Parametric Modeling of Curvic Couplings and Analysis of the Effect of Coupling Geometry on Contact Stresses in High-Speed Rotation Applications
Abstract
:1. Introduction
1.1. Curvic Coupling Applications
1.2. Curvic Coupling Geometry and Manufacturing
2. State of the Art and Contribution of the Present Study
3. CAD Model
- I: Calculation and modeling of the blank curvic coupling geometries.
- II: Tool profile and cutter geometry calculation.
- III: Simulation of the process kinematics. Tool trajectory creation.
- IV: Calculation of the convex and concave components’ geometry.
4. Finite Element Analysis and Simulation Model
4.1. Solid Models and Materials
4.2. Global Mesh and Local Mesh Controls
4.3. Boundary Conditions
4.3.1. Loads
4.3.2. Displacements
4.4. Interaction Conditions
4.5. Results
5. Investigation of the Effect of Geometric Parameters on the Contact Stresses
5.1. Effect of the Number of Teeth
5.2. Effect of the Number of Half Pitches
5.3. Effect of Tooth Root Radius
5.4. Effect of the Gable Angle
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Di | Inner curvic diameter | mm |
Do | Outer curvic diameter | mm |
Z | Number of teeth | - |
hp | Number of half pitches | - |
w | Face width | mm |
Rw | Grinding wheel radius | mm |
ha | Tooth addendum | mm |
hd | Tooth dedendum | mm |
an | Normal pressure angle | ° |
ac | Chafmer angle | ° |
hc | Chafmer height | mm |
ag | Gable angle | ° |
rt | Tooth root radius | mm |
Fs | Separating force | N |
T | Torque | N·mm |
A | Mean radius of the coupling | mm |
Fc | Clamping force | N |
σt | Stress due to torque | MPa |
h0 | Contact height | mm |
σc | Stress due to clamping force | MPa |
σeq | Equivalent stress | MPa |
σv,max | Maximum Von Mises stress | MPa |
σy | Yield strength | MPa |
References
- Boyce, M.P. (Ed.) 18—Couplings and Alignment. In Gas Turbine Engineering Handbook, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2012; pp. 693–719. [Google Scholar] [CrossRef]
- Gleason Works. Curvic Coupling Design. Gear Technol. November/December 1986, 34–48. Available online: https://www.geartechnology.com/ext/resources/issues/1186x/Back-to-Basics.pdf (accessed on 11 July 2023).
- Richardson, I.J.; Hyde, T.H.; Becker, A.A.; Taylor, J.W. A comparison of two and three dimensional finite element contact analysis of Curvic couplings. Trans. Eng. Sci. 1999, 24, 11. [Google Scholar]
- Richardson, I.; Hyde, T.; Becker, A.A.; Taylor, J. A validation of the three-dimensional finite element contact method for use with Curvic couplings. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2002, 216, 63–75. [Google Scholar] [CrossRef]
- Rencis, J.J.; Pisani, S.R. Using three-dimensional CURVIC® contact models to predict stress concentration effects in an axisymmetric model. WIT Trans. Model. Simul. 2005, 39, 10. [Google Scholar]
- Jiang, X.-J.; Zhang, Y.-Y.; Yuan, S.-X. Analysis of the contact stresses in curvic couplings of gas turbine in a blade-off event. Strength Mater. 2012, 44, 539–550. [Google Scholar] [CrossRef]
- Croccolo, D.; Agostinis, M.; Fini, S.; Olmi, G.; Robusto, F.; Vincenzi, N. On Hirth Ring Couplings: Design Principles Including the Effect of Friction. Actuators 2018, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Yang, C.; He, T.; Liu, J.; Hong, J. Modelling and stress analysis for double-row curvic couplings. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 235, 4231–4243. [Google Scholar] [CrossRef]
- Jung, Y.-S.; Gao, J.-C.; Lee, G.-I.; Jung, K.-R.; Kim, J.-Y. Large Curvic Coupling Gear for Ultraprecision Angle Division Using FEM. Int. J. Precis. Eng. Manuf. 2021, 22, 495–503. [Google Scholar] [CrossRef]
- Nielson, B.J. Digital Inspection of Fixed Curvic Coupling Contact Pattern. Master’s Thesis, Faculty of California Polytechnic State University, San Luis Obispo, CA, USA, 2012. [Google Scholar]
- Efstathiou, C.; Tapoglou, N. Simulation of spiral bevel gear manufacturing by face hobbing and prediction of the cutting forces using a novel CAD-based model. Int. J. Adv. Manuf. Technol. 2022, 122, 3789–3813. [Google Scholar] [CrossRef]
- Tapoglou, N. Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation. Int. J. Adv. Manuf. Technol. 2019, 100, 1779–1785. [Google Scholar] [CrossRef] [Green Version]
- Li, A.-M.; Cui, H.-T.; Wen, W.-D.; Huang, F. Design and optimization of curvic coupling with double circular-arc root fillet in aero-engine. J. Propuls. Technol. 2016, 37, 146–155. [Google Scholar]
- Huang, D.; Wang, Z.; Zeng, T. Manufacturing method for fixed curvic coupling. China Mech. Eng. 2013, 24, 1877–1880+1885. [Google Scholar]
- Pisani, S.R.; Rencis, J.J. Investigating CURVIC coupling behavior by utilizing two- and three-dimensional boundary and finite element methods. Eng. Anal. Bound. Elem. 2000, 24, 271–275. [Google Scholar] [CrossRef]
- Yu, Y.; Lee, B.; Cho, Y. Analysis of contact and bending stiffness for Curvic couplings considering contact angle and surface roughness. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2019, 233, 1257–1267. [Google Scholar] [CrossRef]
- Kim, B.J.; Oh, J.; Palazzolo, A. An improved preloaded Curvic coupling model for rotordynamic analyses. J. Sound. Vib. 2023, 544, 117391. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, D.; Dou, Y.; Hong, J. Stiffness Modelling for One Curvic Coupling Considering Contact Details. In Proceedings of the 14th International Conference on Vibration Problems, Crete, Greece, 1–4 September 2019; Sapountzakis, E.J., Banerjee, M., Biswas, P., Inan, E., Eds.; Springer Nature Singapore: Singapore, 2021; pp. 593–613. [Google Scholar]
- Liu, H.; Hong, J.; Ruan, S.; Li, Z.; Cheng, G. A Model accounting for Stiffness Weakening of Curvic Couplings under Various Loading Conditions. Math. Probl. Eng. 2020, 2020, 1042375. [Google Scholar] [CrossRef] [Green Version]
- DIN3972; Bezugsprofile von Verzahnwerkzeugen für Evolventenverzahnung nach DIN 867. Köln Beuth: Berlin, Germany, 1952.
Property | Value | Units |
---|---|---|
Density | 7850 | kg/m3 |
Elastic modulus | 205 | GPa |
Yield strength | 470 | MPa |
Specific heat | 475 | J/Kg·K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efstathiou, C.; Tsormpatzoglou, I.; Tapoglou, N. Parametric Modeling of Curvic Couplings and Analysis of the Effect of Coupling Geometry on Contact Stresses in High-Speed Rotation Applications. Machines 2023, 11, 822. https://doi.org/10.3390/machines11080822
Efstathiou C, Tsormpatzoglou I, Tapoglou N. Parametric Modeling of Curvic Couplings and Analysis of the Effect of Coupling Geometry on Contact Stresses in High-Speed Rotation Applications. Machines. 2023; 11(8):822. https://doi.org/10.3390/machines11080822
Chicago/Turabian StyleEfstathiou, Chara, Ioanna Tsormpatzoglou, and Nikolaos Tapoglou. 2023. "Parametric Modeling of Curvic Couplings and Analysis of the Effect of Coupling Geometry on Contact Stresses in High-Speed Rotation Applications" Machines 11, no. 8: 822. https://doi.org/10.3390/machines11080822
APA StyleEfstathiou, C., Tsormpatzoglou, I., & Tapoglou, N. (2023). Parametric Modeling of Curvic Couplings and Analysis of the Effect of Coupling Geometry on Contact Stresses in High-Speed Rotation Applications. Machines, 11(8), 822. https://doi.org/10.3390/machines11080822