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Abstract: The battery is an important part of the new energy electric vehicle, and the control of the
flatness of its side plate/bottom plate is the key to quality improvement in mass production. However,
there are few pieces of research on the flatness distribution form at present, and the distribution form is
often assumed to be a normal distribution, which leads to a significant deviation between the tolerance
design and quality control of the flatness and the reality. This paper establishes a statistical model
of flatness distribution, its theoretical distribution form is deduced as a normal range distribution,
and then the experimental data of the flatness distribution are collected to verify this conclusion.
Determining the flatness distribution form has practical effects on improving manufacturing quality
and reducing costs in battery manufacturing.

Keywords: flatness distribution; statistical model; normal range distribution; KS test

1. Introduction

The widespread adoption of electric vehicles (EVs) has emerged as a prominent trend
within the automotive industry and is primarily propelled by the commitment of numerous
nations to achieve net-zero emissions by 2050 without increasing atmospheric carbon
concentrations [1]. This global shift towards EVs has been accompanied by escalating
sales figures and more stringent governmental directives, driving an increase in battery
production capacity on a global scale. Batteries constitute up to 30% of an EV’s weight [2]
and contribute to approximately 30% of the overall cost [3]. Consequently, optimizing
battery manufacturing quality to align with economic objectives, such as reduced reduction,
increased yield, and minimized scrap rates, becomes critical. These have a substantial
influence on the overall impact and viability of EVs.

The packaging of batteries is decisive in determining key performance parameters
such as lifetime, cyclability, ruggedness, safety, and cost. At the core of battery packaging
technology lies the electrochemical cell, which represents the smallest unit of a battery.
Packaging tailors the battery to specific applications, encompassing aspects such as sealing,
form factor, temperature and charge monitoring, and overall management. In the case of
high-voltage or high-capacity EV batteries, multiple electrochemical cells may be intercon-
nected in parallel or series, or both. Furthermore, these cells are integrated into modules
that monitor individual cells and control the temperature. The modules are subsequently
assembled to form a complete battery pack (Figure 1).

The flatness of the side plate and the bottom plate is important as it directly impacts
the successful integration of the battery into the module and, consequently, the module into
the battery pack. Hence, flatness represents one of the most crucial and widely considered
geometric tolerances that determine the quality of the products. The definition of flatness
is the degree to which the surface of a measured plane or the median plane contains
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all its elements. The definition of flatness tolerance is such an area, that is, two parallel
planes, which can contain the median plane and the entire area of the measured plane.
The concept of flatness pertains to a fundamental geometric primitive. The geometrical
product specifications (GPS) standard describes the verification process for flatness as
encompassing partitioning, extraction, association, and evaluation. The new GPS standard
recognizes two types of reference planes: the Minimum Zone Reference Planes (MZPL)
and the Least Squares Reference Planes (LSPL). Corresponding to these reference planes,
two association methods for flatness error evaluation are used: the Minimum Zone Method
(MZM) and the Least Squares Method (LSM) [4,5].
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Figure 1. Illustrative example of packaging for a high-power automotive traction battery with a
prismatic lithium-ion cell package (1). Multiple prismatic cells are combined to create modules (2),
which are further integrated with a battery management system, thermal management systems, and
electronic components to form a complete battery pack (3).

Several researchers have developed new techniques to improve the flatness tolerance
evaluation. The literature provides insights into various techniques used to develop
methodologies for obtaining minimum zone solutions. These techniques include nonlinear
optimization, metaheuristics, and approximation based on linear programming [6–17].
Although a smaller area can be found eventually, the algorithm has a long computation
time and is complex to implement. In modern equipment like coordinate measuring
machines (CMM), the LSM is often used for flatness evaluation at present [18,19]. However,
in battery manufacturing, the flatness of large planes, such as the side plates and end plates
of the battery module, needs to be monitored closely, making it challenging to obtain the
distribution characteristics of flatness in depth. Most classical quality monitoring techniques
in parts manufacturing rely on assumptions regarding sample distribution. Hence, the
theoretical distribution of flatness plays a crucial role in both design and manufacturing
processes. Chelishcev et al. [20] used a CMM to measure the rotating parts and used the
probability density function method to predict the size distribution of the measured parts
and demonstrated the applicability of a distribution-free model in predicting the sample
size, minimum content, and confidence level for CMM-based Geometric Dimensioning and
Tolerancing inspection without the need for prior measurements. Berrado et al. [21] put
forth a method that considers the measurement round-off and small sample sizes. They
employed the Moran log spacing statistic to evaluate the suitability of a normal distribution
in fitting the data. The results of their research suggest that the normal distribution
adequately fits all the examined datasets. The study has demonstrated that the assumption
of normality is adequately met for 20 industrial datasets encompassing four processes
and three distinct material types. Ghie et al. [22] proposed an analysis method based
on the Jacobian–Torsor model combined with the uncertainty of measurement and used
a probability density function to simulate the distribution of part manufacturing sizes.
Wang et al. [23] presented the actual measurement and statistical processing of error data
to show that the distribution law of shape and position error obeys the folded normal
process data (also known as the absolute normal distribution) under certain conditions.
Chatterjee et al. [24] provided examples of situations commonly associated with folded
normal distributions. These instances encompass measurements pertaining to flatness or
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straightness, as well as the distance between two objects. A variety of planes are involved
in the manufacture of battery modules/PACK, among which the plane is an important
geometric element that constitutes mechanical parts [25]. It is often used as the datum
plane for testing. To control the quality of the plane, it is necessary to measure the flatness.
Investigate the distribution of flatness. And flatness also has an important application in
mechanical design, such as in modern technologies like CAD/CAM/CAE [4].

The novelty of this paper is related to three aspects: Based on the definition of flatness
and the principle of multivariate statistics, flatness statistics are constructed, and their
theoretical distribution is deduced.

The theoretical distribution of flatness is validated against experimental flatness
datasets using the maximum likelihood estimation (MLE) and Kolmogorov–Smirnov
(KS) test.

The application scope of the distribution form of flatness is extended to large sample
data acquired on a long plane. Then, the tolerances related to flatness are optimized.

The subsequent sections of this article are organized as follows: Section 2 introduces a
statistical model of flatness. The theoretical distribution of flatness is deduced as a normal
range distribution, and the normal range distribution function and density function are
calculated using MLE and numerical integration. Section 3 describes the implementation
of experiments, while Section 4 presents a comprehensive summary and discussion of the
key points and findings presented in the article.

2. Materials and Methods
2.1. Statistical Model of Flatness

This investigation primarily focuses on the flatness distribution. A flowchart to
study the form of the distribution is shown in Figure 2. Form tolerances typically define
a designated area in which a consideration plane, line, axis, or center plane should be
located. In accordance with the measurement standard [26], flatness tolerance specifies
that all points on the surface must fall within the regions defined by two parallel planes.
Specifically, the tolerance value represents the distance between these two parallel planes.
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In practical applications, a limited number of coordinate points on the plane are
measured to determine the flatness value. It is necessary for all measurement points to
fall within the specified area defined by the measurement criteria. The measurement of
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flatness can be represented by the distance between two parallel planes that contain all the
measurement points. One effective approach to meet this requirement is to fit the set of
measurement points with a regression plane and calculate the flatness using the residual.
Figure 3 provides a visual representation of this concept, depicting a cross-section of a
panel. In the figure, the symbol L represents the region enclosing the fitting plane, and it
indicates the distance between the parallel planes that enclose all the measurement points.
The symbol h represents the distance between the measurement point and the fitting plane.
The symbol d represents the vertical distance between the measurement point and the
horizontal plane. The dots represent the set of points taken during measurement. The blue
line represents the actual shape of the plane. The yellow line represents the fitted plane.
Mathematically, it is feasible to evaluate the flatness distribution by the LSM. This method
has excellent premise assumptions:

1. zi = β0 + β1xi + β2yi + εi, i = 1, . . . , m; the independent variable is currently corre-
lated with the dependent variable;

2. εi ∼ N
(
0, σ2), i = 1, . . . , m; the mean value of the error εi is 0; the variance is fixed

and obeys the normal distribution;

3. The errors are independent of each other;
m
∑

i=1
εi = 0.

Therefore, to simplify the process of determining the flatness, we make the following
assumptions: the fitting plane is fixed, and the measured points Xi = (xi, yi, zi) on the
plane obey the three-dimensional normal distribution with a fixed mean value of 0 and a
variance σ2( Xi ∼ N3(µ, ∑), µ = (0, 0, 0)T , ∑ = diag

{
σ2}).

As shown in Figure 3, hi represents the distance from the ith point to the fitted plane
(points are positive above the plane and negative below the plane). We consider the R
(flatness) statistic of the form.

R = max
16i6m

{hi} − min
16i6m

{hi}

In the next section, we aim to derive the distribution form of the statistic R.
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Figure 3. A cross-sectional diagram depicts the theoretical flatness value on a surface of a part,
represented as ‘L’.

2.2. Exact Distribution of R (Flatness)

This section shows that R statistic can be expressed as the range form of a multivariate
independent normal distribution. Therefore, its exact distribution can be obtained easily
from the result of Anderson [27] on multivariate statistics. Taking the points on the long
plane is mainly performed by CMM, and the coordinates of each point are (xi, yi, zi), i =
1, . . . , m.
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According to the model established in the previous section, let di be the vertical
distance between the ith point and the plane. Geometrically, the difference between hi and
di is only a constant k (that is, the cosine of the angle between the fitting plane and the
horizontal plane), where

H =


h1
h2
...

hm

 =


k 0 · · · 0
0 k · · · 0
...

...
...

...
0 0 · · · k




d1
d2
...

dm

 = kD, where K =


k 0 · · · 0
0 k · · · 0
...

...
...

...
0 0 · · · k


m×m

(1)

Due to the randomness of the points, Hi and Di can be regarded as a random variable
and hi, di as the sample point. The joint density function of n-dimensional random vari-
ables (H1, . . . , Hm), (D1, . . . , Dm) are fH(h), fD(d), respectively. According to the Jacobian
transformation of multivariate random variables, we have fH(h) = fD

(
h
k

)
J(d→ h), where

J(d→ h) =
∣∣∣∣∂dT

∂h

∣∣∣∣ = |K|−1 = k−m (2)

Therefore, to simplify the derivation of the flatness distribution, it is only necessary
to derive the distribution of the distance d between the point and the vertical direction of
the fitting plane. According to the assumption that the error εi is a normal distribution
that is independent and homoscedastic, it can be seen that D is an n-dimensional normal
distribution given by

D =


d1
d2
...

dm

 =


z1 − β1x1 − β2y1 − β0
z2 − β1x2 − β2y2 − β0

...
zm − β1xm − β2ym − β0

 =


ε1
ε2
...

εm

, Nn ∼
(
0, ∑

)
(3)

where

∑ =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
...

...
0 0 · · · σ2


n×n

(4)

The joint density function of the n-dimensional normal distribution, denoted as D, can
be expressed as the following:

fD(d) =
1

(2π)m/2
∣∣∣∑∣∣∣1/2 exp

[
−dT ∑−1 d

2

]
(5)

Then, the joint density function of the n-dimensional random variable H through a
Jacobian transformation is

fH(h) = k−m 1

(2π)m/2
∣∣∣∑∣∣∣1/2 exp

[
− 1

2 K−1hT ∑−1(Kh)
]

= 1
(2π)m/2|k2 ∑|1/2 exp

[
− 1

2 hTk2 ∑−1(h)
] (6)

Hence, H ∼ Nn
(
0, k2 ∑

)
, H1, . . . , Hn are independent normal distributions with the

same variance
(

N
(
0, k2σ2)). Let the distribution function be F(hi), and its density function

be f (hi). Next, the distribution of flatness R = max
16i6m

{hi} − min
16i6m

{hi} is solved by deriving

the range distribution H.
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Let H be the statistical population. Take a sample h1, . . . , hm and obtain the corre-
sponding order statistic h(1) ≤ h(2) ≤ · · · ≤ h(m), where h(i) is the ith order statistic (i =
1, . . . , m). h(1) = min(h 1, . . . , hm) is the minimum order statistic. h(m) = max(h1, . . . , hm)
is the maximum order statistic. R = h(m) − h(1) is the sample range. The joint density
function of h(1) and h(m) is

f
(

h(1), h(m)

)
=

m!
(m− 2)!

f
(

h(1)
)

f
(

h(m)

)[
F
(

h(m)

)
− F

(
h(1)

)]m−2
, h(1) ≤ h(m) (7)

Let {
R = h(m) − h(1)
U = h(1)

(8)

Then, its inverse transformation is{
h(1) = U
h(m) = U + R

(9)

Its Jacobian determinant |J| = 1. The joint density function of R and U is

f(R,U)(r, u) = m(m− 1) f (u) f (r + u)[F(r + u)− F(u)]m−2 (10)

The distribution function FR(r) of the flatness R is

FR(r) =
∫ r

0

∫ +∞
−∞ m(m− 1) f (u) f (t + u)[F(t + u)− F(u)]m−2dudt

=
∫ +∞
−∞

∫ r
0 m(m− 1) f (u) f (t + u)[F(t + u)− F(u)]m−2dtdu

=
∫ +∞
−∞ m(m− 1) f (u)

∫ r
0 [F(t + u)− F(u)]m−2d[F(t + u)− F(u)]du

=
∫ +∞
−∞ [F(r + u)− F(u)]m−1m f (u)du

= m
∫ +∞
−∞ f (x)[F(r + x)− F(x)]m−1dx

(11)

On computation, the density function fR(r) of the flatness R is

fR(r) = [FR(r)]
′ = m(m− 1)

∫ +∞

−∞
f (x) f (r + x)[F(r + x)− F(x)]m−2, r > 0 (12)

where

f (x) =
1√

2πσ0
exp− x2

2σ2
0

, σ0 = kσ (13)

F(x) =
∫ x

−∞
f (t)dt (14)

Figure 4 shows the density and distribution function plots of the normal range distri-
bution under different m values.
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2.3. Parameter Estimation of the Normal Range Distribution

The parameter σ0 is estimated using the maximum likelihood estimation (MLE)
method. Because the normal range distribution and density function are extraordinar-
ily complex and have no analytical solution, a simplified approach is required to maximize
the function. Many scholars have tried to solve the problem of seeking the optimal value
of the objective function and achieved good results [28,29]. The grid search method is a
well-established and uncomplicated approach for identifying extreme values, which can be
used to solve extreme value problems [30]. It is a fundamental algorithm for optimizing
parameters.

Let ri(i = i, . . . , n) be n simple random samples from a normal range distribution, then
the log-likelihood function based on these samples is

log L(σ0; r) =
n

∑
i=1

log( fR(ri)) (15)

Subsequently, we need an estimate of σ0, as

σ̂0 = argmax
σ

(
n

∑
i=1

log( fR(ri))

)
(16)

Since fR(r) has no analytical solution, it is necessary to use the Simpson integration
method and truncate it first:

fR(r) = m(m− 1)
∫ a
−a f (x) f (x + r)[F(x + r)− F(x)]m−2dx, r > 0

=
∫ a
−a G(x)dx

(17)

There is a truncation error.

∆1 = m(m− 1)
∫ +∞

a f (x) f (x + r)[F(x + r)− F(x)]m−2dx
+m(m− 1)

∫ −a
−∞ f (x) f (x + r)[F(x + r)− F(x)]m−2dx

≤ m(m− 1)
∫ +∞

a f (x) f (x + r)dx + m(m− 1)
∫ −a
−∞ f (x) f (x + r)dx

= m(m− 1)
√

(2)
2 σ0 exp

(
− r2

4σ0

) (18)

According to the precondition, since the plane shows relatively small fluctuations
in the vertical direction, the standard deviation of its values along the Z axis is much
smaller than that in the X and Y axes and is generally between 0.001 and 0.1. Moreover,
the inclination angle between the fitted plane and the actual plane is relatively small, the k
value is close to 1, and the flatness value is generally not greater than 1. The number of
points m on the plane generally does not exceed 100. Let a = 10, k = 1, m = 100, so the
truncation error

∆1 ≤ 100× 99× 9.9818× 10−12

When using numerical integration for approximate calculations, such as
max

∣∣∣ f (4)R (r)
∣∣∣ ≤ M, we have the computational errors Rn[ fR] ≤ 2a

2880
( 2a

N
)4M obtained

by ignoring the truncation error and calculation errors in numerical integration. The
Simpson integration formula is

fR(r) ≈
∫ a

−a
G(x)dx ≈ l

3
(G0 + 4G1 + G2) (19)

The extreme value solution of (16) can be obtained using the grid method to obtain
the MLE σ0. The estimation performance of model parameters is evaluated using the root
mean squared error (RMSE). As depicted in Table 1, the RMSE values are minimal, and the
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parameters estimated by MLE are accurate (one hundred simulations were conducted with
different values of m and n).

RMSE =

√
1
n

n

∑
i=1

(
∧
σ0 − σ0)

2
(20)

Table 1. Parameter estimation of the normal range distribution.

m = 10 m = 20 m = 30

σ0 n Mean RMSE Mean RMSE Mean RMSE

0.01 50 0.00997 0.00034 0.01003 0.00032 0.00999 0.00025
100 0.01002 0.00025 0.00998 0.00019 0.00998 0.00015
500 0.00999 0.00012 0.01001 0.00008 0.00999 0.00009
1000 0.01001 0.00009 0.01000 0.00006 0.01094 0.00094

0.05 50 0.04975 0.00171 0.05009 0.00133 0.04995 0.00128
100 0.04976 0.00141 0.05004 0.00090 0.05001 0.00073
500 0.04752 0.00253 0.05001 0.00050 0.04998 0.00039
1000 0.05003 0.00036 0.05006 0.00030 0.04997 0.00028

0.1 50 0.0999 0.00291 0.10010 0.00275 0.09962 0.00234
100 0.09975 0.00266 0.09991 0.00193 0.09983 0.00151
500 0.10003 0.00128 0.09998 0.00094 0.10015 0.00085
1000 0.09991 0.00089 0.09990 0.00071 0.09996 0.00058

0.5 50 0.50213 0.01974 0.50065 0.01372 0.50003 0.01175
100 0.50027 0.01279 0.50090 0.01013 0.49994 0.00777
500 0.50071 0.00697 0.49941 0.00425 0.50007 0.00329
1000 0.49973 0.00329 0.49960 0.00295 0.49988 0.00277

2.4. Kolmogorov–Smirnov Test

The two-sided, one-sample Kolmogorov–Smirnov (KS) statistic is widely used as a
test-of-fit statistic to assess the consistency between the distribution of a random sample
and a predefined theoretical distribution [31–34]. For a given ordered sample (x1, . . . , xn)
of size n from the theoretical distribution F0(x), its empirical distribution is Fn(x). F0(x) is
the probability distribution function of the theoretical distribution pre-specified under the
null hypothesis H0; that is, the two data distributions are consistent. The two-sided K-S
statistic is defined as Dn = sup|Fn(x)− F0(x)|, and Fn(x) can be represented as follows:

Fn(x) =
1
n

n

∑
i=1

Ixi≤x =


0, x < x1
k
n , xk ≤ x ≤ xk + 1, k = 1, 2, . . . , n− 1
1, xn ≤ x

(21)

When Dn > Dn,1−α is calculated from observations, H0 will be rejected; otherwise,
accept the H0 hypothesis. Figure 5 is a KS test chart of normal distribution and normal
range distribution for a measurement data group, respectively, where n = 500 and m = 20.
The KS test value Dn of the normal distribution is 0.0685 (p-value = 0.01842 < 0.05), which
means that the null hypothesis is rejected, and the data do not obey the normal distribution.

The KS test value Dn of the normal range distribution is 0.0354 (p-value = 0.5461 > 0.05),
which means that the null hypothesis can be accepted and the data obeys the normal range
distribution.
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3. Results
3.1. Verifying Flatness Distribution Based on Experimental Data

Enterprises often use the normal distribution to fit flatness data, calculate dimensional
quantities, and process capability indices. However, the flatness data measured on this
long plane often cannot pass the KS test when fitting the normal distribution; that is, the
flatness distribution is not normal. Hence, calculating the process capability index, such
as CPK/PPK, will lead to deviations in the result, distortion of product quality, and an
increase in the monitoring cost for product quality. The data set for verifying the flatness
distribution comes from two parts: CMM measures the coordinate points on the plane of
the aluminum plate and calculates the flatness data; the dimensions of the aluminum plate
(specification 6061) is 500 mm in length, 200 mm in width, and 3 mm in height. As shown
in Figure 6, in the experiment, the flatness data sets with sample sizes of n = 50, n = 100,
n = 500, and n = 1000 were obtained when the number of points m = 10, and m = 30
were taken (points were taken at equal intervals in the X direction and Y direction of the
aluminum plate, respectively).

Firstly, the first data set obtained through experiments is processed. The
∧
σ0 of the

corresponding data set is obtained through the parameter estimation method in the second
chapter. Subsequently, the KS test is performed for the normal distribution and the normal
range distribution. The results are shown in Table 2. The results show that for three different
values of m, there are the following conclusions: when the sample size is small (less than or
equal to 100), both the normal distribution and normal range distribution pass the power
KS test; however, when the sample size exceeds 500, the normal distribution cannot pass
the KS test (p-value < 0.05).

In contrast, the normal range distribution always fits the flatness data (p-value > 0.05),
and the surface flatness data is not normally distributed. Therefore, the larger the sample
size, the closer the flatness data is to the true distribution form, that is, the normal range
distribution.
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Table 2. KS test for normal distribution and normal range distribution of experimental data set.

Normal Normal Range

m n σ̂ Dn p-Values Dn p-Values

10 50 0.1708 0.0998 0.6646 0.1053 0.5990
100 0.1688 0.0721 0.6758 0.0656 0.7567
500 0.1724 0.0636 0.0348 0.0518 0.1319

1000 0.1724 0.0536 0.0064 0.0397 0.0832
20 50 0.1873 0.1012 0.6482 0.0795 0.8844

100 0.1941 0.0809 0.5302 0.0610 0.8279
500 0.1886 0.0685 0.01842 0.0354 0.5461

1000 0.1885 0.0474 0.0222 0.0196 0.8311
30 50 0.1964 0.1195 0.4388 0.0953 0.7178

100 0.1899 0.0893 0.4028 0.0613 0.8239
500 0.1927 0.0649 0.0295 0.0453 0.2481

1000 0.1916 0.0488 0.0170 0.0222 0.6985

3.2. Application of Flatness Distribution Form in Dimensional Chain

Tolerance runs through the two stages of product design and manufacturing. It
determines whether the product can meet the technical (quality) requirements of the
product while enabling the product to be processed most economically. Dimensional
chain calculation and tolerance analysis have significant applications in the design and
manufacture of products. During the product design process, the accuracy of the assembly
of the product can be analyzed and calculated using the dimensional chain, and the
accumulation of part tolerances in the product assembly process can be analyzed. For
the mechanical manufacturing process, the accumulation and synthesis of manufacturing
errors during processing can be analyzed using dimensional chain calculations. The
probability method is commonly used for these calculations. The probability method
expresses dimensional changes as probability distributions, which requires knowing the
true distribution form of shape tolerances such as flatness. The statistical tolerance of the
closed loop can be obtained by the following formula when calculated by the probability
method:

L0 =
1
k0

√
∑m

i=1 ξ2
i k2

i L2
i (22)



Machines 2023, 11, 723 11 of 13

In the formula,

L0: Closed ring tolerance;
Li: Tolerance of the ith component ring;
ki: Relative distribution coefficient of the size of the ith constituent ring;
ξi: Transfer coefficient of the ith constituent ring;
k0: Relative distribution coefficient of the closed loop, generally approximating 1.

When the size chain of a particular product comprises flatness values, assuming that
the assembly tolerance requirement is ±0.5, the normal distribution and the normal range
distribution are used to distribute the tolerance by the probability method. Figure 7 shows
the influence of the two distribution forms on the differences between the parts in terms
of dimensional tolerance requirements (assuming that each dimension in the dimensional
chain is assigned the same tolerance):
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Where ki = λi/λn is related to the form of the distribution, λi is the relative standard
deviation, which is equal to the ratio of the standard deviation to half of the tolerance, that
is λi = σ/(T/2); λn is the relative standard deviation of the normal distribution, take the
tolerance T = 6σ (corresponding to a confidence level of 99.73%) when λn = σ/(T/2) =
σ/3σ = 1/3, so ki = 3λi. For a normal range distribution R, its expectation E(R) and
variance D(R) are, respectively,

E(R) =
∫ +∞

0
rdFR(r) (23)

D(R) = E(R2)− [E(R)]2 =
∫ +∞

0
r2dFR(r)− [

∫ +∞

0
rdFR(r)]2 (24)

The tolerance T can be obtained by FR(T) = 0.9973. To facilitate the calculation, we
can normalize the subsample h1, . . . , hm, (hi ∼ N(0, σ2

0 )), let h′i = hi/σ, i = 1, 2, . . . , m,
then h′i ∼ N(0, 1); let R′ = R/σ0 = h′(m) − h′(1) = h(m)/σ0 − h(1)/σ0, so there are E(R) =

σ0E(R′), D(R) = σ2
0 D(R′), T = σ0T′.
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In the example in Figure 7, m = 20, D(R′) = 0.530984, T′ = 6.095459. And finally, it
can be found that

ki = 3λi = 3× σ0
√

0.530984
σ0T′/2

= 0.717274 (25)

The tolerance values for different numbers of rings are obtained by Formula (22).
Using the normal range distribution for flatness will relax the tolerance of some rings.

In the high-value scenario of battery manufacturing, this can make the processing of parts
more economical and suitable for mass production.

4. Discussion

As mentioned earlier, flatness is a form tolerance critical to ensuring the quality of long
straight plane assemblies. Out-of-flatness issues can result in substantial and expensive
assembly rejection problems. Consequently, monitoring the flatness data corresponding to
the different number of points on the plane is crucial. In this paper, we deduce that flatness
has a normal range distribution based on a statistical theoretical model; the flatness data
with different m values gained by the experiment all fit the normal range distribution, which
has an excellent fitting effect. And it can be explained that the distribution pattern of flatness
is dependent on the number of sampling points m. In the experiment results, we have
shown that a normal distribution can be fitted under small samples, which is consistent
with the conclusions derived by Berrado et al. [3]. However, the normal distribution cannot
be fitted for large samples.

As a large amount of data were required for the analysis, we used multiple CMM
measurements of a certain number of aluminum plates to study the flatness. We anticipate
that these findings can also apply to flatness measurements in other processes. To enhance
the credibility of this statistical theoretical model, it should be validated further by utilizing
additional flatness datasets collected from diverse components. This expanded validation
process will help generate more substantial evidence and strengthen the applicability of the
model across various scenarios. Further research is also required for numerical calculation
and parameter optimization to increase compliance with high product quality standards
and reduce errors in monitoring the manufacturing process.
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