Design of Radial-Inflow Turbines for Low-Temperature Organic Rankine Cycle
Abstract
:1. Introduction
2. Methodology and Governing Equations
2.1. Basic Assumptions
- The flow is assumed to be adiabatic, steady, and inviscid;
- The fluid is compressible and a real gas;
- The blade is assumed to be infinitely thin with zero blade thickness;
- The flow near TE is free vortex, which means there is no vortex shedding after TE.
2.2. Monge–Clebsch Decomposition
2.3. Continuity Equations
2.4. Mean Flow Equations
2.4.1. Blockage Effect
2.4.2. Artificial Density
2.4.3. Stokes Stream Function
2.4.4. Boundary Conditions
2.5. Periodic Flow Equations
2.6. Calculation of Thermophysical Properties
2.7. Calculation of Blade Shape
3. Numerical Techniques
3.1. Grid Generation
3.2. Transformed Equations in Curvilinear Coordinates
3.3. Numerical Differentiation
3.4. Computation Scheme
- Step 1: Specify the design inputs, including the meridional geometry, the inlet volume flow rate (or the inlet velocity), the inlet total pressure, the inlet total temperature, the fluid name, the stacking condition, the RPM, the blade normal thickness distribution, and the blade number;
- Step 2: Generate the curvilinear-body-fitted mesh on the (ξ,η) plane (see Section 3.1);
- Step 3: The inlet entropy, the inlet enthalpy, and the inlet total density can be obtained from REFPROP or CoolProp based on the given inlet total pressure and inlet total temperature;
- Step 4: The density and velocity fields are initialized with the inlet values. The initial values for the blade camber f are set to zero;
- Step 5: Calculate the blade tangential thickness based on the blade camber and the normal thickness using Equation (27);
- Step 6: Calculate the blockage Bf using Equation (26);
- Step 7: Calculate the 3D velocity field using Equation (18);
- Step 8: Calculate the 3D enthalpy field using Equation (49);
- Step 9: Calculate the 3D density field based on the 3D enthalpy field and the inlet entropy using REFPROP or CoolProp;
- Step 10: Calculate the special artificial density using Equation (28);
- Step 11: Calculate the mean flow stream function using Equation (57);
- Step 12: Calculate the mean flow velocity using Equation (58);
- Step 13: Calculate the potential function of the periodic flow using Equation (59);
- Step 14: Calculate the periodic flow velocity field using Equation (48) and the blade surface periodic velocity using Equation (62);
- Step 15: Calculate the blade camber using Equation (61);
- Step 16: If the maximum difference between the blade camber in the current iteration and the blade camber from the previous iteration is less than the specified tolerance (1.0 × 10−5 radian), the solution is considered converged. Otherwise, go to step 5 and repeat the process.
3.5. Convergence
4. Validation and Results
4.1. Design Specifications and Main Inputs
4.2. CFD Simulation
4.3. FEA Simulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Roman symbols | |
b1 | Tip width (mm) |
b2 | Outlet width (mm) |
h | Static enthalpy (J/kg) |
h0 | Total enthalpy (J/kg) |
m | Meridional coordinate |
Mass flow rate (kg/s) | |
Unit normal vector | |
r | Radial coordinate (m) |
r1 | Tip radius (mm) |
r2h | Outlet hub radius (mm) |
r2s | Outlet shroud radius (mm) |
Circumferentially averaged circulation (m2/s) | |
s | Spanwise coordinate or entropy |
tN | Normal thickness (m) |
tθ | Tangential thickness (m) |
z | Axial coordinate (m) |
B | Blade number |
Bf | Blockage factor |
C | Absolute velocity (m/s) |
I | Rothalpy (J/kg) |
L | Axial length (mm) |
P | Pressure (Pa) |
P01 | Inlet total pressure (kPa) |
P2 | Outlet static pressure (kPa) |
S(α) | Periodic sawtooth function |
T | Temperature (K) |
T01 | Inlet total temperature (K) |
U | Blade speed (m/s) |
Absolute velocity (m/s) | |
Relative velocity (m/s) | |
Greek symbols | |
α | Wrap angle or blade camber |
α1 | Inlet absolute flow angle |
β | Blade angle or relative flow angle |
λ | Monge–Clebsch scalar |
μ | Monge–Clebsch scalar |
ρ | Density (kg/m3) |
δp | Periodic Dirac delta function |
θ | Circumferential coordinate (radian) |
ω | Rotational speed (rad/s) |
ξ,η | Coordinates in the transformed computational domain |
η | Isentropic efficiency |
Ω | Vorticity |
Φ | Potential function |
Ψ | Stream function |
Superscripts | |
* | Complex conjugation |
+ | Pressure side |
− | Suction side |
n | Iteration number |
Subscripts | |
Far upstream | |
1 | Inlet or leading edge |
2 | Outlet or trailing edge |
bl | Blade surface |
Other symbols | |
Circumferential average symbol | |
Periodic symbol | |
Vector symbol | |
Gradient | |
Divergence | |
Curl | |
Acronyms | |
1D | One-dimensional |
2D | Two-dimensional |
3D | Three-dimensional |
CFD | Computational fluid dynamics |
EoS | Equation of state |
FEA | Finite element analysis |
IDFT | Inverse discrete Fourier transform |
LE | Leading edge |
NIST | National Institute of Standards and Technology |
ORC | Organic Rankine cycle |
PDE | Partial differential equation |
RF | Relaxation factor |
RHS | Right hand side |
RPM | Revolution per minute |
SST | Shear–stress transport |
TE | Trailing edge |
const | Constant |
t-s | Total-to-static |
t-t | Total-to-total |
Appendix A
References
- Tabor, H.; Bronicki, I. Small Turbine for Solar Energy Power Package. In Proceedings of the United Nations Conference on New Sources of Energy, New York, NY, USA, 23 April 1961. [Google Scholar]
- Pöschl, M.; Ward, S.; Owende, O. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 2010, 87, 3305–3321. [Google Scholar] [CrossRef]
- Maraver, D.; Royo, J. Efficiency enhancement in existing biomass organic Rankine cycle plants by means of thermoelectric systems integration. Appl. Therm. Eng. 2017, 119, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Sotomonte, C.A.R.; Veloso, T.G.C.; Coronado, C.; Nascimento, M.A.R. Multi-objective optimization for a small biomass cooling and power cogeneration system using binary mixtures. Appl. Therm. Eng. 2021, 182, 116045. [Google Scholar] [CrossRef]
- Imran, M.; Usman, M.; Park, B.S.; Kim, H.J. Multi-objective optimization of evaporator of organic Rankine cycle (ORC) for low temperature geothermal heat source. Appl. Therm. Eng. 2015, 80, 1–9. [Google Scholar] [CrossRef]
- Liu, X.; Wei, M.; Yang, L.; Wang, X. Thermo-economic analysis and optimization selection of ORC system configurations for low temperature binary-cycle geothermal plant. Appl. Therm. Eng. 2017, 125, 153–164. [Google Scholar] [CrossRef]
- Manfredi, M.; Spinelli, A.; Astolfi, M. Definition of a general performance map for single stage radial inflow turbines and analysis of the impact of expander performance on the optimal ORC design in on-board waste heat recovery applications. Appl. Therm. Eng. 2023, 224, 119857. [Google Scholar] [CrossRef]
- Miao, Z.; Meng, X.; Liu, L. Improving the ability of thermoelectric generators to absorb industrial waste heat through three-dimensional structure optimization. Appl. Therm. Eng. 2023, 228, 120480. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Ashouri, M.; Mohammadi, A. Thermoeconomic analysis and optimization of a regenerative two-stage organic Rankine cycle coupled with liquefied natural gas and solar energy. Energy 2017, 126, 899–914. [Google Scholar] [CrossRef]
- Ramos, A.; Chatzopoulou, M.A.; Freeman, J.; Markides, C.N. Optimisation of a high-efficiency solar-driven organic Rankine cycle for T applications in the built environment. Appl. Energy 2018, 228, 756–765. [Google Scholar] [CrossRef]
- Arteconi, A.; Zotto, L.D.; Tascioni, R.; Cioccolanti, L. Modelling system integration of a micro solar Organic Rankine Cycle plant into a residential building. Appl. Energy 2019, 158, 113408. [Google Scholar] [CrossRef]
- Alshammari, F.; Khedher, N.B.; Said, L.B. Development of an automated design and off-design radial turbine model for solar organic Rankine cycle coupled to a parabolic trough solar collector. Appl. Therm. Eng. 2023, 230, 120677. [Google Scholar] [CrossRef]
- Hung, T.C.; Wang, S.K.; Kuo, C.H.; Pei, B.S.; Tsai, K.F. A study of organic working fluids on system efficiency of an ORC using low-grade energy sources. Energy 2010, 35, 1403–1411. [Google Scholar] [CrossRef]
- Dai, X.; Shi, L.; An, Q.; Qian, W. Screening of working fluids and metal materials for high temperature organic Rankine cycles by compatibility. J. Renew. Sustain. Energy 2017, 9, 24702. [Google Scholar] [CrossRef]
- Usman, M.; Imran, M.; Yang, Y.; Lee, D.H.; Park, B.S. Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions. Energy 2017, 123, 353–366. [Google Scholar] [CrossRef]
- Pang, K.C.; Chen, S.C.; Hung, T.C.; Feng, Y.Q.; Yang, S.C.; Wong, K.W.; Lin, J.-R. Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat. Energy 2017, 133, 636–651. [Google Scholar] [CrossRef]
- Eyerer, S.; Dawo, F.; Kaindl, J.; Wieland, C.; Spliethoff, H. Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa. Appl. Energy 2019, 240, 946–963. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, Y.T. Preliminary design and performance analysis of a radial inflow turbine for organic Rankine cycles. Appl. Therm. Eng. 2017, 120, 549–559. [Google Scholar] [CrossRef]
- Shao, L.; Zhu, J.; Meng, X.; Wei, X.; Ma, X. Experimental study of an organic Rankine cycle system with radial inflow turbine and R123. Appl. Therm. Eng. 2017, 124, 940–947. [Google Scholar] [CrossRef]
- Sarmiento, A.E.; Camacho, R.G.R.; Oliveira, W.; Velasquez, E.I.G.; Murthi, M.; Gautier, N.J.D. Design and off-design performance improvement of a radial-inflow turbine for ORC applications using metamodels and genetic algorithm optimization. Appl. Therm. Eng. 2021, 183, 116197. [Google Scholar] [CrossRef]
- Da Silva, E.R.; Kyprianidis, K.G.; Camaacho, R.G.R.; Saterskog, M.; Angulo, T.M.A. Preliminary design, optimization and CFD analysis of an organic Rankine cycle radial turbine rotor. Appl. Therm. Eng. 2021, 195, 117103. [Google Scholar] [CrossRef]
- Xu, G.; Zhao, G.; Quan, Y.; Liang, R.; Li, T.; Dong, B.; Fu, J. Design and optimization of a radial-axial two-stage coaxial turbine for high-temperature supercritical organic Rankine cycle. Appl. Therm. Eng. 2023, 227, 120365. [Google Scholar] [CrossRef]
- Hawthorne, W.R.; Wang, C.; Tan, C.S.; McCune, J.E. Theory of Blade Design for Large Deflections, Part I: Two-Dimensional Cascade. J. Eng. Gas Turbine Power 1984, 106, 346–353. [Google Scholar] [CrossRef]
- Tan, C.S.; Hawthorne, W.R.; McCune, J.E.; Wang, C. Theory of Blade Design for Large Deflections, Part II: Annular Cascades. J. Eng. Gas Turbine Power 1984, 106, 354–365. [Google Scholar] [CrossRef]
- Borges, J.E. Three-Dimensional Design of Turbomachinery. Ph.D. Thesis, Cambridge University, Cambridge UK, 1986. [Google Scholar]
- Ghaly, W.S. A Parametric Study of Radial Turbomachinery Blade Design in Three-Dimensional Subsonic Flow. J. Turbomach. 1990, 112, 338–345. [Google Scholar] [CrossRef]
- Zangeneh, M. A Compressible Three-dimensional Design Method for Radial and Mixed Flow Turbomachinery Blades. Int. J. Numer. Methods Fluids 1991, 13, 599–624. [Google Scholar] [CrossRef]
- Bonaiuti, D.; Pitigala, A.; Zangeneh, M.; Li, Y. Redesign of a Transonic Compressor Rotor by Means of a Three-Dimensional Inverse Design Method: A Parametric Study. Turbo Expo Power Land Sea Air 2007, 47950, 173–187. [Google Scholar]
- Lee, K.-Y.; Choi, Y.-S.; Kim, Y.-L.; Yun, J.-H. Design of axial fan using inverse design method. J. Mech. Sci. Technol. 2008, 22, 1883–1888. [Google Scholar] [CrossRef]
- Goto, A.; Nohmi, M.; Sakurai, T.; Sogawa, Y. Hydrodynamic Design System for Pumps Based on 3-D CAD, CFD, and Inverse Design Method. J. Fluids Eng. 2002, 124, 329–335. [Google Scholar] [CrossRef]
- Leguizamón, S.; Avellan, F. Open-Source Implementation and Validation of a 3D Inverse Design Method for Francis Turbine Runners. Energies 2020, 13, 2020. [Google Scholar] [CrossRef] [Green Version]
- Coconna, P.; Rebay, S.; Harinck, J.; Guardone, A. Real-gas Effects in ORC Turbine Flow Simulations: Influence of Thermodynamic Models on Flow Fields and Performance Parameters. In Proceedings of the ECCOMAS CFD 2006 Conference, Egmond aan Zee, The Netherlands, 5 September 2006. [Google Scholar]
- Lighthill, M.J. An Introduction to Fourier Analysis and Generalized Functions; Cambridge University Press: London, UK, 1959. [Google Scholar]
- Wu, J.Z.; Ma, H.Y.; Zhou, M.D. Vorticity and Vortex Dynamics; Springer: Berlin, Germany, 2005. [Google Scholar]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP, Version 10.0; National Institute of Standards and Technology, Standard Reference Data Program: Gaithersburg, MD, USA, 2018. [Google Scholar]
- Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Ind. Eng. Chem. Res. 2014, 56, 2498–2508. [Google Scholar] [CrossRef] [Green Version]
- Stelldinger, M.; Giersch, T.; Figaschewsky, F.; Kühhorn, A. A Semi-Unstructured Turbomachinery Meshing Library with Focus on Modeling of Specific Geometrical Features. In Proceedings of the ECCOMAS VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece, 5–10 June 2016. [Google Scholar]
- Thompson, J.F.; Thames, F.C.; Mastin, C.W. Boundary-Fitted Curvilinear Coordinate Systems for Solution of Partial Differential Equations on Fields Containing any Number of Arbitrary Two-Dimensional Bodies; NASA-CR-2729; NASA: Washington, DC, USA, 1977. [Google Scholar]
- Borges, J.E. A proposed through-flow inverse method for the design of mixed-flow pumps. Int. J. Numer. Methods Fluids 1993, 17, 1097–1114. [Google Scholar] [CrossRef] [Green Version]
- Dang, T.Q.; Wang, T. Design of multi-stage turbomachinery blading by the circulation method: Actuator duct limit. Turbo Expo Power Land Sea Air 1992, 78934, V001T01A096. [Google Scholar]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
Parameters | Value | Unit |
---|---|---|
Working fluid | R245fa | - |
Inlet total pressure P01 | 987.53 | kPa |
Inlet total temperature T01 | 95.89 | °C |
Inlet absolute flow angle a1 | 69.15° | - |
Outlet static pressure P2 | 166.99 | kPa |
Mass flow rate | 8.62 | kg/s |
RPM | 9000 | rev/min |
Blade number | 14 | - |
Parameters | Value | Unit |
---|---|---|
Tip radius r1 | 192.7 | mm |
Tip width b1 | 5.3 | mm |
Outlet hub radius r2h | 57.8 | mm |
Outlet shroud radius r2s | 97.3 | mm |
Outlet width b2 | 39.5 | mm |
Axial length L | 65.7 | mm |
Grid Number | No. of Elements | Mass Flow Rate (kg/s) | |
---|---|---|---|
1 | 377,260 | 8.5605 | 260.44 |
2 | 715,010 | 8.5724 | 260.61 |
3 | 1,057,730 | 8.6186 | 262.53 |
4 | 2,079,220 | 8.6395 | 263.50 |
Design | Mass Flow Rate (kg/s) | ηt-t | ηt-s | |
---|---|---|---|---|
Use circulation method | 8.6186 | 94.10% | 87.28% | 247.428 |
From reference [21] | 8.62 | 94.89% | - | 221.674 |
Parameters | Value | Unit |
---|---|---|
Density | 2.8 | g/cm3 |
Modulus of elasticity | 72.3 | GPa |
Poisson’s ratio | 0.33 | - |
Tensile yield strength | 410 | MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Tang, Y. Design of Radial-Inflow Turbines for Low-Temperature Organic Rankine Cycle. Machines 2023, 11, 725. https://doi.org/10.3390/machines11070725
Zhang J, Tang Y. Design of Radial-Inflow Turbines for Low-Temperature Organic Rankine Cycle. Machines. 2023; 11(7):725. https://doi.org/10.3390/machines11070725
Chicago/Turabian StyleZhang, Jiangnan, and Yi Tang. 2023. "Design of Radial-Inflow Turbines for Low-Temperature Organic Rankine Cycle" Machines 11, no. 7: 725. https://doi.org/10.3390/machines11070725
APA StyleZhang, J., & Tang, Y. (2023). Design of Radial-Inflow Turbines for Low-Temperature Organic Rankine Cycle. Machines, 11(7), 725. https://doi.org/10.3390/machines11070725