
Citation: Xu, X.; Zhang, G.; Zheng,

W.; Zhao, A.; Zhong, Y.; Wang, H.

High-Precision Detection Algorithm

for Metal Workpiece Defects Based

on Deep Learning. Machines 2023, 11,

834. https://doi.org/10.3390/

machines11080834

Academic Editor: Francisco J.

G. Silva

Received: 3 August 2023

Revised: 11 August 2023

Accepted: 14 August 2023

Published: 16 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

High-Precision Detection Algorithm for Metal Workpiece
Defects Based on Deep Learning
Xiujin Xu 1, Gengming Zhang 1, Wenhe Zheng 2, Anbang Zhao 1, Yi Zhong 1 and Hongjun Wang 1,3,*

1 College of Engineering, South China Agricultural University, Guangzhou 510642, China;
xiujin@stu.scau.edu.cn (X.X.); gengming_zhang@stu.scau.edu.cn (G.Z.); 20223171033@stu.scau.edu.cn (A.Z.);
zy0328@stu.scau.edu.cn (Y.Z.)

2 Wanhui Hardware Shenzhen Co., Ltd., Shenzhen 518118, China; justy.zheng@byd.com
3 Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
* Correspondence: xtwhj@scau.edu.cn

Abstract: Computer vision technology is increasingly being widely applied in automated industrial
production. However, the accuracy of workpiece detection is the bottleneck in the field of computer
vision detection technology. Herein, a new object detection and classification deep learning algorithm
called CSW-Yolov7 is proposed based on the improvement of the Yolov7 deep learning network.
Firstly, the CotNet Transformer structure was combined to guide the learning of dynamic attention
matrices and enhance visual representation capabilities. Afterwards, the parameter-free attention
mechanism SimAM was introduced, effectively enhancing the detection accuracy without increasing
computational complexity. Finally, using WIoUv3 as the loss function effectively mitigated many
negative influences during training, thereby improving the model’s accuracy faster. The experimental
results manifested that the mAP@0.5 of CSW-Yolov7 reached 93.3%, outperforming other models.
Further, this study also designed a polyhedral metal workpiece detection system. A large number
of experiments were conducted in this system to verify the effectiveness and robustness of the
proposed algorithm.

Keywords: deep learning; neural networks; industrial inspection; defect detection

1. Introduction

In complex industrial production processes, defects such as collision damage, dents,
wear, scratches, etc., can occur due to design and mechanical equipment failures, adverse
working conditions, or human factors. In everyday use, products are also prone to corrosion
and fatigue. These defects of different degrees increase the cost for companies, shorten
the lifespan of products, and result in significant waste of resources, posing great risks to
personal safety and social–economic development. Therefore, the capability of defect detec-
tion is the key to improving product quality without compromising production efficiency.
In recent years, the development of machine-vision-based automated inspection methods
has overcome the limitations of low accuracy, poor real-time performance, and high labor
intensity associated with manual inspection [1]. This technology has emerged as a fast and
reliable alternative for detecting various surface defects, offering significant advantages
such as high automation, reliability, and objectivity. Machine-vision-based inspection has
demonstrated strong adaptability to different environmental conditions and can operate
continuously with high levels of precision and efficiency [2]. However, industrial visual
defect detection methods are required to be equipped with characteristics such as high
precision, high efficiency, and low cost [3]. This suggests that these requirements have also
become important bottlenecks in the field of computer vision detection [4].

With the rapid development of deep learning technology, significant successes have
been achieved in various fields such as object detection [5], intelligent robotics [6], saliency
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detection [7], parking-lot sound event detection [8], smart-city safety sound event detec-
tion [9,10], and drone-blade fault diagnosis [11–14]. Deep learning is a machine learning
method that uses multi-layer neural networks for automatic feature learning and pattern
recognition. By combining low-level features to form higher-level representations of ab-
stract attribute categories or features, deep learning algorithms can realize more accurate
data understanding and analyses in terms of edges, shapes, and other abstract character-
istics, thereby strengthening their effectiveness. As a result, numerous researchers have
been exploring the utilization of deep learning techniques for defect detection in products
to enhance product quality and production efficiency [15–18].

This article puts forward an improved deep learning neural network based on Yolov7,
using the example of metal surface defects caused by locks. Through a large number of
experiments, the proposed algorithm achieved high accuracy and efficiency in the process
of automated detection. The surface defects of the lock body were determined as being
diverse, covering almost all kinds of defects caused by metal mechanical processing, as
shown in Figure 1. It is clear that the selected lock body presented a curved surface, and
the uneven reflection of the curved surface caused excessive brightness in certain areas
of the photos, ultimately affecting the detection results. Actually, this problem is also
very common in metal workpieces [19]. Therefore, the selected lock body in this article
has representative significance for metal workpieces. This study mainly classified surface
defects of the selected lock body into the following categories, namely: bad stuff, freckles,
scratches, poor contraction, bad cover, bump damage, and abrade.
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In order to detect surface defects on metal lock bodies with high precision and effi-
ciency, this paper establishes an advanced and effective deep learning network. Specifically,
Yolov7 [20] was firstly combined with the CotNet Transformer structure [21], so as to
combine the ability of the Transformer [22] to capture global information with the ability of
CNNs to capture local information in proximity, thereby improving the feature representa-
tion capability of the network model. Based on this raised algorithm, the parameter-free
attention mechanism SimAM [23] was then incorporated into the aforementioned network.
Unlike existing channel/spatial attention modules, this module could derive 3D attention
weights for feature maps without requiring additional parameters, effectively intensifying
the detection accuracy. Finally, WIoUv3 [24] was adopted as the loss function to effectively
mitigate a series of negative influences during the training process and allow for faster
improvement in the accuracy of the model. In addition, a polyhedral metal component
inspection system was also developed, including a detection platform and its operating
software v1.0 that comply with actual production conditions. The improved network train-
ing model was applied to this system and its high efficiency and accuracy in automatically
detecting surface defects on metal lock bodies were validated with numerous experiments.
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In summary, this article contributes the following:

(1) Introducing an advanced and effective deep learning neural network that builds upon
the Yolov7 algorithm, utilizing the CotNet Transformer as the backbone, incorpo-
rating the parameter-free attention mechanism SinAM, and using WIoUv3 as the
loss function.

(2) To validate the efficiency and accuracy of the proposed algorithm, a polyhedral metal
workpiece detection system was designed, including a detection platform and its
operating software v1.0.

(3) Providing an automated control solution for automated detection and sorting.

The structure of the remaining parts of this article is as follows. Section 2 provides
a brief overview of related research on industrial defect detection methods. Section 3
presents a detailed description of the implementation of the proposed network architecture.
The experiments conducted and the results obtained are presented in Section 4. Finally,
in Section 5, the research findings and their significance are summarized, providing a
conclusion to this study.

2. Related Work

Industrial defect detection has consistently remained as a prominent research topic
undertaken within the realm of industrial vision. Machine vision algorithms offer a diverse
range of methods for detecting defects, broadly classified into two categories: conventional
approaches and deep learning methodologies. Cheetverikov et al. [25] effectively utilized
these techniques to detect sudden flaws on fabric surfaces, where texture defects were
analyzed by employing two fundamental structural characteristics, specifically consistency
and local direction (anisotropy). Hou et al. [26] showcased that the precise recognition
and partitioning of defects exposed on the surface of textures can be attained through the
utilization of support vector machine classification methods relying on Gabor wavelet
characteristics. Zheng et al. [27] proposed a VMD modulus optimization method based
on maximum envelope kurtosis, which exhibits strong generalization and noise resistance.
Cha et al. [28] introduced a visual detection technique for structures, with the help of the
Faster Region Convolutional Neural Network (Faster RCNN) [29]. This method enables
simultaneous and near-real-time identification of concrete fractures, medium- and high-
level steel erosion, bolt erosion, as well as five distinct forms of steel delamination harm.
With a resolution of 500 × 375, this approach provides a relatively rapid speed of detection,
averaging 0.03 s per image. However, industrial vision defect detection requires highly
accurate methods capable of detecting subtle defects that are difficult for the human eye to
observe. It is not only necessary to minimize false negatives and positives but also to be able
to adjust the detection performance in a timely manner. According to the aforementioned
literature, traditional methods are only suitable for defects with specific geometric features.
Traditional methods require the manual design of feature descriptors for defects, which
are appropriate for simple and rule-based industrial scenarios. The subtle nature and
subjectivity of defects pose great challenges in the accurate description of defects using
manual features. Moreover, due to the unknown and diverse nature of defects, multiple
sets of defect templates need to be designed, but they cannot detect novel defects, only
describing a limited range of defect types. When faced with complex and irregular data,
traditional methods not only struggle to be applied but may also require complex post-
processing procedures [3]. In most cases, on account of the complexity of mechanical
processing, the types of defects in workpieces are diverse and traditional methods are no
longer competent for defect detection.

In recent years, with the widespread application of deep learning in computer vision
tasks [30–36], deep-learning-based industrial defect detection methods have rapidly devel-
oped and gradually become the mainstream. Due to the powerful feature extraction and
representation capabilities of convolutional neural networks (CNN) for high-dimensional
data, deep-learning-based methods can achieve the automatic learning of features that
are difficult for humans to design. This not only saves the cost of manually designing
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features but also significantly improves detection accuracy. Compared to traditional meth-
ods based on image processing and statistical learning, deep learning methods present
advantages in handling complex industrial image data. Tao et al. [37] designed a novel
cascaded autoencoder (CASAE) architecture for defect segmentation and localization. This
approach satisfies the criteria for robustness and precision in identifying defects in metal
materials. However, it is impractical for defects such as bad stuff and freckles owing to
large numbers of labels needed, and a significant amount of manual labor required for
creating and analyzing the dataset. Gao et al. [38] proposed a convolutional neural network
with feature alignment trained in a hierarchical manner. The method introduces feature
alignment, which maps unrecognizable defects to recognizable areas, and incorporates fea-
ture alignment into the training process using a hierarchical training strategy. Nevertheless,
the network still needs improvement in recognizing small defects. Yoon et al. [39] presented
a technique for real-time non-destructive testing for layered composite material defects by
virtue of highly nonlinear solitary waves (HNSWs) in deep learning. The accuracy level
of this technique exceeds 90%, highlighting the potential of real-time detection utilizing
the proposed deep learning algorithm. However, this method is restricted to the layered
detection of AS4/PEEK laminated composite materials, which has significant limitations.
Wang et al. [40] put forward an unsupervised surface defect detection method based on
a non-convex total variation (TV)-regularized kernelized Robust Principal Component
Analysis (RPCA). However, this method is prone to false negatives in terms of detecting
small-sized defects and requires further improvement. Yang et al. [41] came up with an
effective unsupervised anomaly segmentation method that can detect and segment anoma-
lies in small regions and constrained areas of an image. They designed a deep and efficient
convolutional autoencoder to detect abnormal regions in images through fast feature recon-
struction. However, this method struggles to detect those defect types without concave or
convex surface features, such as freckles shown in Figure 1. Yang et al. [42] proposed a new
method called a Multi-Scale Feature-Clustering-based Fully Convolutional Autoencoder
(MS-FCAE) for the efficient and accurate detection of various types of texture defects with
a small number of defect-free texture samples. But, this method is only applicable to
different types of texture defects and lacks generalizability. Li et al. [43] introduced a novel
automatic defect detection approach based on deep learning, namely You Only Look Once
(YOLO)-Attention based on YOLOv4, which achieved fast and accurate defect detection
in Web-based Augmented Assembly Manufacturing (WAAM). Wang et al. [44] presented
an accurate object detector, ATT-YOLO (Attention-YOLO), which is oriented toward the
problem of surface defect detection in electronics manufacturing. ATT-YOLO satisfies the
requirements of surface defect detection and achieves the best tradeoff among lightweight
YOLO-style object detectors.

In summary, there are various methods for detecting defects in metal workpieces, but
the drawbacks of traditional methods are evident. Deep learning methods can be classified
into two major categories: defect segmentation and object detection. However, based on the
extensive literature reviewed, defect segmentation methods lack generalizability and are
unable to achieve sufficient accuracy for detecting small-sized defects. On the other hand,
object detection methods exhibit strong generalizability, an ease of dataset creation, high
accuracy, and efficiency. Therefore, this paper proposes a deep learning network based on
an improved YOLOv7 algorithm for the automated detection of surface defects on metal
lock bodies.

3. Proposed Method
3.1. Yolov7 Algorithm Model

As a core technology in the domain of computer vision, object detection has gained
broad utilization across various industrial sectors. Among them, the YOLO series algo-
rithms have gradually become the preferred framework for most industrial applications
due to their excellent overall performance [45–49]. However, in practical use, many algo-
rithms fail to meet the requirements of industrial detection in terms of speed and accuracy.
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There are various types of defects in locks and lock cores, with significant differences in
shape and size. Consequently, it is necessary to adopt a deep learning algorithm with good
robustness, as well as detection speed and accuracy, that can meet industrial requirements.
This section introduces the improvement scheme of the Yolov7 object detection algorithm
model. Figure 2 shows the modified network architecture.
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3.2. Using CotNet Transformer as the Backbone

Most existing Transformer-based architecture designs directly operate on 2D feature
maps, obtaining attention matrices by using self-attention (independent query points and
all key pairs). However, the rich context between adjacent keys is not fully utilized. Li
et al. [21] designed a novel Transformer module called a Contextual Transformer (CoT)
for visual recognition, which completely takes advantage of the contextual information
between input keys to guide the learning of dynamic attention matrices, thereby enhancing
visual representation capability. Technically, CoT first encodes the input keys with a 3 × 3
convolution to generate the static contextual representation of the input. Furthermore, the
encoded keys are concatenated with the input queries, and dynamic multi-head attention
matrices are learned through two consecutive 1 × 1 convolutions. Finally, the learned
attention matrices are multiplied by the input values to achieve the dynamic contextual
representation of inputs, and the fusion of static and dynamic contextual representations
is considered as the final output. In this paper, the Contextual Transformer structure
was employed as the backbone of YOLOv7, resulting in a Transformer-style backbone
network called Contextual Transformer Networks (CotNet). The principle of the Contextual
Transformer module is illustrated in Figure 3.
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The Contextual Transformer (CoT) module surpasses traditional self-attention mech-
anisms by leveraging the contextual information between input keys to facilitate self-
attention learning and ultimately boost the network’s representation capability. It combines
context mining and self-attention learning, making full use of the contextual information
between adjacent keys to promote self-attention learning and reinforce the expressive
power of the aggregated feature maps. Figure 4 represents the structure diagram of the
CoT module.
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According to Figure 4, the specific implementation principle is as follows. Given
an input feature map X of size H ×W × C, the keys, queries, and values are defined
as H = X, Q = X, and V = XWv, respectively. CoT first performs context encoding
on all adjacent keys within a k × k neighborhood in the spatial dimension to obtain
contextual keys K1 ∈ RH×W×C, which reflects the static contextual information between
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local neighboring keys. Next, the contextual keys K1 are concatenated with Q, passing
through two consecutive 1 × 1 convolutions to obtain the attention matrix:

A = [K1, Q]WθWδ (1)

The local attention matrix at each spatial position of A is learned based on the query
features and contextual key features, rather than simple query–key pairs. By aggregating
the contextual attention matrix A with the value V, a weighted feature map K2 is obtained:

K2 = V ∗ A (2)

The above feature map K2 captures dynamic feature interactions between inputs.
Therefore, the CoT module outputs the fusion of the static contextual representation K1

and the dynamic contextual representation K2.

3.3. Introducing Parameter-Free Attention Mechanism

To further improve the detection accuracy of small defects, it is feasible and effective
to introduce an attention mechanism that enhances the network’s focus on small targets
without increasing the computational burden. As a consequence, this paper proposes the
introduction of the parameter-free attention mechanism SimAM [23] in the Yolov7 network,
directly estimating the three-dimensional weights (c). In each subgraph, the same color
represents a single scalar used for each channel, spatial position, or point on the feature, as
depicted in Figure 5.
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The SimAM module inspired by the attention mechanism in the human brain is a
conceptually simple yet highly effective attention module. Unlike existing channel/spatial
attention modules, this module can derive 3D attention weights from feature maps in the
absence of additional parameters. Another advantage of this module is that most operations
are based on the defined energy function, which avoids excessive structural adjustments.

3.4. Using WIoUv3 as the Loss Function

In object detection networks, the loss function is used to measure the difference
between the model’s predicted results and true labels. Its main purpose is to guide the
model in learning how to accurately predict the position and category of objects. Please
refer to Figure 6 for details.
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Let the anchor box be denoted as
→
B = [x y w h], and the target box as

→
B = [xgt ygt wgt hgt]. IoU (Intersection over Union) refers to a metric used to mea-
sure the degree of overlap between the predicted box and the ground truth box in object
detection tasks. It can be defined as

LIoU = 1− IoU = 1− Wi Hi
Su

(3)

Su = wh + wgthgt −Wi Hi (4)

Existing studies have considered various geometric factors related to bounding boxes
and constructed penalty terms Ri to address this problem. Existing bounding box losses
are all based on additive losses and abide by the following equation:

Li = LIoU + Ri (5)

To achieve faster convergence during training and obtain higher accuracy under the
same training conditions, this research proposed replacing the original loss function of
Yolov7 with WIoUv3 [24]. Since it is difficult to avoid including low-quality examples in
the training data, geometric metrics such as distance and aspect ratio can intensify the
punishment for low-quality examples, leading to a decrease in the model’s generalization
performance. A good loss function should weaken the punishment of geometric metrics
when the anchor box and target box overlap well, without excessively interfering with
normal training, thereby enabling the model to display better generalization ability.

By constructing distance attention based on distance metrics, the following can be ob-
tained:

LWIoUv1 = RWIoU LIoU (6)

RWIoU = exp

(x− xgt
)2

+
(
y− ygt

)2(
W2

g + H2
g

)∗
 (7)

Here, Wg and Hg represent the size of the smallest enclosing box (as shown in Figure 6).
To prevent the gradient of RWIoU from hindering convergence, Wg and Hg are detached
from the computation graph (denoted by superscript *).

The definition of the outlier score is used to describe the quality of anchor boxes. It is
defined as

β =
L∗IoU
LIoU

∈ [0,+∞) (8)
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A smaller outlier score indicates a higher quality of the anchor box, and it is assigned
a smaller gradient gain to focus the bounding box regression on anchor boxes of a normal
quality. Anchor boxes with larger outlier scores are assigned smaller gradient gains,
effectively preventing low-quality examples from generating large harmful gradients.
Applying β to Formula (6) results in the following:

LWIoUv3 = rLWIoUv1, r =
β

δαβ−δ
(9)

In Formula (9), both δ and α refer to hyperparameters. When using WIoUv3 as the loss
function, in the middle and later stages of training, WIoUv3 assigns small gradient gains to
low-quality anchor boxes to reduce harmful gradients. At the same time, WIoUv3 focuses
on anchor boxes of a normal quality, improving the model’s localization performance.

4. Experiments and Results

Section 3 introduces the basic principles of the proposed network in this paper. This
section provides a detailed analysis of its experimental results.

4.1. Dataset and Experimental Setup

The experimental setup in this paper is based on the deep learning framework PyTorch,
with the version of 1.10.1+cu102, Python 3.8, and was conducted on a Windows 10 operating
system. The processor used was Intel(R) Core(TM) i7-10700 CPU@2.90 GHz, with 16 GB of
memory. The graphics card model was NVIDIA GeForce RTX 2060, and CUDA 10.2 and
CUDNN 7.6.5.32 were used to accelerate GPU computation. The specific configuration is
organized in Table 1.

Table 1. Experimental environment settings.

Parameter Configuration

Operating system Windows 10
Deep learning framework 1.10.1+cu102
Programming language Python 3.8

CUDA CUDA10.2
GPU NVIDIA GeForce RTX 2060
CPU Intel(R) Core(TM) i7-10700 CPU@2.90 GHz

To make the experimental environment closer to the actual industrial production
environment, this paper designs a detection platform for the automatic detection of polyhe-
drons, as shown in Figure 7, in which an industrial camera from Hikvision was used, based
on a ring-shaped LED light source with an outer diameter of 70 mm and an inner diameter
of 40 mm. Relevant parameters of the industrial camera and light source are summarized
in Table 2. Approximately 20 photos of each lock at different angles were collected on the
inspection platform, resulting in a total of 1210 raw images. Each raw image was enhanced
through scaling, shifting, color inversion, Gaussian filtering, and other processing tech-
niques, obtaining a total of 4840 images. The names and quantities of various defects are
delineated in Table 3. During the collection process, the platform was placed in an indoor
environment, and the camera exposure time was set to 150 ms. The model was trained
using a ratio of training/validation/test set = 7:1.5:1.5. The hyperparameters involved
during the training process are displayed in Table 4.
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wheel where the workpiece is placed is transparent. In the actual detection platform, there should
be three cameras. For the convenience of presentation, only one camera is shown in this paper. The
other two cameras are installed directly below the transparent area to detect the underside of the
workpiece, and on the side of the workpiece to detect the side view.).

Table 2. Relevant parameters of the industrial camera and light source.

Equipment Parameter Data

LED ring light
Item code JHZM-A40-W

Light source color white
Number of LEDs 48 shell LEDs

Industrial camera

Active pixels 5 million
Type multicolor

Pixel size 2.2 µm × 2.2 µm
Frame rate/Resolution 31 @ 2592 × 1944

Camera lens
Focal distance 12 mm

Maximum image surface area 1/1.8′′ (ϕ9 mm)
Aperture spectrum F2.8–F16

Table 3. Dataset.

Total Bad Stuff Freckles Scratches Poor Contraction Bad Cover Bump Damage Abrade

4840 880 320 1040 640 640 680 640

Table 4. Training parameters.

Parameter Learning Rate Batch Size Epoch Img. Size Workers

Value 0.01 4 300 640 8

4.2. Evaluation Index

In this experiment, precision (P), recall (R), and average precision (AP) were utilized
to assess the efficacy of surface anomaly detection. The equations for computing P, R, and
AP are respectively specified in Formulas (10) to (12).

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)
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mAP =
∑K

i=1 APi

K
(12)

where TP represents the count of correctly identified true-positive samples as positive
using the algorithm, FP represents the count of incorrectly identified false-positive samples
as positive using the algorithm, and K refers to the count of defect categories. APi denotes
the average precision of each defect category, which is defined as shown in Equation (13).
Therefore, mAP represents the overall average precision across all defect categories.

AP =
∫ 1

0
P(R)d(R) (13)

4.3. Analysis of Experimental Results
4.3.1. Ablation Experiment

In this study, ablation experiments were conducted to comprehensively validate the
optimization effects of various enhancement modules. Specifically, multiple ablation exper-
iments were carried out between Yolov7 (original), C-Yolov7 (CotNet), W-Yolov7 (WIoUv3),
S-Yolov7 (SimAM), CS-Yolov7 (CotNet + SimAM), CW-Yolov7 (CotNet + WIoUv3), WS-
Yolov7 (WIoUv3 + SimAM), and CSW-Yolov7 (CotNet + WIoUv3 + SimAM). The experi-
mental results are summarized in Table 5. As mentioned in Section 1, there are seven types
of defects in the metal lock body. For the convenience of data recording, this paper assigned
sequential numbers one to seven to each defect type.

Table 5. Results of ablation experiments.

Model mAP@0.5
AP

1 2 3 4 5 6 7

Yolov7 (original) 0.854 0.596 0.85 0.995 0.945 0.946 0.689 0.954
C-Yolov7 (CotNet) 0.873 0.587 0.775 0.976 0.996 0.967 0.826 0.985
S-Yolov7 (SimAM) 0.897 0.687 0.823 0.982 0.995 0.969 0.837 0.985

W-Yolov7 (WIoUv3) 0.905 0.721 0.797 0.986 0.996 0.996 0.851 0.985
CS-Yolov7 (CotNet + SimAM) 0.908 0.752 0.819 0.985 0.995 0.996 0.822 0.985

CW-Yolov7 (CotNet + WIoUv3) 0.923 0.748 0.842 0.994 0.996 0.996 0.898 0.985
WS-Yolov7 (SimAM + WIoUv3) 0.916 0.732 0.870 0.982 0.978 0.987 0.872 0.990

CSW-Yolov7 (CotNet + SimAM + WIoUv3) 0.933 0.772 0.869 0.994 0.995 0.995 0.91 0.993

From Table 5, it can be seen that the CotNet, SimAM, and WIoUv3 modules all
contributed to the improvement in detection accuracy in Yolov7. The original Yolov7
achieved a mAP@0.5 of 87.1%. C-Yolov7, S-Yolov7, and W-Yolov7 were the networks
with CotNet, SimAM, and WIoUv3 integrated, respectively, and their detection accuracy
increased by 1.9%, 4.3%, and 5.1%, respectively. CS-Yolov7, CW-Yolov7, and WS-Yolov7
were networks obtained by combining two of the three modules, and their detection
accuracy realized improvements of 5.3%, 6.9%, and 6.2%, respectively. Finally, CSW-Yolov7
incorporated all three modules into the original network, resulting in a significant increase
in detection accuracy by 7.9% compared to the original network. The effectiveness and
superiority of the proposed network are clearly demonstrated in this paper.

To visually observe the superiority of the proposed network in this paper, Figure 8
shows the change curves of mAP@0.5 and mAP@0.5:0.95 during the training process for
both the original Yolov7 network and the improved CSW-Yolov7 network. It can be ob-
served that the CSW-Yolov7 network realized a rapid increase in the values of mAP@0.5 and
mAP@0.5:0.95 during the training process, ultimately achieving a significant improvement
in accuracy.
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To demonstrate the superiority of the raised algorithm compared to other algorithms,
comparative experiments were conducted on other YOLO series algorithms in this study.
Under the same experimental conditions, the same dataset was applied for training, and six
metrics were recorded: mAP@0.5, parameters, GFLOPS, inference, NMS, and preprocess.
The results are summed up in Table 6.

Table 6. Performance comparison of object detection algorithms.

Version mAP@0.5 Parameters GFLOPS
Speed (Time: ms)

Inference NMS Preprocess

YOLOv5s 0.884 7.23 M 16.6 5.1 1.0 0.20
YOLOv6 0.916 17.19 M 44.08 7.10 1.19 0.20
YOLOv7 0.854 37.23 M 105.2 10 1.1 11.2
Yolov8 0.928 11.13 M 28.5 5.6 0.5 0.3

CSW-Yolov7 0.933 33.57 M 40.3 8.4 1.1 9.5

According to Table 6, it can be observed that the proposed algorithm in this study
achieved the highest accuracy. The overall detection time could be represented by the
sum of three metrics: inference, non-maximum suppression (NMS), and preprocess. The
detection time of the network was set as 19.1 ms. Based on the comparison in Table 6 and
considering its application in industrial automation production, CSW-YOLOv7 was proven
to be the optimal choice.

4.3.2. Practical Application of the Algorithm

As shown in Figure 7, this study simulated a real industrial production environment.
The actual detection process is explained as follows. Firstly, the workpiece (a metal lock
in this study) was placed in the middle of the slot wheel on the detection platform. Then,
three industrial cameras worked simultaneously during the actual detection. If a defect
was detected with any of the cameras, the sorting motor would push the workpiece out,
indicating it as a defective product. Otherwise, if no defects were detected after the crank
rotated for four turns, it indicated that all six sides of the workpiece were defect-free,
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including four sides. Subsequently, the sorting motor would push out the workpiece,
which was considered as a qualified product. Finally, the ejected workpieces would enter
the sorting device (as shown in Figure 7a, the flow control device consists of a diversion
plate, a diversion trough, and a servo motor, with the servo motor being obstructed and
not shown). The specific workflow is illustrated in Figure 9.

In addition, to facilitate the real-time control of the detection platform and observe the
detection results, a user interface (UI) was designed for the metal automated sorting system,
as shown in Figure 10. Through extensive experiments, this detection system demonstrated
high accuracy and efficiency in automatic sorting.

After numerous experiments, the algorithm introduced in this article was applied to
the system. The sorting success rate of the system depending on the detection accuracy of
the algorithm was confirmed to meet the industrial inspection requirements for defects such
as scratches and bad covers. However, for small-sized defects with irregular distribution
such as bad stuff, the sorting success rate of this system still needs improvement.
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5. Discussion

This study proposed an efficient and accurate improved Yolov7 network called CSW-
Yolov7. The CotNet Transformer module was adopted as the backbone, the parameter-free
attention mechanism SimAM was introduced, and the WIoUv3 was used as the loss func-
tion. By combining these three important modules, the mAP@0.5 value of the CSW-Yolov7
network was improved by 6.9% in contrast with the original network. Compared to other
Yolo series networks, the proposed network also demonstrated significant superiority.
Additionally, this study designed a system for the industrial automation detection and
sorting of metal parts, which exhibited strong practicality and reliability through exten-
sive experiments.

However, this study still exposes some limitations that can be addressed in future
research directions. Firstly, the proposed algorithm failed to achieve an AP@0.5 value
exceeding 80% when detecting small-sized and irregularly distributed defects such as bad
stuff. In this regard, further improvements are needed for such defects. Additionally, the
improved network realized a significantly lower GFLOPS value compared to the original
network. Lastly, the network proposed in this paper was only validated for the detection
of metal workpieces. Future research can explore its application in other fields such as
construction and agriculture.
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