-graphs increasingly dense over a low-dispersion
deterministic sequence.

In MRMP, potential targets are captured using, e.g., visual sensors, where probabilities
are modeled using, e.g., a Bayesian likelihood ratio tracker, which is recursively updated
as a probability density function. Each robot’s motion plan is dynamically determined
according to the probability of each target for the corresponding location, and its distance
from neighboring robots. Considering the inverse log-likelihood ratio as the temperature,
the robot moves along the negative gradient of the temperature surface. The interaction
with the local agents is performed using a Lennard–Jones potential, practically maximizing
the mutual information between the target state and the measurements [191].
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Consensus among the agents can be achieved in diverse ways. In the absence of a
leader, distributed consensus protocols may be produced using, e.g., Pontryagin’s principle,
where the relative information is measured at sampling instants. To tackle the inadequacy
in bandwidth, the continuity of the information may be improved using a distributed
framework, taking advantage of multiple leaders. Distributed containment protocols
are followed, such that the remaining robots converge, in terms of position and velocity,
to the convex hull resulting from the leaders. Control gains, communication topologies,
and sampling periods are devised independently, which provide further freedom for
the controller [192].

5. Discussion and Future Work

We have provided a brief review of motion planning frameworks in the context
of robotics, along with some of the essential considerations for their efficient practical
utilization. In this section, to give a quick overview of the motion planning algorithms
discussed throughout the present review, we categorize them from two different points
of view. We also list the most prevalent approaches for each, followed by a discussion of
which frameworks have been omitted and why, and then the concluding remarks.

5.1. Categorizations

The first categorization is based on the property of being conventional or heuristic and
is shown in Figures 5 and 6, respectively. However, based on the studies covered in the
present survey, we have clearly shown that with the emergence of Artificial Neural Network
(ANN)s and machine learning algorithms, especially Deep Neural Network (DNN)s, there
has been a noticeable transition in the trend of research and development activities within
the field of motion planning. Owing to their power and efficiency in solving problems such
as optimization and route search, etc., AI-based methods, especially DL, have emerged
as an independent category of techniques. Since 2015, they have occupied the largest
proportion of related works.

The second categorization is on the basis of being global or local, and this is shown
in Figure 7. Global path planning uses the global geographical or a static map to find
an optimal path [193,194], whereas local path planning requires a constant supply of
sensory information to compute a collision-free path within the robot’s immediate vicinity.
Unlike local planners, global ones may struggle with real-time performance [195–197].
A combinatory interpretation using the two types of categorization shown in Figure 5 and
Figure 7 provides an advantageous insight into which choice of motion planning algorithm
would best suit a certain application.

Figure 5. Conventional motion planning frameworks covered in this review.
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Figure 6. Heuristic motion planning approaches reviewed throughout the present survey.

Figure 7. Categorization of the motion planning algorithms discussed in this review based on being
global or local.

When it comes to older methods, one may clearly see that over time, heuristic ap-
proaches have gained a wider utilization for solving motion design problems. This is shown
in the diagrams illustrated in Figure 8, which indicate the percentage usage of conventional
and heuristic techniques for three consecutive decades spanning the 1980s through the
2000s. These statistics were taken from [198].

However, in the case of more recent years, the share of motion planning pipelines relying
on learning has risen significantly. For DL networks, RL, and DBL, this has changed from
6% to 27%. This has taken place from the period 2010–2015 to 2015–2022 [5]. The ratios of
the utilization of these strategies are shown, along with those of heuristic and conventional
approaches in Figure 9. A more detailed representation is shown in Figure 10, which indicates
the specific ratios for, not only learning-based methods, but also for the bio-inspired, potential
field, and sampling-based ones. It should be noted that Figure 10 was adopted from [5],
which was also the source of the above statistics.

These figures demonstrate the remarkable pace at which the category of DNN-based
motion planning systems has been expanding with respect to the others, and it may well
continue doing so in the coming years. While classical methods seem to have maintained
their share, classical heuristic structures appear to be rapidly losing their competitiveness
against learning-based mechanisms. This can be attributed to learning-based mechanisms’
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strong robustness and scalability, which enables them to handle the challenging motion-
planning requirements arising from the growing complexities of modern robots, as well as
those of the environments they are expected to operate within [199].

Figure 8. Visual comparison of percentages, indicating the trend of heuristic motion planning
methods surpassing conventional ones over time. These values were taken from [198]. The diagrams
cover the period from 1980 until 2010.

Figure 9. The trend in use of learning-based motion planning frameworks in recent years compared
to heuristic and conventional methods, represented as percentages. More detailed statistics are shown
in Figure 10.

Figure 10. The trend in popularity of bio-inspired, potential field, and sampling-based motion
planning frameworks compared to learning-based techniques taking advantage of DL, RL, and DBL,
shown as percentages. The figure was adopted from [5].
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It should be noted that in this survey, for the sake of coherence and maintaining
brevity, not all motion planning pipelines have been covered. More clearly, to enable an
in-depth analysis of the current state of the art and its shortcomings, this review has focused
on frameworks of ongoing significance in practical contexts, where this judgment was
made based on the frequency of practical usage of each technique in the recent robotics
literature. More comprehensive categorizations of conventional and heuristic motion
planning approaches are shown in Figures 11 and 12, respectively.

Figure 11. A more comprehensive categorization of conventional motion planning algorithms,
with those not covered in the present survey shown within boxes with a plain background. Specifically,
BUG algorithms, Kalman filter, mathematical programming, and geometric-based approaches were
studied in this survey.

Figure 12. A more inclusive categorization of heuristic motion planning techniques, including grid-
and search-based methods, which were not explored in the present review and are placed within
boxes with a plain background in the figure.
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5.2. Categories Excluded from the Review

For quick reference, each category of methods excluded from the survey will be
concisely discussed.

The BUG 1 algorithm is based on the idea of having a robot follow an obstacle’s edge,
i.e., its contour, until it reaches a full cycle around the obstacle. Meanwhile, the distance
to the goal is constantly updated to find the point on the edge which minimizes it. This
point will then be used to start the next move toward the goal, which will take place within
the next cycle. BUG 2 is faster, as it does not require the robot to undertake a full cycle and
instead, makes it depart from the obstacle as soon as the slope of the line from the robot to
the goal is the same as that of the line connecting the initial position to the goal [78].

Kalman Filter (KF) is useful in contexts where the tasks of map building and mo-
tion planning need to be handled simultaneously through scanning the terrain. Doing
so requires obtaining depth information using detectors, where the uncertainties are han-
dled by fusing the data. A fuzzy adaptive KF may help update the map and hierar-
chically optimize the scanning procedure according to the terrain type by adjusting the
filter gain [200].

In mathematical programming, obstacle-avoidance constraints are modeled as inequal-
ities imposed on the configuration parameters, where due to the underlying nonlinearity
and the high number of obstacles, typically, a numerical approach is employed to solve the
resulting optimization problem [198].

Grid-based motion planning covers a diverse range of algorithms. Complete Coverage
Planning (CCP) considers the whole mapping area and the grid-based coverage method is
the most popular example, which is suitable for indoor environments. However, its memory
usage may be significantly high, due to the fact that the map resolution is not adjusted with
respect to the actual environment’s complexity, including the shapes and positions of the
obstacles. Moreover, it is prone to nonoptimality, due to possible inefficient organization
of the cells [201]. Other variants of grid-based algorithms include quadtree [202], Circle
Grid Trajectory Cell (CGTC) [203], A* [203,204], Anytime Repairing A* (ARA*) [205,206],
and D* [207].

Search-based algorithms work based on a neighborhood search over several waypoints,
aiming at real-time, simultaneous map building and path planning. For example, in Tabu
search, to avoid becoming stuck in local minima, a Tabu list is made to store nodes that
have been evaluated previously [208].

5.3. Future Work

Various applications of motion planning are worthy of further investigation and are
still at a primitive stage. Therefore, in what follows, some open challenges that need to be
more rigorously addressed in upcoming studies will be concisely discussed, to provide
insights into potential future research directions

Although some studies have suggested projecting the problem of motion planning
in unstructured environments onto the 2D domain, this may not be practically sufficient.
On the other hand, dealing with the problem in the actual 3D domain might fail to accom-
modate all requirements [20]. Therefore, it is recommended to seek solutions that provide
a compromise between the two, using high-level motion primitives in an alternative space,
thereby tracing down lower-level characteristics, to devise more detailed configurations
over the preliminary outcomes projected onto the other space.

As far as intention-aware and DBL motion planning techniques are concerned, a robot
should ideally resemble the intended patterns as closely as possible and perform robustly in
the presence of possible errors. This is also the case for self-driving cars [88], which are ex-
pected to present a human-like driving behavior. Therefore, larger and more comprehensive
representation databases offering more inclusive samples that resemble appropriate reac-
tions under different situations may make of great contribution to a robotic system’s fluency.
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For example, self-driving cars possess limited sensory equipment but are meant to
tackle occlusions in highly cluttered urban areas, while ensuring convenience and driving
fluency [25]. Thus, further investigation and development are needed to devise motion
planning standards that prevent over-cautiousness but do not undermine safety.

Even in the case of humanoid robots, their performance shows a significant deprecia-
tion in practical situations compared to simulated environments, even in the presence of
local feedback drawn from an optimizer. In extreme cases, they may be unable to physically
meet practical demands, where e.g., trying to apply the simulated trajectory could break the
robot apart [166]. This indicates the importance of the balance between the advancements
targeted within the two realms, i.e., the theoretical and practical sides.

Avoiding collisions in Human-Robot Collaboration (HRC), e.g., in manufacturing,
robotic assembly, and robotic disassembly, requires keeping a distance between humans
and robots. This may undermine performance and prevent the robot from reaching its
goal quickly enough. Context awareness helps a robot to realize the human operator’s
intentions and enables it to ensure safety within shorter distances. Human pose recognition
and collision sensing calibration are among the factors that could contribute to obtaining
such an awareness [209]. On the other hand, the size of dynamic safety zones and bounding
volumes may be minimized online according to torque constraints and robot dynamics,
where the possibility of collision is assessed and avoided using smooth stop trajectories
based on intersections, thereby optimizing the robot’s speed [210,211]. These concepts play
a critical role in improving efficiency and fluency, while ensuring safety, and are worth
further investigation and development in upcoming studies.

Finally, shape and motion both play major roles in contacts between a robot and other
objects and agents. Although this could be considered at the design or control stages
of motion planning; in the literature, they are not usually considered simultaneously,
i.e., through a synergy [212], which would be worth dedicating further effort to in the
course of future work.
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Acronyms

ACE Approximate Clearance Evaluation
AGV Autonomous Guided Vehicle
AI Artificial Intelligence
ANN Artificial Neural Network
APF Artificial Potential Field
AQP Alternating Quadratic Programming
ARA* Anytime Repairing A*
ATA Aggressive Turn-Around
BBO Biogeography-Based Optimization
BIT Batch-Informed Trees
B-spline Basis spline
BTT BoTtleneck Tree



Machines 2023, 11, 722 35 of 44

BVP Boundary Value Problem
CAM Computer Aided Manufacturing
CBF Control Barrier Function
CCP Complete Coverage Planning
CGTC Circle Grid Trajectory Cell
CIO Contact-Invariant Optimization
CNC Computer Numerical Control
CNN Convolutional Neural Network
CoMPNetX Constrained Motion planning Networks x
CP Collision Probability
CPU Central Processing Unit
CRISP Continuum Reconfigurable Incisionless Surgical Parallel
CV Control Variates
CVE Curvature Variation Energy
DBL Demonstration-Based Learning
DDPG Deep Deterministic Policy Gradient
DeepSMP Deep Sampling-based Motion Planner
DGMP Demonstration-Guided Motion Planning
DL Deep Learning
DMPs Dynamic Movement Primitives
DNN Deep Neural Network
DoF Degrees of Freedom
DP Dynamic Programming
DRL Deep Reinforcement Learning
EAS Extended Action Specification
EASE Exploitation of Abstract Symmetry of Environments
EE End-Effector
EKF Extended Kalman Filter
EM Expectation-Maximization
ETA Estimated Time of Arrival
FaSTrack Fast and Safe Tracking
FCN Fully Convolutional neural Network
FEA Finite Element Analysis
FF FastForward
FMT Fast Marching Tree
GA Genetic Algorithm
GAN Generative Adversarial Network
GP Gaussian Process
GPM Gauss Pseudospectral Method
GPR Gaussian Process Regression
GPU Graphics Processing Unit
HER Hindsight Experience Replay
HFR High-Frequency Replanning
HHI Human-Human Interaction
HRC Human-Robot Collaboration
HRI Human-Robot Interaction
HZD Hybrid Zero Dynamics
ICS Inevitable Collision State
IDTMP Iteratively Deepened Task and Motion Planning
i.i.d. independently and identically distributed
INVM Infinity-Norm Velocity Minimization
IRL Inverse Reinforcement Learning
I-RRT Improved Rapidly-exploring Random Trees
IS Importance Sampling
KF Kalman Filter
kNN k-Nearest-Neighbor
KP Kinodynamic motion Planning
KPIECE Kinodynamic motion Planning by Interior-Exterior Cell Exploration
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LBT Lower Bound Tree
LPV Linear Parameter Varying
LRPP Learned Reactive Planning Problem
LSPI Least Squares Policy Iteration
LSTM Long Short-Term Memory
LTI Linear Time-Invariant
LTL Linear Temporal Logic
MC Monte Carlo
MC-RRM Multi-Component Rapidly-exploring RoadMap
MCVI Monte Carlo Value Iteration
MICP Mixed-Integer Convex Programming
MITL Metric Interval Temporal Logic
MLOP Minimum Linear Ordering Problem
MPC Model Predictive Control
MPNet Motion Planning Networks
MPT Motion Planning Templates
MR Multi-Robot
MRMP Multi-Robot Motion Planning
MSTTMR Multi-Steering Tractor-Trailer Mobile Robot
NLP NonLinear Programming
NN Neural Network
NSC Normalized Step Cost
PER Prioritized Experience Replay
PDMPs Parametric Dynamic Movement Primitives
POMDP Partially Observable Markov Decision Process
pose position and orientation
PPO Proximal Policy Optimization
PSO Particle Swarm Optimization
QP Quadratic Programming
RBF Radial Basis Function
RKHSs Reproducing Kernel Hilbert Spaces
RL Reinforcement Learning
RM RoadMap
RMP Repetitive Motion Planning
RRG Rapidly-exploring Random Graph
PRM Probabilistic RoadMap
RNN Recurrent Neural Network
RRT Rapidly-exploring Random Trees
SAC Soft Actor Critic
SLAM Simultaneous Localization And Mapping
SBMP Sampling-Based Motion Planning
SMC Satisfiability Modulo Convex
SMT Satisfiability Modulo Theories
SQP Sequential Quadratic Programming
STOMP Stochastic Trajectory Optimizer for Motion Planning
SyCLoP Synergistic Combination of Layers of Planning
TD Temporal-Difference
TMP Task and Motion Planning
UAV Unmanned Aerial Vehicle
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
VRU Vulnerable Road User
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