
Citation: Chang, I.-C.; Yen, C.-E.;

Chang, H.-F.; Chen, Y.-W.; Hsu, M.-T.;

Wang, W.-F.; Yang, D.-Y.; Hsieh, Y.-H.

An Integrated YOLOv5 and

Hierarchical Human-Weight-First

Path Planning Approach for Efficient

UAV Searching Systems. Machines

2024, 12, 65. https://doi.org/

10.3390/machines12010065

Academic Editors: Maria

Eusebia Guerrero-Sanchez and

Omar Hernández-González

Received: 3 December 2023

Revised: 6 January 2024

Accepted: 8 January 2024

Published: 16 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

An Integrated YOLOv5 and Hierarchical Human-Weight-First
Path Planning Approach for Efficient UAV Searching Systems
Ing-Chau Chang 1,* , Chin-En Yen 2 , Hao-Fu Chang 1, Yi-Wei Chen 1, Ming-Tsung Hsu 1, Wen-Fu Wang 1,
Da-Yi Yang 1 and Yu-Hsuan Hsieh 1

1 Department of Computer Science and Information Engineering, National Changhua University of Education,
Changhua 50007, Taiwan; fchang@wisdome.ai (H.-F.C.); yiwei.chen@g.ncu.edu.tw (Y.-W.C.);
xmc510063@gapp.nthu.edu.tw (M.-T.H.); wang1020351@gapp.nthu.edu.tw (W.-F.W.);
m1254004@gm.ncue.edu.tw (D.-Y.Y.); s0954010@mail.ncue.edu.tw (Y.-H.H.)

2 Department of Early Childhood Development and Education, Chaoyang University of Technology,
Taichung 41349, Taiwan; ceyen@cyut.edu.tw

* Correspondence: icchang@cc.ncue.edu.tw; Tel.: +886-4-723-2105

Abstract: Because the average number of missing people in our country is more than 20,000 per year,
determining how to efficiently locate missing people is important. The traditional method of finding
missing people involves deploying fixed cameras in some hotspots to capture images and using
humans to identify targets from these images. However, in this approach, high costs are incurred in
deploying sufficient cameras in order to avoid blind spots, and a great deal of time and human effort
is wasted in identifying possible targets. Further, most AI-based search systems focus on how to
improve the human body recognition model, without considering how to speed up the search in order
to shorten the search time and improve search efficiency, which is the aim of this study. Hence, by
exploiting the high-mobility characteristics of unmanned aerial vehicles (UAVs), this study proposes
an integrated YOLOv5 and hierarchical human-weight-first (HWF) path planning framework to serve
as an efficient UAV searching system, which works by dividing the whole searching process into two
levels. At level one, a searching UAV is dispatched to a higher altitude to capture images, covering
the whole search area. Then, the well-known artificial intelligence model YOLOv5 is used to identify
all persons in the captured images and compute corresponding weighted scores for each block in
the search area, according to the values of the identified human bodies, clothing types, and clothing
colors. At level two, the UAV lowers its altitude to sequentially capture images for each block, in
descending order according to its weighted score at level one, and it uses the YOLOv5 recognition
model repeatedly until the search target is found. Two improved search algorithms, HWFR-S and
HWFR-D, which incorporate the concept of the convenient visit threshold and weight difference,
respectively, are further proposed to resolve the issue of the lengthy and redundant flight paths
of HWF. The simulation results suggest that the HWF, HWFR-S, and HWFR-D search algorithms
proposed in this study not only effectively reduce the length of a UAV’s search path and the number
of search blocks but also decrease the search time required for a UAV to locate the search target,
with a much higher search accuracy than the two traditional search algorithms. Moreover, this
integrated YOLOv5 and HWF framework is implemented and tested in a real scenario to demonstrate
its capability in enhancing the efficiency of a search and rescue operation.

Keywords: unmanned aerial vehicle; hierarchical human-weight-first path planning; artificial
intelligence image recognition; YOLOv5; searching corners without cameras

1. Introduction

As the technology of the unmanned aerial vehicle (UAV) has seen significant progress
in recent years, a number of applications have been proposed for it [1,2] due to its unique
characteristics, such as higher mobility and more flexible integration with different equip-
ment, such as sensors and cameras, etc. [3,4]. The researchers of [5] explore algorithms for

Machines 2024, 12, 65. https://doi.org/10.3390/machines12010065 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12010065
https://doi.org/10.3390/machines12010065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-9088-9963
https://orcid.org/0000-0002-9760-936X
https://doi.org/10.3390/machines12010065
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12010065?type=check_update&version=1

Machines 2024, 12, 65 2 of 31

the formation movement of UAV swarms, with the objective of facilitating simultaneous
adjustments to the formation shape while the UAV swarm is in motion. Signal transmission
is another highly significant topic in UAV control. The research in [6] proposes automatic
modulation classification utilizing deep learning in this context. The study in [7] addresses
improvements to existing GNSS systems, such as GPS positioning, tackling issues related to
inaccuracies. The researchers propose a time-differenced carrier phase (TDCP) derivation-
controlled GNSS/IMU integration scheme to successfully acquire vehicle information
such as the relative position and heading. Real-world tests demonstrate that this method
exhibits higher accuracy compared to traditional algorithms. In recent years, the increas-
ing integration of UAVs with various interdisciplinary domains has also been observed.
Koopman operators are mathematical tools used to describe the evolution of nonlinear
dynamic systems. The work of [8] proposes robust tube-based model predictive control
with Koopman operators, while [9] integrates Koopman operators with the control of UAVs.
Furthermore, there exist various UAV path planning problems and related studies, such as
the capacitated arc routing problem (CARP). The objective of CARP is to find the shortest
path in a mixed graph with undirected edges and directed arcs, minimizing the distance of
the path while considering capacity constraints for objects moving on the graph. In [10], the
study introduces a memetic algorithm based on Two_Arch2 (MATA), which simultaneously
considers multiple optimization objectives for the path planning problem, including the
total cost, makespan, carbon emissions, and load utilization rate.

Recently, UAVs have been used for search and rescue (SAR) missions to find missing
persons at the scene of a natural disaster or when an emergency event occurs [11–13]. The
issue of missing persons is a challenging societal problem, particularly when involving
minors. Children, due to their smaller stature, are susceptible to disappearance within large
crowds, especially in crowded places such as amusement parks, making it difficult to notice
their absence. Unfortunately, they generally exhibit a lower level of vigilance towards
unfamiliar individuals, rendering them vulnerable to abduction. As the duration of a
missing person’s search is prolonged, the probability of encountering a perilous situation
escalates, imposing significant psychological distress upon parents.

However, there is a limited amount of research aimed at identifying specific indi-
viduals, such as missing persons, and researchers have primarily relied on fixed cameras
installed in specific areas. This limitation prevents the continuous tracking of targets,
leading to difficulties in inferring their actual positions due to the limited perspective and
potential blind spots. Furthermore, most of the existing works on search and rescue adopt
unmanned aerial vehicles (UAVs) [14–16] and employ indiscriminate search algorithms,
without prioritizing the areas where the search target may be located, resulting in inefficient
search operations and excessive UAV power consumption. Hence, intelligent approaches
such as AI-enabled object detection in UAVs [17] are proposed to overcome this problem.

One of the major research directions regarding SAR involves coordinating multiple
UAVs to cover multiple regions, which may be scattered or not [18–21]. These approaches
focus on how to balance the time consumption of UAVs or design effective coverage flights
to cover the search area completely, with no collisions of multiple UAVs. On the other hand,
this study aims to improve the search time and costs related to an assigned search area for
a single UAV. It addresses the inefficiency problem of SAR mentioned above by proposing
an integrated YOLOv5 and hierarchical HWF path planning approach. This integrated
approach executes the following steps. First, the user specifies the geographical coordinates
of the search area and important features of the search target. Then, the searching UAV
is dispatched to a higher altitude to capture images covering the whole search area using
an onboard camera. Next, the search area is partitioned into multiple blocks. The Jetson
Nano mounted on the searching UAV captures and transmits images to a cloud server
through wireless communication. On the cloud server, the well-known artificial intelligence
model YOLOv5 is used for human body recognition and clothing recognition, and the
KNN algorithm is used to identify clothing colors. Corresponding weighted scores are
computed with the identified human bodies, clothing types, and clothing colors within each

Machines 2024, 12, 65 3 of 31

block. After this, the cloud server issues a command to the UAV to adjust its coordinates
and lower its altitude to capture clearer images that cover a single block. The proposed
human-weight-first (HWF) path planning algorithm is utilized to guide the UAV to visit
blocks sequentially, according to their weighted scores, in descending order. YOLOv5 and
the KNN algorithm are iteratively employed on the cloud server side to recognize human
bodies, clothing types, and clothing colors for images captured at lower altitudes. Upon
confirming the presence of the search target, the human body image and its location are
reported to the user, which concludes the UAV’s search mission. This integrated YOLOv5
and hierarchical HWF path planning approach can prioritize the block where the search
target is most likely to be located, to shorten the search time and costs, which significantly
improves the search efficiency and avoids the searching of corners without cameras.

Consequently, this study achieves the following contributions.

1. It utilizes the existing YOLOv5 model to automatically recognize the search target
and uses KNN color recognition to recognize clothing/pant colors in real time; it thus
avoids wasting time and human effort in the manual identification of possible targets.

2. According to the recognition results of the YOLOv5 model and KNN color recognition,
the study proposes a weighting subroutine to calculate the human weights of each
block and the hierarchical human-weight-first (HWF) path planning algorithm to
dispatch the UAV to capture images repeatedly of the search area and each block at
different altitudes.

3. It proposes a complete flowchart of the integrated YOLOv5 and HWF framework to
reduce the search time and avoid searching corners without cameras.

2. Related Work
2.1. Traditional Unmanned Aerial Vehicle Path Planning Methods for Search and
Rescue Operations

Several search and rescue methods have been proposed recently [14–16]. In [14], the
sweep line search method conducts a thorough search from left to right, as illustrated in
Figure 1. Meanwhile, ref. [15] introduces the spiral search, which navigates the designated
search area in a spiral pattern, as depicted in Figure 2. Both methods are uncomplicated
and exhibit algorithms with linear time complexity in relation to the search area. Differing
from these two methods, refs. [16,22] introduce block-based methods. These approaches
offer the advantage of categorizing the whole search area into blocks with and without
search targets. Figure 3 demonstrates the relationship between the UAV’s perspective and
the altitude concerning the search blocks when the whole search area is partitioned [22].
Through the traveling salesman problem (TSP) [23] approach, the shortest path that does
not require the visiting of all blocks is computed if all blocks with search targets have been
recognized in advance. However, the four methods mentioned above do not prioritize the
block searching sequence in proximity to the search target, which results in inadequate
search efficiency. Therefore, taking inspiration from block-based approaches, this study
assigns priority to all blocks based on the likelihood of the blocks containing potential
targets, which are automatically recognized in real time using the YOLOv5 model. In
contrast to [16], which primarily focuses on finding the shortest path, this study emphasizes
improving the search efficiency to yield the shortest search time by searching in the block
with the highest priority first.

Machines 2024, 12, x FOR PEER REVIEW 4 of 32

Figure 1. Sweep line search.

Figure 2. Spiral search.

Figure 3. The relationship between the altitude of the UAV and the partitioned search area.

2.2. Search Target Recognition Techniques
2.2.1. Color Space Exchange

The RGB color space is the most widely used color space, where RGB denotes red,
green, and blue. It is similar to the well-known concept of the primary colors of light,
where mixing these colors yields various levels of brightness and chromaticity. However,
the RGB color space has a strong dependence on the lighting conditions, meaning that the
color of an object can change with variations in brightness. In addition, the three elements
in the RGB color space are highly correlated, indicating that a change in one element will
result in a corresponding change in the perceived color. Therefore, using the RGB color
space for the color extraction of objects is not ideal [24]. In contrast, the HSV color space
[25] is more intuitive and easily understood compared to the RGB color space. It separates
the brightness value (V) from the color chrominance, which can be further divided into
hue (H) and saturation (S). Because these elements in HSV have a relatively weak correla-
tion with each other, it is highly suitable for use in feature color extraction. In comparison
to RGB, one of the advantages of the HSV color space is its weak inter-element correlation,
making it easy to control. In applications involving color recognition, we can convert the
detected images from the RGB color space to the HSV color space with Equation (1). 𝐻 = cosିଵ ቆ భమሾ(ோିீ)ା(ோି)ሿሾ(ோିீ)మା(ோି)(ீି)మሿቇ (1)

Figure 1. Sweep line search.

Machines 2024, 12, 65 4 of 31

Machines 2024, 12, x FOR PEER REVIEW 4 of 32

Figure 1. Sweep line search.

Figure 2. Spiral search.

Figure 3. The relationship between the altitude of the UAV and the partitioned search area.

2.2. Search Target Recognition Techniques
2.2.1. Color Space Exchange

The RGB color space is the most widely used color space, where RGB denotes red,
green, and blue. It is similar to the well-known concept of the primary colors of light,
where mixing these colors yields various levels of brightness and chromaticity. However,
the RGB color space has a strong dependence on the lighting conditions, meaning that the
color of an object can change with variations in brightness. In addition, the three elements
in the RGB color space are highly correlated, indicating that a change in one element will
result in a corresponding change in the perceived color. Therefore, using the RGB color
space for the color extraction of objects is not ideal [24]. In contrast, the HSV color space
[25] is more intuitive and easily understood compared to the RGB color space. It separates
the brightness value (V) from the color chrominance, which can be further divided into
hue (H) and saturation (S). Because these elements in HSV have a relatively weak correla-
tion with each other, it is highly suitable for use in feature color extraction. In comparison
to RGB, one of the advantages of the HSV color space is its weak inter-element correlation,
making it easy to control. In applications involving color recognition, we can convert the
detected images from the RGB color space to the HSV color space with Equation (1). 𝐻 = cosିଵ ቆ భమሾ(ோିீ)ା(ோି)ሿሾ(ோିீ)మା(ோି)(ீି)మሿቇ (1)

Figure 2. Spiral search.

Machines 2024, 12, x FOR PEER REVIEW 4 of 32

Figure 1. Sweep line search.

Figure 2. Spiral search.

Figure 3. The relationship between the altitude of the UAV and the partitioned search area.

2.2. Search Target Recognition Techniques
2.2.1. Color Space Exchange

The RGB color space is the most widely used color space, where RGB denotes red,
green, and blue. It is similar to the well-known concept of the primary colors of light,
where mixing these colors yields various levels of brightness and chromaticity. However,
the RGB color space has a strong dependence on the lighting conditions, meaning that the
color of an object can change with variations in brightness. In addition, the three elements
in the RGB color space are highly correlated, indicating that a change in one element will
result in a corresponding change in the perceived color. Therefore, using the RGB color
space for the color extraction of objects is not ideal [24]. In contrast, the HSV color space
[25] is more intuitive and easily understood compared to the RGB color space. It separates
the brightness value (V) from the color chrominance, which can be further divided into
hue (H) and saturation (S). Because these elements in HSV have a relatively weak correla-
tion with each other, it is highly suitable for use in feature color extraction. In comparison
to RGB, one of the advantages of the HSV color space is its weak inter-element correlation,
making it easy to control. In applications involving color recognition, we can convert the
detected images from the RGB color space to the HSV color space with Equation (1). 𝐻 = cosିଵ ቆ భమሾ(ோିீ)ା(ோି)ሿሾ(ோିீ)మା(ோି)(ீି)మሿቇ (1)

Figure 3. The relationship between the altitude of the UAV and the partitioned search area.

2.2. Search Target Recognition Techniques
2.2.1. Color Space Exchange

The RGB color space is the most widely used color space, where RGB denotes red,
green, and blue. It is similar to the well-known concept of the primary colors of light, where
mixing these colors yields various levels of brightness and chromaticity. However, the RGB
color space has a strong dependence on the lighting conditions, meaning that the color of
an object can change with variations in brightness. In addition, the three elements in the
RGB color space are highly correlated, indicating that a change in one element will result
in a corresponding change in the perceived color. Therefore, using the RGB color space
for the color extraction of objects is not ideal [24]. In contrast, the HSV color space [25] is
more intuitive and easily understood compared to the RGB color space. It separates the
brightness value (V) from the color chrominance, which can be further divided into hue
(H) and saturation (S). Because these elements in HSV have a relatively weak correlation
with each other, it is highly suitable for use in feature color extraction. In comparison to
RGB, one of the advantages of the HSV color space is its weak inter-element correlation,
making it easy to control. In applications involving color recognition, we can convert the
detected images from the RGB color space to the HSV color space with Equation (1).

H = cos−1

 1
2 [(R − G) + (R − B)][

(R − G)2 + (R − B)(G − B)2
]

S = 1 − 3[min(R, G, B)]
R + G + B

V =
max(R, G, B)

255

(1)

2.2.2. Extracting Feature Colors of Image

The feature color extraction process in [25] involves first segmenting the elements of
an image’s HSV color space, followed by the conversion of each element (H, S, V) into a
histogram of oriented gradient (HOG). Since the HOG divides each element into several
element intervals, the segmentation proportions for each element can be determined. Then,
selecting the interval with the highest proportion for each element, we can obtain their
respective numerical values (H, S, V). These values represent the HSV feature colors for
the image.

Machines 2024, 12, 65 5 of 31

2.2.3. Transformation of Color Space

After experimenting, it has been observed that certain issues exist when directly
calculating color distances in the HSV color space. Specifically, when the saturation (S) is
low, it often leads to the k-nearest neighbors (KNN) [26] decision result being mistakenly
classified as gray, regardless of how the hue (H) changes. To address this, the extracted
feature colors in HSV are transformed into the RGB color space using Equation (2) [25].
This transformation involves mapping the hue (h) range to hi, and calculating variables p,
q, t based on the hue (hi) range to determine which combination of RGB attributes (p, q, t,
v) applies. The calculated RGB values (r0, g0, b0) are then subjected to Euclidean distance
computation [27] against pre-established RGB color table values (r1, g1, b1) to determine
the color distance (d), as illustrated in Equation (3). Subsequently, the KNN algorithm is
employed to identify the color of the clothing based on this computed distance.

hi =
⌊

h
60

⌋
f = h

60 − hi
p = v × (1 − s)
q = v × (1 − f × s)
t = v × (1 − (1 − f)× s)

(r, g, b) =

(v, t, p), i f hi = 0
(q, v, p), i f hi = 1
(p, v, t), i f hi = 2
(p, q, v), i f hi = 3
(t, p, v), i f hi = 4
(v, p, q), i f hi = 5

(2)

d =

√
(r1 − r0)

2 + (g1 − g0)
2 + (b1 − b0)

2, (3)

2.2.4. K-Nearest Neighbors (KNN) Color Classification

K-nearest neighbors (KNN) [26] is a fundamental classification and regression al-
gorithm. After obtaining the HSV feature colors of an image and calculating the color
distances using Equation (3), these distances are compared to a pre-established RGB color
table. After sorting the color distances for each color, K colors with the closest distances are
then selected. Followed by a voting process among neighboring colors, the color with the
most votes is determined as the final color result selected by the KNN algorithm.

2.2.5. UAV Systems for Human Detection

The work in [28] proposes an approach utilizing an automated human detection
system on UAVs to identify human bodies, discussing the hardware configuration of UAVs
and real-time human recognition capabilities. Ref. [29] presents a comprehensive human
activity recognition algorithm, where the UAV first identifies whether the object is a person
and subsequently recognizes various human activities, such as throwing, walking, and
digging. Additionally, the study introduces various image stabilization techniques. The
research of [15] focuses on achieving human body recognition using a CNN. Due to the
difficulty in acquiring datasets, data augmentation is employed to enhance the training
outcomes. The study compares the training outcomes using various architectures and
outlines the algorithm’s path planning as a spiral search. The focus of the study in [30]
lies in the application of UAVs for commercial transportation, aiming to achieve successful
human body recognition using UAVs. The research encompasses the design of five distinct
scenarios, revealing that the distance variation between the UAV and the human body
has a more significant impact on the recognition success compared to the quality of the
camera. In the context of search and rescue operations for swimmers, ref. [31] proposes
a methodology that integrates global navigation satellite system (GNSS) techniques with
computer vision algorithms to locate individuals in distress. Refs. [32,33] primarily focus

Machines 2024, 12, 65 6 of 31

on the training of human detection models. Ref. [32] introduces a modified YOLOv8
architecture by incorporating the SC3T module into the final layer and training the model
using images captured from a UAV perspective. The emphasis of the study lies in the
recognition performance. The experimental results are evaluated using confusion matrices
and the mean average precision. The findings reveal that, across the precision rate, recall
rate, and mAP, the modified YOLOv8 outperforms both the original YOLOv5 and YOLOv8
models. Ref. [33] primarily utilizes YOLOv5 for human detection and further employs a
Haar cascade classifier to identify specific body parts (head, upper body, lower body). The
final results indicate that YOLOv5 achieves 98% average precision (AP), while the Haar
cascade classifier attains approximately 78% AP. Table 1 presents a comparison of related
studies on human detection using UAVs. It can be found that most of the related methods
focus on how to improve the human body recognition model, without considering how to
speed up the search in order to shorten the search time and search efficiency, which is the
aim of this study. Hence, the integrated YOLOv5 and HWF framework is proposed here to
obtain an efficient UAV searching system by combining the hierarchical human-weight-first
(HWF) path planning algorithm with the results of human body recognition from the
existing YOLOv5 model and the clothing/pant colors from KNN color recognition.

Table 1. Comparison of related studies of UAV human detection.

Human Body
Recognition Model Dataset Used

Recognition of
Human Clothing
Types and Colors

Segmentation
of the Search

Area

Dynamic Route
Planning
for Search

Integration of
Human Body and

Clothing/Pant Color
Recognition with

Dynamic
Route Planning

[28]
Motion detection
outputs a score of
human confidence

No No No No No

[29] CNN UCF-ARG dataset
No, proposes human

activity classifica-
tion algorithm

No No No

[15] CNN Self-developed
captured dataset No No No, spiral search No

[30] DNN with MobileNet
V2 SSDLite COCO dataset No No

Yes, estimates the
person and moves

in his direction
with GPS

[31] CNN with
Tiny YOLOv3

COCO
dataset + self-

developed
swimmers dataset

No No No No

[32] CNN with
modified YOLOv8

Self-developed
UAV view

real-world dataset
No No No No

[33]
CNN with YOLOv5

and Haar
Cascade classifier

VisDrone dataset
+ COC0128 dataset

No, proposes a
human body region

classification algorithm
No No No

HWF CNN with YOLOv5

VisDrone dataset
+ self-developed

drone-
clothing dataset

Yes, uses KNN
color recognition Yes

Yes, proposes the
hierarchical

human-weight-first
(HWF) path

planning algorithm

Yes,
Proposes the

integrated YOLOv5
and HWF framework

3. System Architecture and Algorithms
3.1. System Architecture

As depicted in Figure 4, the system architecture is divided into three main components:
the UAV equipped with the Jetson Nano [34], the server side, and the client side, where
the Jetson Nano handles the UAV’s flight commands and mobile network communication

Machines 2024, 12, 65 7 of 31

tasks. The search begins with the user inputting the location and the block size of the search
area, as well as four target searching criteria, into the server.

Machines 2024, 12, x FOR PEER REVIEW 8 of 32

Figure 4. System architecture and flowchart of this study.

3.2. Search Algorithm
3.2.1. Hierarchical Flight Altitudes for the UAV

In this study, the UAV’s flight altitude is divided into two types: the initial altitude ℎ to capture the image of the whole search area and altitude ℎଵ to capture an image of a
single block to achieve the optimal object recognition. The server conducts path planning
at initial altitude ℎ and then directs the UAV to fly at the optimal object recognition al-
titude ℎଵ to traverse the blocks. According to Equation (4), the server calculates altitude ℎ by utilizing the side length of the search area, i.e., √𝑎𝑟𝑒𝑎, and 𝑡𝑎𝑛𝜃, where θ 𝜃 is half
of the field of view (FOV) of the UAV’s camera. This calculation determines the UAV
height ℎ at which the image captured by the UAV’s camera with this field of view can
cover the entire search area. ℎ = √𝑎𝑟𝑒𝑎2𝑡𝑎𝑛𝜃 (4)

Subsequently, the optimal object recognition altitude ℎଵ is determined by calcula-
tion based on the predefined side length n of the block. At height ℎଵ, the UAV has a clearer
perspective to achieve better recognition results, enhancing the accuracy in identifying the
search target. When the block size (n × n) remains constant, the number of total blocks
increases as the search area becomes larger. Conversely, as the size of the search area de-
creases, fewer blocks are segmented, as illustrated in Figure 5. After calculating the indi-
vidual weight values for all blocks at initial altitude ℎ, the human-weight-first (HWF)
algorithm is employed to plan the flight path at the block level. Once the flight path is
planned, the UAV descends from initial altitude ℎ to altitude ℎଵ to start the block
search. During the search path of the block level, if the server identifies an object from the
image captured by the UAV at altitude ℎଵ with a weight score exceeding the predefined
threshold for the search target, it is considered that the target has been found. In this case,
the server sends the target’s location and the corresponding captured image back to the
user and this concludes the UAV’s search mission.

Figure 4. System architecture and flowchart of this study.

The four target searching conditions are shown below:

• Clothing type;
• Pant type;
• Clothing color;
• Pant color.

After the inputs, the server establishes a communication link with the Jetson Nano
on the UAV via a mobile network connection, and the UAV is then dispatched from the
starting point to the search area to initialize the search operation. Using a USB camera
mounted on the UAV, aerial images are captured for the search area and blocks. All captured
images and their shooting locations are sent back to the server, which benefits from its
enhanced computational ability to undertake more intricate operations, including human
body recognition by YOLOv5, clothing recognition by YOLOv5, and color identification by
the KNN algorithm. This setup harnesses the advantages of cloud computing [35]. During
the UAV’s searching process according to the hierarchical human-weight-first (HWF) path
planning algorithm, if the server identifies a search target that meets the search criteria, it
notifies the user and the Jetson Nano on the UAV. This instruction prompts the UAV to
return to the starting point, concluding its search mission.

3.2. Search Algorithm
3.2.1. Hierarchical Flight Altitudes for the UAV

In this study, the UAV’s flight altitude is divided into two types: the initial altitude
h0 to capture the image of the whole search area and altitude h1 to capture an image of a
single block to achieve the optimal object recognition. The server conducts path planning at
initial altitude h0 and then directs the UAV to fly at the optimal object recognition altitude
h1 to traverse the blocks. According to Equation (4), the server calculates altitude h0 by
utilizing the side length of the search area, i.e.,

√
area, and tanθ, where θ is half of the field

of view (FOV) of the UAV’s camera. This calculation determines the UAV height h0 at
which the image captured by the UAV’s camera with this field of view can cover the entire
search area.

hi =

√
area

2tanθ
(4)

Subsequently, the optimal object recognition altitude h1 is determined by calculation
based on the predefined side length n of the block. At height h1, the UAV has a clearer

Machines 2024, 12, 65 8 of 31

perspective to achieve better recognition results, enhancing the accuracy in identifying the
search target. When the block size (n × n) remains constant, the number of total blocks
increases as the search area becomes larger. Conversely, as the size of the search area
decreases, fewer blocks are segmented, as illustrated in Figure 5. After calculating the
individual weight values for all blocks at initial altitude h0, the human-weight-first (HWF)
algorithm is employed to plan the flight path at the block level. Once the flight path is
planned, the UAV descends from initial altitude h0 to altitude h1 to start the block search.
During the search path of the block level, if the server identifies an object from the image
captured by the UAV at altitude h1 with a weight score exceeding the predefined threshold
for the search target, it is considered that the target has been found. In this case, the server
sends the target’s location and the corresponding captured image back to the user and this
concludes the UAV’s search mission.

Machines 2024, 12, x FOR PEER REVIEW 9 of 32

Figure 5. The number of blocks versus the area size.

3.2.2. Block Weight in the Search Area
The weight within each block is determined by the accuracy value of the recognized

person’s body (𝐴𝑃), the accuracy values of the clothing and pant types (𝐴𝑃, 𝐴𝑃), the
recognized clothing and pant types (𝐶௧, 𝐶௧), the search clothing and pant types (𝐶௦௧, 𝐶௦௧), the recognized clothing and pant colors (𝐶, 𝐶), and the search clothing and
pant colors (𝐶௦, 𝐶௦) in a fuzzy manner. This calculation results in the weight value, i.e.,
human_weight, for the recognized person. The block weight, i.e., block_weight, is defined
as the highest weight value among all recognized persons in a block. By sorting the block
weight values in the whole search area, it is possible to determine which block is most
likely to contain the search target.

3.2.3. Hierarchical Human-Weight-First (HWF) Path Planning Algorithm
Traditional research such as [35] proposes the exhaustive approach to generate all

possible paths, select the shortest path in terms of the path length, and finally traverse the
blocks in descending order of the block weight. However, the exhaustive algorithm exhib-
its exponential time complexity as the size of the search area increases. Therefore, in this
study, the human-weight-first (HWF) algorithm is designed as the path planning algo-
rithm for the UAV. The HWF algorithm makes the optimal choice at each step in the cur-
rent state, as in [36], aiming to achieve an overall result that is as optimal as possible.

The flow of the HWF algorithm is listed below and illustrated in Figure 6.
(a) The UAV flies from the center point of the search area to an altitude of ℎ to begin

recognition, which is shown in Figure 6a. Block weights are calculated using the im-
age captured by the UAV at altitude ℎ.

(b) The HWF algorithm selects the block with the highest block weight as the starting
point for the block search and guides the UAV to descend to the center of the block
at altitude ℎଵ, which is shown in Figure 6b. The UAV then captures images of the
block and sends them to the server for further recognition.

(c) If no search target is found in this block, HWF instructs the UAV to traverse to the
block with the next highest block weight until the search target is found, i.e., the block
weight exceeds the search target threshold, or all blocks with nonzero block weights
have been visited, as shown in Figure 6c.
As depicted in Figure 6, the value in a block represents its block weight, which is

used to prioritize the block search order, increasing the speed when identifying the search
target. Hence, the complete block traversal order in Figure 6c is as follows: block [0.9] →
block [0.85] → block [0.74] → block [0.49] → block [0.58] → block [0.3]. It should be

Figure 5. The number of blocks versus the area size.

3.2.2. Block Weight in the Search Area

The weight within each block is determined by the accuracy value of the recognized
person’s body (APha), the accuracy values of the clothing and pant types (APca, APpa), the
recognized clothing and pant types (Crct, Crpt), the search clothing and pant types (Csct,
Cspt), the recognized clothing and pant colors (Crcc, Crpc), and the search clothing and
pant colors (Cscc, Cspc) in a fuzzy manner. This calculation results in the weight value, i.e.,
human_weight, for the recognized person. The block weight, i.e., block_weight, is defined
as the highest weight value among all recognized persons in a block. By sorting the block
weight values in the whole search area, it is possible to determine which block is most
likely to contain the search target.

3.2.3. Hierarchical Human-Weight-First (HWF) Path Planning Algorithm

Traditional research such as [35] proposes the exhaustive approach to generate all
possible paths, select the shortest path in terms of the path length, and finally traverse
the blocks in descending order of the block weight. However, the exhaustive algorithm
exhibits exponential time complexity as the size of the search area increases. Therefore,
in this study, the human-weight-first (HWF) algorithm is designed as the path planning
algorithm for the UAV. The HWF algorithm makes the optimal choice at each step in the
current state, as in [36], aiming to achieve an overall result that is as optimal as possible.

The flow of the HWF algorithm is listed below and illustrated in Figure 6.

(a) The UAV flies from the center point of the search area to an altitude of h0 to begin
recognition, which is shown in Figure 6a. Block weights are calculated using the
image captured by the UAV at altitude h0.

(b) The HWF algorithm selects the block with the highest block weight as the starting
point for the block search and guides the UAV to descend to the center of the block at

Machines 2024, 12, 65 9 of 31

altitude h1, which is shown in Figure 6b. The UAV then captures images of the block
and sends them to the server for further recognition.

(c) If no search target is found in this block, HWF instructs the UAV to traverse to the
block with the next highest block weight until the search target is found, i.e., the block
weight exceeds the search target threshold, or all blocks with nonzero block weights
have been visited, as shown in Figure 6c.

Machines 2024, 12, x FOR PEER REVIEW 10 of 32

noted that the proposed integrated YOLOv5 and HWF approach results in a high proba-
bility of recognizing the search target in the first few blocks, which significantly reduces
the UAV search time, traversal distance, and power consumption.

(a)

(b)

(c)

Figure 6. The complete planned path by HWF. (a) The UAV flies from the center point of the search
area to an altitude of ℎ to begin recognition. (b) The HWF algorithm selects the block with the
highest block weight as the starting point for the block search and guides the UAV to descend to the
center of the block at altitude ℎଵ. (c) The red lines show the complete block traversal order.

3.2.4. Convenient Visit Algorithms Based on HWF
In Figure 7, the black values represent the block weights calculated at altitude ℎ,

while the blue values represent the weight scores calculated at altitude ℎଵ. Assume that
the target threshold is set as 80. Since the weights at both ℎ and ℎଵ altitudes do not
exceed the target threshold, the HWF path planning algorithm performs a complete search
over all blocks with nonzero weights, i.e., from the block with weight 76.0 to that with
weight 5.1. This means that the HWF algorithm may lead to a UAV flight path that passes
through some intermediate blocks several times, which increases the search path length,

Figure 6. The complete planned path by HWF. (a) The UAV flies from the center point of the search
area to an altitude of h0 to begin recognition. (b) The HWF algorithm selects the block with the
highest block weight as the starting point for the block search and guides the UAV to descend to the
center of the block at altitude h1. (c) The red lines show the complete block traversal order.

As depicted in Figure 6, the value in a block represents its block weight, which is used
to prioritize the block search order, increasing the speed when identifying the search target.
Hence, the complete block traversal order in Figure 6c is as follows: block [0.9] → block
[0.85] → block [0.74] → block [0.49] → block [0.58] → block [0.3]. It should be noted
that the proposed integrated YOLOv5 and HWF approach results in a high probability of

Machines 2024, 12, 65 10 of 31

recognizing the search target in the first few blocks, which significantly reduces the UAV
search time, traversal distance, and power consumption.

3.2.4. Convenient Visit Algorithms Based on HWF

In Figure 7, the black values represent the block weights calculated at altitude h0,
while the blue values represent the weight scores calculated at altitude h1. Assume that the
target threshold is set as 80. Since the weights at both h0 and h1 altitudes do not exceed
the target threshold, the HWF path planning algorithm performs a complete search over
all blocks with nonzero weights, i.e., from the block with weight 76.0 to that with weight
5.1. This means that the HWF algorithm may lead to a UAV flight path that passes through
some intermediate blocks several times, which increases the search path length, search
delay, and UAV power consumption accordingly. This situation intensifies significantly
when the search area expands. To address this issue, we design two variants of the HWF
algorithm to search these intermediate blocks when it is convenient, if certain conditions
are met, thus addressing the aforementioned problems.

Machines 2024, 12, x FOR PEER REVIEW 11 of 32

search delay, and UAV power consumption accordingly. This situation intensifies signif-
icantly when the search area expands. To address this issue, we design two variants of the
HWF algorithm to search these intermediate blocks when it is convenient, if certain con-
ditions are met, thus addressing the aforementioned problems.

Figure 7. The complete HWF search path under a 6 × 6 search area. The black values represent the
block weights calculated at altitude ℎ, while the blue values represent the weight scores calculated
at altitude ℎଵ.

A threshold for convenient visits, which is called the convenient threshold, is defined
in advance. If the UAV passes through an intermediate block with a weight exceeding the
convenient threshold along the HWF flight path from the current block to the next one, it
will be guided to the center of this block for the convenient visit. This approach reduces
the likelihood of unnecessary, repeated UAV flights among blocks. The value of the con-
venient threshold should be strategically defined to strike a balance. If it is set too high,
the HWF variant could result in a UAV traversal path similar to that of the original HWF.
Conversely, if it is set too low, the HWF variant could lead to excessive detours, which
may diminish the HWF search efficiency.

We propose two convenient visit algorithms based on the HWF approach as follows.
HWFR-S: A static and fixed convenient visit threshold is set. If there is a block along

the HWF flight path that exceeds this convenient visit threshold, it will be visited by the
UAV accordingly. In Figure 8, the red path represents the original HWF route, while the
blue path represents the HWFR-S traversal route. HWFR-S sets a fixed convenient visit
threshold of 0.7. Compared to the HWF algorithm, which guides the UAV from the block
with a weight of 0.9 to the block with a weight of 0.85, HWFR-S reroutes to the intermedi-
ate block with a weight of 0.74 along the way. However, it does not choose to reroute to
the block with a weight of 0.49 when the UAV flies from the block with a weight of 0.85 to
the block with a weight of 0.58, because the weight of 0.49 does not exceed the convenient
visit threshold of 0.7.

Figure 7. The complete HWF search path under a 6 × 6 search area. The black values represent the
block weights calculated at altitude h0, while the blue values represent the weight scores calculated
at altitude h1.

A threshold for convenient visits, which is called the convenient threshold, is defined
in advance. If the UAV passes through an intermediate block with a weight exceeding the
convenient threshold along the HWF flight path from the current block to the next one, it
will be guided to the center of this block for the convenient visit. This approach reduces the
likelihood of unnecessary, repeated UAV flights among blocks. The value of the convenient
threshold should be strategically defined to strike a balance. If it is set too high, the HWF
variant could result in a UAV traversal path similar to that of the original HWF. Conversely,
if it is set too low, the HWF variant could lead to excessive detours, which may diminish
the HWF search efficiency.

We propose two convenient visit algorithms based on the HWF approach as follows.
HWFR-S: A static and fixed convenient visit threshold is set. If there is a block along

the HWF flight path that exceeds this convenient visit threshold, it will be visited by the
UAV accordingly. In Figure 8, the red path represents the original HWF route, while the
blue path represents the HWFR-S traversal route. HWFR-S sets a fixed convenient visit
threshold of 0.7. Compared to the HWF algorithm, which guides the UAV from the block
with a weight of 0.9 to the block with a weight of 0.85, HWFR-S reroutes to the intermediate
block with a weight of 0.74 along the way. However, it does not choose to reroute to the
block with a weight of 0.49 when the UAV flies from the block with a weight of 0.85 to the

Machines 2024, 12, 65 11 of 31

block with a weight of 0.58, because the weight of 0.49 does not exceed the convenient visit
threshold of 0.7.

Machines 2024, 12, x FOR PEER REVIEW 11 of 32

search delay, and UAV power consumption accordingly. This situation intensifies signif-
icantly when the search area expands. To address this issue, we design two variants of the
HWF algorithm to search these intermediate blocks when it is convenient, if certain con-
ditions are met, thus addressing the aforementioned problems.

Figure 7. The complete HWF search path under a 6 × 6 search area. The black values represent the
block weights calculated at altitude ℎ, while the blue values represent the weight scores calculated
at altitude ℎଵ.

A threshold for convenient visits, which is called the convenient threshold, is defined
in advance. If the UAV passes through an intermediate block with a weight exceeding the
convenient threshold along the HWF flight path from the current block to the next one, it
will be guided to the center of this block for the convenient visit. This approach reduces
the likelihood of unnecessary, repeated UAV flights among blocks. The value of the con-
venient threshold should be strategically defined to strike a balance. If it is set too high,
the HWF variant could result in a UAV traversal path similar to that of the original HWF.
Conversely, if it is set too low, the HWF variant could lead to excessive detours, which
may diminish the HWF search efficiency.

We propose two convenient visit algorithms based on the HWF approach as follows.
HWFR-S: A static and fixed convenient visit threshold is set. If there is a block along

the HWF flight path that exceeds this convenient visit threshold, it will be visited by the
UAV accordingly. In Figure 8, the red path represents the original HWF route, while the
blue path represents the HWFR-S traversal route. HWFR-S sets a fixed convenient visit
threshold of 0.7. Compared to the HWF algorithm, which guides the UAV from the block
with a weight of 0.9 to the block with a weight of 0.85, HWFR-S reroutes to the intermedi-
ate block with a weight of 0.74 along the way. However, it does not choose to reroute to
the block with a weight of 0.49 when the UAV flies from the block with a weight of 0.85 to
the block with a weight of 0.58, because the weight of 0.49 does not exceed the convenient
visit threshold of 0.7.

Figure 8. The original path (red line) of HWF and the modified path (blue line) of HWFR-S
search algorithms.

HWFR-D: This algorithm proposes to use a fixed weight difference to calculate a
dynamic convenient visit threshold for the next block. Its value is equal to the difference
between the weight of the next block and the fixed weight difference, which means that the
current visit threshold is dynamically adjusted by subtracting the weight difference from
the next block’s weight value. If there is an intermediate block with a weight no less than
the current convenient visit threshold, the UAV will take a detour to visit this intermediate
block and then return to visit the original next block, instead of visiting the original next
block directly.

In Figure 9, the red path represents the original HWF route, while the purple path
represents the HWFR-D route when HWFR-D sets the fixed weight difference as 0.1. With
the original HWF algorithm, the UAV first visits the block with a weight of 0.74, followed
by the block with a weight of 0.58, and finally the block with a weight of 0.49. In contrast,
when the UAV flies from the block with a weight of 0.74 to the block with a weight of
0.58, HWFR-D dynamically calculates its convenient visit threshold as 0.48, which is equal
to 0.58 − 0.1. Then, HWFR-D chooses to conveniently visit the intermediate block with
a weight of 0.49, because the weight of 0.49 is greater than the current convenient visit
threshold of 0.48. In contrast, the intermediate block with the weight of 0.74 is not selected
for the convenient visit in the HWFR-D route when the UAV flies from the block with a
weight of 0.9 to the block with a weight of 0.85, since the weight of 0.74 is less than the
current convenient visit threshold, i.e., 0.75 = 0.85 − 0.1.

Machines 2024, 12, x FOR PEER REVIEW 12 of 32

Figure 8. The original path (red line) of HWF and the modified path (blue line) of HWFR-S search
algorithms.

HWFR-D: This algorithm proposes to use a fixed weight difference to calculate a dy-
namic convenient visit threshold for the next block. Its value is equal to the difference
between the weight of the next block and the fixed weight difference, which means that
the current visit threshold is dynamically adjusted by subtracting the weight difference
from the next block’s weight value. If there is an intermediate block with a weight no less
than the current convenient visit threshold, the UAV will take a detour to visit this inter-
mediate block and then return to visit the original next block, instead of visiting the orig-
inal next block directly.

In Figure 9, the red path represents the original HWF route, while the purple path
represents the HWFR-D route when HWFR-D sets the fixed weight difference as 0.1. With
the original HWF algorithm, the UAV first visits the block with a weight of 0.74, followed
by the block with a weight of 0.58, and finally the block with a weight of 0.49. In contrast,
when the UAV flies from the block with a weight of 0.74 to the block with a weight of 0.58,
HWFR-D dynamically calculates its convenient visit threshold as 0.48, which is equal to
0.58 − 0.1. Then, HWFR-D chooses to conveniently visit the intermediate block with a
weight of 0.49, because the weight of 0.49 is greater than the current convenient visit
threshold of 0.48. In contrast, the intermediate block with the weight of 0.74 is not selected
for the convenient visit in the HWFR-D route when the UAV flies from the block with a
weight of 0.9 to the block with a weight of 0.85, since the weight of 0.74 is less than the
current convenient visit threshold, i.e., 0.75 = 0.85 − 0.1.

Figure 9. The original path (red line) of HWF and the modified path (purple dotted line) of HWFR-
D search algorithms.

3.2.5. Flow of the Integrated YOLOv5 and HWF Framework
The flow of the integrated YOLOv5 and HWF framework, which tightly integrates

the searching UAV equipped with the Jetson Nano and the cloud server at altitudes ℎ
and ℎଵ in the search and rescue process, is illustrated in Figure 10.

Figure 9. The original path (red line) of HWF and the modified path (purple dotted line) of HWFR-D
search algorithms.

3.2.5. Flow of the Integrated YOLOv5 and HWF Framework

The flow of the integrated YOLOv5 and HWF framework, which tightly integrates the
searching UAV equipped with the Jetson Nano and the cloud server at altitudes h0 and h1
in the search and rescue process, is illustrated in Figure 10.

Machines 2024, 12, 65 12 of 31Machines 2024, 12, x FOR PEER REVIEW 13 of 32

Figure 10. Flowchart of the integrated YOLOv5 and HWF framework.

1. The user inputs the values of six parameters, i.e., the total search area size, the num-
ber of search blocks, and the features of the search target, including the types and
colors of their clothing and pants, at the server side. At the same time, the UAV pre-
pares for takeoff at the origin point.

2. The server calculates the center location of the search area and two flight heights, i.e., ℎ and ℎଵ, for the searching UAV and sends this information to the Jetson Nano on
the UAV through the mobile network communication.

3. The UAV flies to the specified center coordinates of the search area at altitude ℎ and
captures an image of the whole search area, which is then transmitted back to the
server.

Figure 10. Flowchart of the integrated YOLOv5 and HWF framework.

1. The user inputs the values of six parameters, i.e., the total search area size, the number
of search blocks, and the features of the search target, including the types and colors
of their clothing and pants, at the server side. At the same time, the UAV prepares for
takeoff at the origin point.

2. The server calculates the center location of the search area and two flight heights,
i.e., h0 and h1, for the searching UAV and sends this information to the Jetson Nano
on the UAV through the mobile network communication.

3. The UAV flies to the specified center coordinates of the search area at altitude h0
and captures an image of the whole search area, which is then transmitted back to
the server.

4. The server executes the weighting subroutine to calculate the first-level weights of all
blocks within the total search area.

Machines 2024, 12, 65 13 of 31

5. If the first-level weight of a particular block is greater than the search target threshold,
the system proceeds to step 13; otherwise, it proceeds to step 6.

6. The system plans the second-level traversal path for the blocks at altitude h1, based
on the first-level block weights, using the HWF algorithm. Then, the server transmits
the planned path for the second layer to the Jetson Nano on the UAV.

7. The UAV flies to the center coordinates of the unvisited block with the highest first-
level block weight at altitude h1, according to the planned path, and captures an
image of the block. This block image is then transmitted back to the server.

8. If the UAV receives a command to finish the search, it proceeds to step 10; otherwise,
it proceeds to step 9.

9. If all blocks with nonzero first-level weights have been visited by the UAV, the system
proceeds to step 10; otherwise, it proceeds to step 7.

10. The UAV concludes its flight and returns to the starting point.
11. Whenever the server receives a block image transmitted by the UAV at step 7, it

runs the weighting subroutine again to calculate the second-level block weight of the
current search block.

12. If the second-level block weight is greater than the search target threshold, the system
proceeds to step 13; otherwise, it returns to step 8.

13. The system outputs the coordinates of the detected target’s position along with its
image to the user, which indicates that the search target has been found. The server
then sends a command to the Jetson Nano on the UAV to finish the search mission.

3.2.6. Weighting Subroutine Flowchart

1. As shown in Figure 11, the server first sets the initial values of the total weight value
(W), human weights, and block weight as 0. It then executes YOLOv5 for human
detection on UAV-captured images.

2. If a human body is detected, the server extracts the human body image with its
bounding boxes and proceeds to use YOLOv5 for clothing recognition at step 3.

3. The server executes YOLOv5 for clothing recognition on the extracted human body image.
4. If the clothing is recognized and the recognized clothing type (Crct) matches the search

clothing type (Csct), the total weight value (W) is incremented by the minimum value
between the clothing accuracy (APca) and the custom clothing fuzzy threshold of 0.3.
Then, it proceeds to step 5. Otherwise, the system proceeds to step 6.

5. The server performs the KNN color recognition on the recognized clothing.
6. If the recognized clothing color (Crcc) matches the search clothing color (Cscc), the

total weight value (W) is incremented by the minimum value between the KNN color
percentage and the custom clothing color fuzzy threshold of 0.2. Then, it proceeds to
step 7.

7. If the pants are recognized and the recognized pant type (Crpt) matches the search
pant type (Cspt), the total weight value (W) is incremented by the minimum value
between the pant accuracy (APpa) and the custom pant fuzzy threshold of 0.3. The
system proceeds to step 8; otherwise, it proceeds to step 9.

8. The server performs KNN color recognition on the recognized pants.
9. If the recognized pant color (Crpc) matches the search pant color (Cspc), the total weight

value (W) is incremented by the minimum value between the KNN color percentage
and the custom pant color fuzzy threshold of 0.2.

10. The weight score of a person (human_weight) is calculated by the weighted function of
the human accuracy value (APha) and the total weight value (W), with the coefficient
of 0.1 and 0.9, respectively. The maximum person weight value within a block is
defined as the block_weight.

Machines 2024, 12, 65 14 of 31Machines 2024, 12, x FOR PEER REVIEW 15 of 32

Figure 11. Flowchart of the weighting subroutine. Figure 11. Flowchart of the weighting subroutine.

Machines 2024, 12, 65 15 of 31

3.2.7. KNN Color Recognition Process

The flowchart of the KNN color recognition process is shown in Figure 12. Its details
are listed below.

Machines 2024, 12, x FOR PEER REVIEW 16 of 32

3.2.7. KNN Color Recognition Process
The flowchart of the KNN color recognition process is shown in Figure 12. Its details

are listed below.
1. After correctly identifying the types of clothing and pants, the system proceeds to

extract clothing and pant images using the detected bounding box coordinates. Sub-
sequently, the system applies noise reduction techniques to the image, facilitating the
extraction of feature colors.

2. The captured clothing and pant images are converted from the RGB color space to
the HSV color space. Subsequently, OpenCV [37] is used to generate a color gradient
direction histogram for the image. From this histogram, the algorithm selects the in-
terval with the highest proportion, obtaining a new set of HSV values, which serves
as a representation of the image’s feature color.

3. The feature color representing the HSV color attributes is converted back to RGB
color attributes.

4. The color distances between the image’s feature color and the RGB color table estab-
lished in this study are computed. Subsequently, these distances are arranged in or-
der, and k-nearest colors are chosen by a voting process. The color that receives the
most votes is identified as the result of the KNN color recognition process.

Figure 12. Flowchart of the KNN color recognition process.

4. Simulation Results
4.1. YOLOv5 Image Recognition Model

In this study, we utilize YOLOv5 for human body and clothing/pant recognition.
These recognitions are executed on a cloud server. The human body database utilized for
training in this study is sourced from VisDrone2019 [38], which is a dataset containing
human-related images captured from the perspective of UAVs. It comprises a total of 7400
images, with 5600 images for training, 530 for validation, and 1270 for testing. The cloth-
ing/pant dataset is constructed by us and named the drone-clothing dataset, which con-
tains a total of 5000 images, with 4000 images used for training, 500 for validation, and 500
for testing. It is also a dataset captured from the perspective of a UAV. The clothing and
pants are categorized into four distinct types: short sleeves, long sleeves, short pants, and
long pants. Both models are trained for 150,000 iterations on a server over the duration of
one month.

Figure 12. Flowchart of the KNN color recognition process.

1. After correctly identifying the types of clothing and pants, the system proceeds
to extract clothing and pant images using the detected bounding box coordinates.
Subsequently, the system applies noise reduction techniques to the image, facilitating
the extraction of feature colors.

2. The captured clothing and pant images are converted from the RGB color space to
the HSV color space. Subsequently, OpenCV [37] is used to generate a color gradient
direction histogram for the image. From this histogram, the algorithm selects the
interval with the highest proportion, obtaining a new set of HSV values, which serves
as a representation of the image’s feature color.

3. The feature color representing the HSV color attributes is converted back to RGB
color attributes.

4. The color distances between the image’s feature color and the RGB color table estab-
lished in this study are computed. Subsequently, these distances are arranged in order,
and k-nearest colors are chosen by a voting process. The color that receives the most
votes is identified as the result of the KNN color recognition process.

4. Simulation Results
4.1. YOLOv5 Image Recognition Model

In this study, we utilize YOLOv5 for human body and clothing/pant recognition.
These recognitions are executed on a cloud server. The human body database utilized for
training in this study is sourced from VisDrone2019 [38], which is a dataset containing
human-related images captured from the perspective of UAVs. It comprises a total of
7400 images, with 5600 images for training, 530 for validation, and 1270 for testing. The
clothing/pant dataset is constructed by us and named the drone-clothing dataset, which
contains a total of 5000 images, with 4000 images used for training, 500 for validation, and
500 for testing. It is also a dataset captured from the perspective of a UAV. The clothing
and pants are categorized into four distinct types: short sleeves, long sleeves, short pants,
and long pants. Both models are trained for 150,000 iterations on a server over the duration
of one month.

Machines 2024, 12, 65 16 of 31

The precision and mean average precision (mAP) values of the VisDrone2019 model
are illustrated in Figures 13 and 14. Precision measures whether the recognized target is
indeed the intended target when it is detected, while mAP measures the confidence of the
recognition when a target is detected and incorporates a trade-off between precision and
recall. Figure 15 presents the original images and recognition results of the VisDrone2019
model. Because most original images in the VisDrone2019 model are shot at long distances,
as shown in Figure 15, which results in smaller and more complex objects, the recognized
results are more likely to output incorrect results. Hence, the precision and mAP values of
the training set in the VisDrone2019 model, shown in Figures 13 and 14, are relatively stable
after epoch 160 and reach 0.6773 and 0.5020 at epoch 460, respectively. Table 2 lists the
values of the three classification metrics, i.e., the precision, recall, and mAP values, of the
training set and the testing set in the VisDrone2019 model at epoch 460. These values for the
training set are not notably higher than those of the testing set, which means that human
body recognition using the VisDrone2019 model shows no significant overfitting behavior
in this study. On the other hand, the precision and mean average precision (mAP) values
of the drone-clothing model are illustrated in Figures 16 and 17. Figure 18 presents the
original images and recognition results of the drone-clothing model. As shown in Figure 18,
because most original images in the drone-clothing model are shot at distances closer to
the human body than those in the VisDrone2019 model, the recognition results for human
clothing are more precise. Hence, the precision and mAP values of the training set in the
drone-clothing model, shown in Figures 16 and 17, are relatively stable after epoch 40 and
reach 0.9556 and 0.9540 at epoch 160, respectively. Consequently, the drone-clothing model
converges faster and achieves higher classification metric values than the VisDrone2019
model does.

Machines 2024, 12, x FOR PEER REVIEW 17 of 32

The precision and mean average precision (mAP) values of the VisDrone2019 model
are illustrated in Figures 13 and 14. Precision measures whether the recognized target is
indeed the intended target when it is detected, while mAP measures the confidence of the
recognition when a target is detected and incorporates a trade-off between precision and
recall. Figure 15 presents the original images and recognition results of the VisDrone2019
model. Because most original images in the VisDrone2019 model are shot at long dis-
tances, as shown in Figure 15, which results in smaller and more complex objects, the
recognized results are more likely to output incorrect results. Hence, the precision and
mAP values of the training set in the VisDrone2019 model, shown in Figures 13 and 14,
are relatively stable after epoch 160 and reach 0.6773 and 0.5020 at epoch 460, respectively.
Table 2 lists the values of the three classification metrics, i.e., the precision, recall, and mAP
values, of the training set and the testing set in the VisDrone2019 model at epoch 460.
These values for the training set are not notably higher than those of the testing set, which
means that human body recognition using the VisDrone2019 model shows no significant
overfitting behavior in this study. On the other hand, the precision and mean average
precision (mAP) values of the drone-clothing model are illustrated in Figures 16 and 17.
Figure 18 presents the original images and recognition results of the drone-clothing
model. As shown in Figure 18, because most original images in the drone-clothing model
are shot at distances closer to the human body than those in the VisDrone2019 model, the
recognition results for human clothing are more precise. Hence, the precision and mAP
values of the training set in the drone-clothing model, shown in Figures 16 and 17, are
relatively stable after epoch 40 and reach 0.9556 and 0.9540 at epoch 160, respectively.
Consequently, the drone-clothing model converges faster and achieves higher classifica-
tion metric values than the VisDrone2019 model does.

Figure 13. Precision values (blue line) of the VisDrone2019 model.

Figure 14. mAP values (blue line) of the VisDrone2019 model.

Figure 13. Precision values (blue line) of the VisDrone2019 model.

Machines 2024, 12, x FOR PEER REVIEW 17 of 32

The precision and mean average precision (mAP) values of the VisDrone2019 model
are illustrated in Figures 13 and 14. Precision measures whether the recognized target is
indeed the intended target when it is detected, while mAP measures the confidence of the
recognition when a target is detected and incorporates a trade-off between precision and
recall. Figure 15 presents the original images and recognition results of the VisDrone2019
model. Because most original images in the VisDrone2019 model are shot at long dis-
tances, as shown in Figure 15, which results in smaller and more complex objects, the
recognized results are more likely to output incorrect results. Hence, the precision and
mAP values of the training set in the VisDrone2019 model, shown in Figures 13 and 14,
are relatively stable after epoch 160 and reach 0.6773 and 0.5020 at epoch 460, respectively.
Table 2 lists the values of the three classification metrics, i.e., the precision, recall, and mAP
values, of the training set and the testing set in the VisDrone2019 model at epoch 460.
These values for the training set are not notably higher than those of the testing set, which
means that human body recognition using the VisDrone2019 model shows no significant
overfitting behavior in this study. On the other hand, the precision and mean average
precision (mAP) values of the drone-clothing model are illustrated in Figures 16 and 17.
Figure 18 presents the original images and recognition results of the drone-clothing
model. As shown in Figure 18, because most original images in the drone-clothing model
are shot at distances closer to the human body than those in the VisDrone2019 model, the
recognition results for human clothing are more precise. Hence, the precision and mAP
values of the training set in the drone-clothing model, shown in Figures 16 and 17, are
relatively stable after epoch 40 and reach 0.9556 and 0.9540 at epoch 160, respectively.
Consequently, the drone-clothing model converges faster and achieves higher classifica-
tion metric values than the VisDrone2019 model does.

Figure 13. Precision values (blue line) of the VisDrone2019 model.

Figure 14. mAP values (blue line) of the VisDrone2019 model.

Figure 14. mAP values (blue line) of the VisDrone2019 model.

Machines 2024, 12, 65 17 of 31Machines 2024, 12, x FOR PEER REVIEW 18 of 32

Original Image Recognized Result

Figure 15. Original images and recognition results of the VisDrone2019 model.

Table 2. Values of classification metrics of the training set and the testing set in the VisDrone2019
model.

Classification Metric Training Set Testing Set
Precision 0.6773 0.6330

Recall 0.4887 0.4074
mAP 0.5020 0.3970

Figure 16. Precision values (blue line) of the drone-clothing model.

Figure 15. Original images and recognition results of the VisDrone2019 model.

Table 2. Values of classification metrics of the training set and the testing set in the Vis-
Drone2019 model.

Classification Metric Training Set Testing Set

Precision 0.6773 0.6330

Recall 0.4887 0.4074

mAP 0.5020 0.3970

Machines 2024, 12, x FOR PEER REVIEW 18 of 32

Original Image Recognized Result

Figure 15. Original images and recognition results of the VisDrone2019 model.

Table 2. Values of classification metrics of the training set and the testing set in the VisDrone2019
model.

Classification Metric Training Set Testing Set
Precision 0.6773 0.6330

Recall 0.4887 0.4074
mAP 0.5020 0.3970

Figure 16. Precision values (blue line) of the drone-clothing model. Figure 16. Precision values (blue line) of the drone-clothing model.

Machines 2024, 12, 65 18 of 31Machines 2024, 12, x FOR PEER REVIEW 19 of 32

Figure 17. mAP values (blue line) of the drone-clothing model.

Original Image Recognized Result

Figure 17. mAP values (blue line) of the drone-clothing model.

Machines 2024, 12, x FOR PEER REVIEW 19 of 32

Original Image Recognized Result

Figure 18. Original images and recognition results of the drone-clothing model.

4.2. Simulation Environment for Search Algorithms
In the simulation environment, Python is primarily used as the main programming

language. The simulation area is partitioned into block sizes ranging from 3 × 3 to 10 ×
10 and each block is assigned a weight. A total of 10,000 testing data are generated and
each of them only gives a search target, which is randomly distributed within a specific
block. We compare the proposed HWF, HWFR-S, and HWFR-D search algorithms with

Figure 18. Original images and recognition results of the drone-clothing model.

Machines 2024, 12, 65 19 of 31

4.2. Simulation Environment for Search Algorithms

In the simulation environment, Python is primarily used as the main programming
language. The simulation area is partitioned into block sizes ranging from 3 × 3 to 10 × 10
and each block is assigned a weight. A total of 10,000 testing data are generated and each
of them only gives a search target, which is randomly distributed within a specific block.
We compare the proposed HWF, HWFR-S, and HWFR-D search algorithms with the sweep
line and the spiral search algorithms in terms of four performance metrics, i.e., the average
search path length, the average number of search blocks, the average search time, and the
average search accuracy, required to locate the target location during the simulation of a
UAV flight.

For each set of testing data, a single search target is randomly placed in a block within
the n × n search area. Assume that the AP value of each search target in the captured image
has different error ranges, depending on the UAV altitude. The features, i.e., the clothing
type, pant type, clothing color, and pant color, of the search target are given different
probabilities to change to different types and colors. The weighting subroutine calculates
the weight value, i.e., human_weight, of each recognized person in every block based on
the AP values of the four target features and determines whether the weight value of this
person exceeds the search target weight threshold. The six simulation conditions are listed
below. The simulation parameters are shown in Table 3.

Table 3. Simulation parameters.

Parameter Value

Search area (m2) {(3n)2| n = 3, 4, . . ., 10}

θ 40 degrees

Altitude hi (m)
√

area
2tanθ

The percentage of error and probability variation at altitude h0 10%, 20%, 30%

The percentage of error and probability variation at altitude h1 5%, 10%, 15%

UAV velocity 20 km/h

UAV hovering and image capture time for a block 5 s

Search target threshold 0.7

Convenient visit threshold of HWFR-S 0.4, 0.5, 0.6

Weight difference of HWFR-D 0.1, 0.2, 0.3

1. The AP values for the search target’s human body, types of clothing and pants, and
colors of clothing and pants are randomly distributed between 0.9 and 0.99. The
search target is randomly assigned to a specific block. In contrast, the AP values of
the human body and types of clothing and pants for the person that is not the search
target are randomly distributed between 0.01 and 0.99. The AP values of their clothing
and pant colors are randomly set between 0.1 and 0.9.

2. Each block contains one to four persons within it, with the probability of 70%. It has a
30% probability of having no person in one block, which means that the weight of
this block is set to zero accordingly.

3. At a higher altitude h0, a larger error and probability variation of N% is applied to
the given AP values and each feature of the person, respectively. Three different N%
values, i.e., 10%, 20%, and 30%, are given to evaluate the performance metrics of these
searching schemes.

4. At a lower altitude h1, a smaller error and probability variation of 0.5 N% is applied
to the given AP values and each feature of the person, respectively. Hence, three
different 0.5 N% values, i.e., 5%, 10%, and 15%, are set accordingly.

5. Because most available USB cameras support resolutions such as 640 × 480 or
1280 × 720, we assume that the side length of each block is limited to 3 m, and

Machines 2024, 12, 65 20 of 31

the area of each block is 9 square meters, such that the USB camera can capture vivid
images for the whole search area and each block. Therefore, the total search area for
an n × n block is (3n)2 square meters.

6. As mentioned in Section 3.2.4, HWFR-S instructs the UAV to visit the block that
exceeds the static and fixed convenient visit threshold. If the value of the convenient
visit threshold is too small, the UAV has a higher probability of rerouting to a block
without the search target, which increases the search path length and search time
accordingly. In contrast, if the value of the convenient visit threshold is too large, the
UAV may lose the opportunity to reroute to the block with the search target. Hence,
the convenient visit threshold of HWFR-S is given intermediate values between (0, 1)
as 0.4, 0.5, and 0.6 in this simulation. HWFR-D is given a fixed weight difference to
calculate a dynamic convenient visit threshold by subtracting the weight difference
from the next block’s weight value. If there is an intermediate block with a weight no
less than the current convenient visit threshold, the UAV will take a detour to visit
this intermediate block. If the value of the weight difference is too large, which results
in a smaller convenient visit threshold, the UAV suffers from a longer search path
length and search time due to HWFR-S. Hence, the weight difference of HWFR-D is
given lower values of 0.1, 0.2, and 0.3 in this simulation.

4.2.1. Average Search Path Length

As illustrated in Figure 19, the spiral and sweep search algorithms do not prioritize
the searching order of blocks that may potentially contain the target. Under varying errors
and probability variations at altitudes h0 and h1, as shown in Figure 19a–c, the average
search path lengths of these two algorithms with 10,000 testing data are nearly identical.
Furthermore, as the block size increases, the search path lengths of both algorithms grow
linearly, resulting in the top two longest search path lengths among the five search algo-
rithms considered. It should be noted that these two algorithms have the same search
path lengths, as shown in Figure 19a–c, regardless of the set of N% and 0.5 N% error and
probability variations at altitudes h0 and h1 given in the simulation, because they follow
their fixed block search patterns, which are not dependent on the N value.

As the HWF algorithm and its variants prioritize the searching order of blocks that
may potentially contain the target, they exhibit significant reductions in their search path
lengths compared to the spiral and sweep algorithms. As mentioned above, the HWF path
planning algorithm performs a complete search over all blocks with nonzero weights and it
may lead to a UAV search path that passes through some intermediate blocks several times,
especially when none of the block weights surpass the search target threshold. Hence,
HWF can lead to an increase in the search path length.

The HWFR-S algorithm, due to its fixed convenient visit threshold, becomes more
effective at reducing its search path length when more block weights exceed this thresh-
old. If the threshold is set lower, the search path length of HWFR-S becomes shorter.
Hence, HWFR-S with the convenient visit threshold of 0.4, denoted as HWFR-S (0.4) in
Figure 19a–c, achieves shorter search path lengths than HWFR-S (0.5) and HWFR-S (0.6).
On the other hand, when the weight difference is larger, which results in a lower conve-
nient visit threshold, the variant of HWFR-D achieves shorter search path lengths. Hence,
HWFR-D with the weight difference of 0.3, denoted as HWFR-D (0.3) in Figure 19a–c,
achieves shorter search path lengths than HWFR-D (0.2) and HWFR-D (0.1). Hence, the
HWFR-D algorithm has the capability to dynamically adjust the convenient visit threshold
during the search process, making it the most successful algorithm to shorten the search
path lengths. Moreover, if a larger error and probability variation on the AP value is given
in the simulation, the difference between the calculated first-/second-level weight value
(based on the AP values of the four target features of each recognized person in every block)
and its correct value becomes larger. Hence, the HWF algorithm and its variants have a
higher probability of deploying the UAV to an incorrect block to search for the search target,
which results in a longer search path length. As shown in Figure 19a–c, the higher the N%

Machines 2024, 12, 65 21 of 31

and 0.5 N% values are, the longer the search path lengths of the HWF algorithm and all its
HWFR-S and HWFR-D variants. It should be noted that the HWFR-D algorithm with a
larger error and probability variation outperforms HWFR-S and HWF significantly.

Machines 2024, 12, x FOR PEER REVIEW 22 of 32

The HWFR-S algorithm, due to its fixed convenient visit threshold, becomes more
effective at reducing its search path length when more block weights exceed this thresh-
old. If the threshold is set lower, the search path length of HWFR-S becomes shorter.
Hence, HWFR-S with the convenient visit threshold of 0.4, denoted as HWFR-S (0.4) in
Figure 19a–c, achieves shorter search path lengths than HWFR-S (0.5) and HWFR-S (0.6).
On the other hand, when the weight difference is larger, which results in a lower conven-
ient visit threshold, the variant of HWFR-D achieves shorter search path lengths. Hence,
HWFR-D with the weight difference of 0.3, denoted as HWFR-D (0.3) in Figure 19a–c,
achieves shorter search path lengths than HWFR-D (0.2) and HWFR-D (0.1). Hence, the
HWFR-D algorithm has the capability to dynamically adjust the convenient visit thresh-
old during the search process, making it the most successful algorithm to shorten the
search path lengths. Moreover, if a larger error and probability variation on the AP value
is given in the simulation, the difference between the calculated first-/second-level weight
value (based on the AP values of the four target features of each recognized person in
every block) and its correct value becomes larger. Hence, the HWF algorithm and its var-
iants have a higher probability of deploying the UAV to an incorrect block to search for
the search target, which results in a longer search path length. As shown in Figure 19a–c,
the higher the N% and 0.5 N% values are, the longer the search path lengths of the HWF
algorithm and all its HWFR-S and HWFR-D variants. It should be noted that the HWFR-
D algorithm with a larger error and probability variation outperforms HWFR-S and HWF
significantly.

(a) (b)

(c)

Figure 19. Average search path length vs. search area size for (a) 10%, 5%; (b) 20%, 10%; (c) 30%,
15% error and probability variations at altitudes ℎ and ℎଵ.
4.2.2. Average Number of Search Blocks

As depicted in Figure 20a–c, both the spiral and sweep search algorithms do not pri-
oritize the search order of blocks that may potentially contain the target. With fewer than

Figure 19. Average search path length vs. search area size for (a) 10%, 5%; (b) 20%, 10%; (c) 30%, 15%
error and probability variations at altitudes h0 and h1.

4.2.2. Average Number of Search Blocks

As depicted in Figure 20a–c, both the spiral and sweep search algorithms do not
prioritize the search order of blocks that may potentially contain the target. With fewer than
10,000 testing data, the average number of search blocks required before finding the search
target for these two algorithms is similar. Moreover, as the search area size increases, the
number of search blocks of both algorithms increases linearly, causing them to display the
highest number of search blocks among the five algorithms considered. It should be noted
that these two algorithms have the same number of search blocks, as shown in Figure 20a–c,
regardless of the set of N% and 0.5 N% error and probability variations at altitudes h0 and
h1 given in the simulation, because they follow their fixed block search patterns, which are
not dependent on the N value.

The HWF, HWFR-S, and HWFR-D algorithms all share the characteristic of prioritizing
the search order of blocks that is most likely to contain the search target. Since the first step
in these algorithms is to select the block with the highest weight, the probability of finding
the target at the first block is very high. This scenario results in the number of search blocks
being equal to 1 for all three algorithms.

In the second scenario, when the HWF, HWFR-S, and HWFR-D algorithms encounter
a situation wherein none of the block weights exceed the search target threshold during the
search process, they will visit all blocks once and report that the search target cannot be
found. In this case, the number of search blocks is equal to n × n for all three algorithms.

Machines 2024, 12, 65 22 of 31

Machines 2024, 12, x FOR PEER REVIEW 24 of 32

(a) (b)

(c)

Figure 20. The average number of search blocks vs. search area size for (a) 10%, 5%; (b) 20%, 10%;
(c) 30%, 15% error and probability variations at altitudes ℎ and ℎଵ.
4.2.3. Average Search Time

The search time in this study is defined as the sum of the UAV flying time spent on
the search path and the UAV hovering and image capture time for all visited blocks. In
Figures 19 and 20, the spiral and sweep algorithms exhibit nearly identical and linear
growth in both the search path length and the number of search blocks. As a result, the
calculated search times for these two algorithms are nearly identical, as shown in Figure
21a–c.

The HWF, HWFR-S, and HWFR-D algorithms exhibit a significant difference in their
search times compared to the spiral and sweep algorithms. Under the parameters given
in Table 3, with a block size of 10 × 10, their search time is effectively reduced by over 80%,
75%, and 60%, as shown in Figure 21a–c, respectively. In situations where the convenient
visit threshold for HWFR-S and the weight difference for HWFR-D are not set appropri-
ately, the search time for the HWF algorithm can be lower than in some HWFR-S and
HWFR-D algorithms.

The HWFR-S algorithm exhibits its longest search time among the three fixed con-
venient visit thresholds when the threshold is set to the highest value of 0.6. The search
time for HWFR-S (0.6) is also higher than that of the original HWF algorithm. When the
fixed convenient visit threshold of HWFR-S is lowered to 0.5, the average search time is
not significantly different from that when the threshold is set to 0.4. The HWFR-D algo-
rithm exhibits its longest search time when the weight difference is set to the highest value
of 0.3, compared to both the HWF algorithm and HWFR-S with three different fixed con-
venient visit thresholds. However, when the HWFR-D weight difference is set to 0.2, it

Figure 20. The average number of search blocks vs. search area size for (a) 10%, 5%; (b) 20%, 10%;
(c) 30%, 15% error and probability variations at altitudes h0 and h1.

In the third scenario, the search target is found after the first step. HWFR-D exhibits
an increase in the number of search blocks as its weight difference is larger. This means
that HWFR-D with a larger weight difference will lower its convenient visit threshold and
has a higher probability of rerouting to more intermediate blocks. In Figure 20a–c, the
weight difference is set to 0.3, i.e., HWFR-D (0.3) has a larger number of search blocks than
HWFR-D (0.2) and HWFR-D (0.1). In contrast, when the fixed convenient visit threshold in
HWFR-S is set lower, there is a slight increase in the number of search blocks for HWFR-S.
Hence, HWFR-S (0.6) achieves the lowest number of search blocks in Figure 20a–c. As
mentioned above, if a larger error and probability variation on the AP value is given in
the simulation, the difference between the calculated the first-/second-level weight value
(based on the AP values of the four target features of each recognized person in every block)
and its correct value becomes larger. Hence, the HWF algorithm and its variants have a
higher probability of deploying the UAV to an incorrect block to search for the search target,
which also results in a larger number of search blocks, as shown in Figure 20a–c.

4.2.3. Average Search Time

The search time in this study is defined as the sum of the UAV flying time spent on
the search path and the UAV hovering and image capture time for all visited blocks. In
Figures 19 and 20, the spiral and sweep algorithms exhibit nearly identical and linear
growth in both the search path length and the number of search blocks. As a result,
the calculated search times for these two algorithms are nearly identical, as shown in
Figure 21a–c.

Machines 2024, 12, 65 23 of 31

Machines 2024, 12, x FOR PEER REVIEW 25 of 32

results in a shorter search time among the HWF algorithm and HWFR-S with three differ-
ent fixed convenient visit thresholds. Furthermore, as the weight difference of HWFR-D
decreases, the search time becomes shorter. When the weight difference is set to 0.1, the
HWFR-D algorithm, as shown in Figure 21a–c, achieves the shortest search time among
all considered algorithms. As mentioned above, if a larger error and probability variation
on the AP value is given in the simulation, the HWF algorithm and its variants have a
higher probability of deploying the UAV to an incorrect block to search for the search
target, which also results in a longer search time, as shown in Figure 21a–c.

(a) (b)

(c)

Figure 21. Average search time vs. search area size for (a) 10%, 5%; (b) 20%, 10%; (c) 30%, 15% error
and probability variations at altitudes ℎ and ℎଵ.
4.2.4. Average Search Accuracy

When the search algorithm encounters a block having a recognized person with a
weight greater than the target threshold, it concludes that the search target has been
found. The search accuracy in this study is defined as the probability that the target found
by the search algorithm is the same as the actual search target given in the testing data.

As shown in Figure 22a–c, the spiral and sweep algorithms do not prioritize the
searching order of blocks that may potentially contain the target. With (10%, 5%), (20%,
10%), and (30%, 15%) error and probability variations on features in the testing data at
altitudes ℎ and ℎଵ, respectively, it is observed that these two search algorithms, when
applied to the 10 × 10 area size, achieve 50%, 40%, and 30% accuracy, respectively, in
determining the actual search target after averaging over 10,000 testing data. The reason
for this low accuracy is that these two algorithms often find a false target due to the high
percentages of errors and probability variations when they encounter blocks with weights
above the target threshold. Moreover, the HWF algorithm and its variants also suffer from

Figure 21. Average search time vs. search area size for (a) 10%, 5%; (b) 20%, 10%; (c) 30%, 15% error
and probability variations at altitudes h0 and h1.

The HWF, HWFR-S, and HWFR-D algorithms exhibit a significant difference in their
search times compared to the spiral and sweep algorithms. Under the parameters given in
Table 3, with a block size of 10 × 10, their search time is effectively reduced by over 80%,
75%, and 60%, as shown in Figure 21a–c, respectively. In situations where the convenient
visit threshold for HWFR-S and the weight difference for HWFR-D are not set appropriately,
the search time for the HWF algorithm can be lower than in some HWFR-S and HWFR-
D algorithms.

The HWFR-S algorithm exhibits its longest search time among the three fixed con-
venient visit thresholds when the threshold is set to the highest value of 0.6. The search
time for HWFR-S (0.6) is also higher than that of the original HWF algorithm. When the
fixed convenient visit threshold of HWFR-S is lowered to 0.5, the average search time is not
significantly different from that when the threshold is set to 0.4. The HWFR-D algorithm
exhibits its longest search time when the weight difference is set to the highest value of 0.3,
compared to both the HWF algorithm and HWFR-S with three different fixed convenient
visit thresholds. However, when the HWFR-D weight difference is set to 0.2, it results in
a shorter search time among the HWF algorithm and HWFR-S with three different fixed
convenient visit thresholds. Furthermore, as the weight difference of HWFR-D decreases,
the search time becomes shorter. When the weight difference is set to 0.1, the HWFR-D
algorithm, as shown in Figure 21a–c, achieves the shortest search time among all considered
algorithms. As mentioned above, if a larger error and probability variation on the AP value
is given in the simulation, the HWF algorithm and its variants have a higher probability of

Machines 2024, 12, 65 24 of 31

deploying the UAV to an incorrect block to search for the search target, which also results
in a longer search time, as shown in Figure 21a–c.

4.2.4. Average Search Accuracy

When the search algorithm encounters a block having a recognized person with a
weight greater than the target threshold, it concludes that the search target has been found.
The search accuracy in this study is defined as the probability that the target found by the
search algorithm is the same as the actual search target given in the testing data.

As shown in Figure 22a–c, the spiral and sweep algorithms do not prioritize the
searching order of blocks that may potentially contain the target. With (10%, 5%), (20%,
10%), and (30%, 15%) error and probability variations on features in the testing data at
altitudes h0 and h1, respectively, it is observed that these two search algorithms, when
applied to the 10 × 10 area size, achieve 50%, 40%, and 30% accuracy, respectively, in
determining the actual search target after averaging over 10,000 testing data. The reason
for this low accuracy is that these two algorithms often find a false target due to the high
percentages of errors and probability variations when they encounter blocks with weights
above the target threshold. Moreover, the HWF algorithm and its variants also suffer from
lower search accuracy if a larger error and probability variation on the AP value is given in
the simulation, which is shown in Figure 22a–c.

Machines 2024, 12, x FOR PEER REVIEW 26 of 32

lower search accuracy if a larger error and probability variation on the AP value is given
in the simulation, which is shown in Figure 22a–c.

HWF, HWFR-S, and HWFR-D all share the characteristic of prioritizing the search
order of blocks that is most likely to contain the target. Therefore, compared to search
algorithms such as spiral and sweep, these algorithms achieve significantly higher accu-
racy. Even with an area size of 10 × 10, the HWF-based algorithms maintain accuracy
higher than 85%, 75%, and 65%, respectively, as shown in Figure 22a–c. Furthermore, as
observed from Figure 20, different values of the convenient visit threshold and weight
difference do not significantly affect the average accuracy of HWFR-S and HWFR-D after
averaging over 10,000 testing data. Consequently, these HWFR-S and HWFR-D algo-
rithms can reduce the search path length and decrease the search time, which in turn en-
hances the search efficiency.

(a) (b)

(c)

Figure 22. Average search accuracy vs. search area size for (a) 10%, 5%; (b) 20%, 10%; (c) 30%, 15%
error and probability variations at altitudes ℎ and ℎଵ.

In summary, the higher the error and probability variation applied to the AP values
and each feature of the person is, the longer the search path length, the larger the number
of search blocks, the longer the search time, and the lower the search accuracy of the HWF
algorithm and all its HWFR-S and HWFR-D variants.

5. System Implementation
5.1. Software and Hardware

The searching UAV in this study adopts Pixhawk2.4.8 [39] as the core platform, en-
hanced by the M8N high-precision GNSS/GPS positioning and navigation module, a GY-
271M compass sensor module, a GY-US42V2 ultrasonic sensor range finder, 2212/13T
brushless motors, a DEVO-RX1002 radio receiver, a DEVO10 remote controller, a PPM

Figure 22. Average search accuracy vs. search area size for (a) 10%, 5%; (b) 20%, 10%; (c) 30%, 15%
error and probability variations at altitudes h0 and h1.

HWF, HWFR-S, and HWFR-D all share the characteristic of prioritizing the search
order of blocks that is most likely to contain the target. Therefore, compared to search
algorithms such as spiral and sweep, these algorithms achieve significantly higher accuracy.

Machines 2024, 12, 65 25 of 31

Even with an area size of 10 × 10, the HWF-based algorithms maintain accuracy higher
than 85%, 75%, and 65%, respectively, as shown in Figure 22a–c. Furthermore, as observed
from Figure 20, different values of the convenient visit threshold and weight difference
do not significantly affect the average accuracy of HWFR-S and HWFR-D after averaging
over 10,000 testing data. Consequently, these HWFR-S and HWFR-D algorithms can
reduce the search path length and decrease the search time, which in turn enhances the
search efficiency.

In summary, the higher the error and probability variation applied to the AP values
and each feature of the person is, the longer the search path length, the larger the number
of search blocks, the longer the search time, and the lower the search accuracy of the HWF
algorithm and all its HWFR-S and HWFR-D variants.

5. System Implementation
5.1. Software and Hardware

The searching UAV in this study adopts Pixhawk2.4.8 [39] as the core platform, en-
hanced by the M8N high-precision GNSS/GPS positioning and navigation module, a
GY-271M compass sensor module, a GY-US42V2 ultrasonic sensor range finder, 2212/13T
brushless motors, a DEVO-RX1002 radio receiver, a DEVO10 remote controller, a PPM
remote decoder, an electronic speed controller, a voltage indicator, an 8-inch nylon propeller,
and a 915 MHz 100 mW servo-side transmitter. The communication protocol employed is
2.4 GHz (DSSS). Additionally, an Nvidia Jetson Nano [34] and USB camera are mounted
on the UAV. The server environment operates on Windows 10, with hardware specifica-
tions including an Intel® Core™ i7-8700 CPU, 16 GB of RAM, and a GeForce RTX 2080 TI
GPU. In terms of software, Python serves as the primary programming language, while
DroneKit-Python [40] is employed for UAV flight control, and the UAV platform is Mission
Planner [41,42].

5.2. Screenshots of the Implemented System

As shown in Figure 23, the user inputs the values of the total search area size, the
number of search blocks, and the features of the search target, including the types and
colors of the clothing and pants, at the server side. The search target to be found is wearing
a black long-sleeved shirt and black pants. After the user inputs the search information, the
server computes the UAV flight altitudes h0 and h1 and transmits them to the Jetson Nano
on the searching UAV to dispatch the UAV to fly to the center of search area at altitude h0.
The Jetson Nano on the UAV captures images at altitude h0 and transmits them back to
the server. The server first partitions the search area into 9 blocks, executes the weighting
subroutine to calculate the first-level weights of all blocks, and calculates the HWF block
traversal order for the UAV, which is block [35.06] → block [9.0] → block [3.39] in this
example, as depicted in Figure 24. Subsequently, the server transmits this block traversal
order to the Jetson Nano.

After receiving the block traversal order, the Jetson Nano commands the UAV to fly
and descend to the center of the block with the highest weight, i.e., block [35.06], at altitude
h1. The UAV further captures images of this block and transmits them back to the server.
Using the weighting subroutine, the server calculates the weight value of each recognized
person in this block and determines whether the second-level weight value is larger than
the search target threshold. In Figure 25, since the person is wearing a red long-sleeved
shirt and black pants, the computed second-level weight of this person is 0.7534, which is
lower than the search target threshold of 0.8. Hence, the UAV continues the HWF search in
the next block with a first-level weight of 9.0.

In Figure 26, because the recognized person in block [9.0] is wearing a black long-
sleeved shirt and black pants, the calculated second-level weight value for this person is
0.9052, which is greater than the target threshold of 0.8. Hence, the algorithm determines
that the search target has been found. The Jetson Nano on the UAV then transmits photos

Machines 2024, 12, 65 26 of 31

of the person found in this block, along with the location coordinates, back to the server to
notify the user, which concludes this search mission.

Machines 2024, 12, x FOR PEER REVIEW 27 of 32

remote decoder, an electronic speed controller, a voltage indicator, an 8-inch nylon pro-
peller, and a 915 MHz 100 mW servo-side transmitter. The communication protocol em-
ployed is 2.4 GHz (DSSS). Additionally, an Nvidia Jetson Nano [34] and USB camera are
mounted on the UAV. The server environment operates on Windows 10, with hardware
specifications including an Intel® Core™ i7-8700 CPU, 16 GB of RAM, and a GeForce RTX
2080 TI GPU. In terms of software, Python serves as the primary programming language,
while DroneKit-Python [40] is employed for UAV flight control, and the UAV platform is
Mission Planner [41,42].

5.2. Screenshots of the Implemented System
As shown in Figure 23, the user inputs the values of the total search area size, the num-

ber of search blocks, and the features of the search target, including the types and colors
of the clothing and pants, at the server side. The search target to be found is wearing a black
long-sleeved shirt and black pants. After the user inputs the search information, the server com-
putes the UAV flight altitudes ℎ and ℎଵ and transmits them to the Jetson Nano on the
searching UAV to dispatch the UAV to fly to the center of search area at altitude ℎ. The
Jetson Nano on the UAV captures images at altitude ℎ and transmits them back to the
server. The server first partitions the search area into 9 blocks, executes the weighting sub-
routine to calculate the first-level weights of all blocks, and calculates the HWF block tra-
versal order for the UAV, which is block [35.06] → block [9.0] → block [3.39] in this ex-
ample, as depicted in Figure 24. Subsequently, the server transmits this block traversal
order to the Jetson Nano.

Figure 23. User inputs search information at server. Figure 23. User inputs search information at server.

Machines 2024, 12, x FOR PEER REVIEW 28 of 32

Figure 24. The HWF block traversal order (green line) in search area. The red lines and the blue
values indicate the boundaries and the first-level weights of all blocks respectively.

After receiving the block traversal order, the Jetson Nano commands the UAV to fly
and descend to the center of the block with the highest weight, i.e., block [35.06], at altitude ℎଵ. The UAV further captures images of this block and transmits them back to the server.
Using the weighting subroutine, the server calculates the weight value of each recognized
person in this block and determines whether the second-level weight value is larger than
the search target threshold. In Figure 25, since the person is wearing a red long-sleeved
shirt and black pants, the computed second-level weight of this person is 0.7534, which is
lower than the search target threshold of 0.8. Hence, the UAV continues the HWF search
in the next block with a first-level weight of 9.0.

Figure 25. Recognized results for the person in the block with weight 35.06 at altitude ℎଵ.

In Figure 26, because the recognized person in block [9.0] is wearing a black long-
sleeved shirt and black pants, the calculated second-level weight value for this person is
0.9052, which is greater than the target threshold of 0.8. Hence, the algorithm determines
that the search target has been found. The Jetson Nano on the UAV then transmits photos
of the person found in this block, along with the location coordinates, back to the server
to notify the user, which concludes this search mission.

Figure 24. The HWF block traversal order (green line) in search area. The red lines and the blue
values indicate the boundaries and the first-level weights of all blocks respectively.

Machines 2024, 12, 65 27 of 31

Machines 2024, 12, x FOR PEER REVIEW 28 of 32

Figure 24. The HWF block traversal order (green line) in search area. The red lines and the blue
values indicate the boundaries and the first-level weights of all blocks respectively.

After receiving the block traversal order, the Jetson Nano commands the UAV to fly
and descend to the center of the block with the highest weight, i.e., block [35.06], at altitude ℎଵ. The UAV further captures images of this block and transmits them back to the server.
Using the weighting subroutine, the server calculates the weight value of each recognized
person in this block and determines whether the second-level weight value is larger than
the search target threshold. In Figure 25, since the person is wearing a red long-sleeved
shirt and black pants, the computed second-level weight of this person is 0.7534, which is
lower than the search target threshold of 0.8. Hence, the UAV continues the HWF search
in the next block with a first-level weight of 9.0.

Figure 25. Recognized results for the person in the block with weight 35.06 at altitude ℎଵ.

In Figure 26, because the recognized person in block [9.0] is wearing a black long-
sleeved shirt and black pants, the calculated second-level weight value for this person is
0.9052, which is greater than the target threshold of 0.8. Hence, the algorithm determines
that the search target has been found. The Jetson Nano on the UAV then transmits photos
of the person found in this block, along with the location coordinates, back to the server
to notify the user, which concludes this search mission.

Figure 25. Recognized results for the person in the block with weight 35.06 at altitude h1.

Machines 2024, 12, x FOR PEER REVIEW 29 of 32

Figure 26. Recognized results for the person in the block with weight 9.0 at altitude ℎଵ.

5.3. Limitations of the Proposed System
There are important prerequisites for the integrated YOLOv5 and hierarchical HWF

path planning framework proposed in this study, which are as follows.
1. The ideal search area must approximate a rectangle. If it is a concave or convex pol-

ygon or any irregular shape, the input range for HWF must be the smallest bounding
rectangle that encompasses the entire search area. This would expand the search area,
potentially including many non-search areas, leading to longer search paths and
times, as well as increased power consumption for the UAV.

2. The ideal altitude for the search area should be consistent across a single horizontal
plane. This ensures that when the UAV captures the image of the entire search area
at altitude ℎ , the distances between the UAV and the center points of different
blocks are similar. Hence, the relationship among the block weight values obtained
from the human body and clothing recognition at the first level will closely approxi-
mate those of the real search target. Further, using HWF path planning to visit blocks
at the second level with the highest block weight value first and subsequently recog-
nizing the results at the second level will yield more accurate outcomes. Conversely,
if the altitudes of the center points of different blocks are not on the same horizontal
plane, the UAV will be closer to blocks at higher altitudes. This results in clearer,
more magnified images of human bodies, leading to better recognition results. Con-
sequently, a block with higher block weight values might be prioritized in the HWF
path planning algorithm. If the search target is not within this block, it could result
in longer search paths and times.

3. Since the UAV captures images at altitude ℎ in the first level, it must cover the en-
tire area. Due to the limited resolution of the camera, the search area cannot be too
expansive. Otherwise, the captured images of human bodies would appear smaller
and blurrier, leading to poorer recognition results and subsequently affecting the ac-
curacy of HWF path planning.

5.4. Performance Comparison of YOLOv5 and YOLOv8
YOLOv5 was released in June 2020. The YOLOv5 model has Darknet 53 as its back-

bone and its design focuses on enhancing the detection of objects at different scales, which
improves the performance on objects of varying sizes. YOLOv8 is the latest version of the
YOLO family, developed by Ultralytics, who also created the YOLOv5 model. It intro-
duces numerous architectural changes over YOLOv5. Unlike YOLOv5, YOLOv8 is an an-
chor-free model, meaning that it directly predicts the center of an object instead of the
offset from a known anchor box. The study conducted by [43] involved a comparative
analysis of the performance of YOLOv5 and YOLOv8 in aerial human detection using

Figure 26. Recognized results for the person in the block with weight 9.0 at altitude h1.

5.3. Limitations of the Proposed System

There are important prerequisites for the integrated YOLOv5 and hierarchical HWF
path planning framework proposed in this study, which are as follows.

1. The ideal search area must approximate a rectangle. If it is a concave or convex poly-
gon or any irregular shape, the input range for HWF must be the smallest bounding
rectangle that encompasses the entire search area. This would expand the search area,
potentially including many non-search areas, leading to longer search paths and times,
as well as increased power consumption for the UAV.

2. The ideal altitude for the search area should be consistent across a single horizontal
plane. This ensures that when the UAV captures the image of the entire search area at
altitude h0, the distances between the UAV and the center points of different blocks
are similar. Hence, the relationship among the block weight values obtained from the
human body and clothing recognition at the first level will closely approximate those
of the real search target. Further, using HWF path planning to visit blocks at the second
level with the highest block weight value first and subsequently recognizing the results
at the second level will yield more accurate outcomes. Conversely, if the altitudes of

Machines 2024, 12, 65 28 of 31

the center points of different blocks are not on the same horizontal plane, the UAV will
be closer to blocks at higher altitudes. This results in clearer, more magnified images
of human bodies, leading to better recognition results. Consequently, a block with
higher block weight values might be prioritized in the HWF path planning algorithm.
If the search target is not within this block, it could result in longer search paths
and times.

3. Since the UAV captures images at altitude h0 in the first level, it must cover the
entire area. Due to the limited resolution of the camera, the search area cannot be too
expansive. Otherwise, the captured images of human bodies would appear smaller
and blurrier, leading to poorer recognition results and subsequently affecting the
accuracy of HWF path planning.

5.4. Performance Comparison of YOLOv5 and YOLOv8

YOLOv5 was released in June 2020. The YOLOv5 model has Darknet 53 as its backbone
and its design focuses on enhancing the detection of objects at different scales, which
improves the performance on objects of varying sizes. YOLOv8 is the latest version of the
YOLO family, developed by Ultralytics, who also created the YOLOv5 model. It introduces
numerous architectural changes over YOLOv5. Unlike YOLOv5, YOLOv8 is an anchor-free
model, meaning that it directly predicts the center of an object instead of the offset from a
known anchor box. The study conducted by [43] involved a comparative analysis of the
performance of YOLOv5 and YOLOv8 in aerial human detection using unmanned aerial
vehicles. The research utilized a pedestrian dataset obtained from Roboflow, consisting
of 828 aerial images for model training and 233 images for validation. The experimental
results revealed that the YOLOv8 model exhibited higher precision and F1-scores compared
to the YOLOv5 model, with differences of 2.82% and 0.98%, respectively. However, in
terms of recall performance, YOLOv5 surpasses the YOLOv8 model by 0.54%. In [44], a
comparison was made between various versions of YOLO, specifically YOLOv5 to YOLOv8,
based on their mean average precision (mAP) scores. The study involved the training of
models using 2415 images, and 303 images were allocated for both validation and testing
purposes. The images were categorized into five classes. The research findings indicated
that YOLOv5 achieved the highest average detection accuracy in terms of the mAP metric,
whereas YOLOv8 performed the poorest among the four versions. Considering these results
collectively, it is evident that the choice of dataset significantly influences the performance
of different YOLO versions. Therefore, for future work, we are contemplating the utilization
of the updated YOLOv8 to train our human detection model.

6. Conclusions

In this study, to reduce the search time and increase the search accuracy of search
and rescue operations, an integrated YOLOv5 and HWF framework has been proposed.
It combines the YOLOv5 model to automatically recognize the search target in real time
and the hierarchical HWF path planning algorithm to dispatch a UAV to capture images
of the search target at different altitudes. Two improved search algorithms, HWFR-S and
HWFR-D, which incorporate the concepts of the convenient visit threshold and the weight
difference, respectively, have been further proposed to resolve the issue of the lengthy and
redundant flight paths of HWF. YOLOv5 has been trained by the VisDrone2019 dataset and
the drone-clothing dataset for human body and clothing/pant recognition, respectively.
The results show that the drone-clothing model converges faster and achieves higher
classification metric values than the VisDrone2019 model does. According to the simulation
results, the HWF, HWFR-S, and HWFR-D search algorithms proposed in this study not
only effectively reduce the length of the UAV’s search path and the number of search blocks
but also significantly decrease the search time required for the UAV to locate the search
target, with a much higher search accuracy than the two traditional search algorithms.
Moreover, this integrated YOLOv5 and HWF framework has been implemented and tested

Machines 2024, 12, 65 29 of 31

in a real scenario; it has been shown to reduce the UAV’s power consumption and enhance
the efficiency of search and rescue operations.

In the future, we will address the issues and limitations mentioned in Section 5.3, for
example, the irregular shapes of search and rescue areas, the different altitudes of areas,
and areas that exceed the resolution range of the UAV camera. Additionally, to reduce
search and rescue times, the possibility of utilizing multiple UAVs in collaborative search
and rescue operations will be considered. Further, we will evaluate the utilization of the
updated YOLOv8 to train our human detection model and compare its performance with
that of YOLOv5 as another future task. By refining the integrated YOLOv5 and hierarchical
HWF path planning system proposed in this study, we aim to develop a more versatile
UAV search and rescue system in the future.

Author Contributions: Conceptualization, I.-C.C.; methodology, I.-C.C., H.-F.C., Y.-W.C., M.-T.H.,
W.-F.W. and D.-Y.Y.; software, H.-F.C., Y.-W.C., M.-T.H., W.-F.W. and D.-Y.Y.; validation, I.-C.C. and
C.-E.Y.; formal analysis, I.-C.C.; resources, C.-E.Y.; data curation, H.-F.C., Y.-W.C., M.-T.H., W.-F.W.
and D.-Y.Y.; writing—original draft preparation, Y.-H.H., I.-C.C. and C.-E.Y.; writing—review and
editing, Y.-H.H., I.-C.C. and C.-E.Y.; supervision, I.-C.C. and C.-E.Y.; project administration, I.-C.C.
and C.-E.Y.; funding acquisition, I.-C.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Science and Technology Council, Taiwan, grant
number NSTC 112-2221-E-018-009. The APC was funded by NSTC 112-2221-E-018-009.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sahingoz, O.K. Networking models in flying ad-hoc networks (FANETs): Concepts and Challenges. J. Intell. Robot. Syst. 2014,

74, 513–527. [CrossRef]
2. Menouar, H.; Guvenc, I.; Akkaya, K.; Uluagac, A.S.; Kadri, A.; Tuncer, A. UAV-enabled intelligent transportation systems for the

smart city: Applications and challenges. IEEE Commun. Mag. 2017, 55, 22–28. [CrossRef]
3. Aasen, H. UAV spectroscopy: Current sensors, processing techniques and theoretical concepts for data interpretation. In Proceed-

ings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8809–8812.
4. Ezequiel, C.A.F.; Cua, M.; Libatique, N.C.; Tangonan, G.L.; Alampay, R.; Labuguen, R.T.; Favila, C.M.; Honrado, J.L.E.; Canos, V.;

Devaney, C.; et al. UAV aerial imaging applications for post-disaster assessment, environmental management and infrastructure
development. In Proceedings of the International Conference on Unmanned Aircraft Systems, Orlando, FL, USA, 27–30 May 2017;
pp. 274–283.

5. Zhang, Y.; Li, S.; Wang, S.; Wang, X.; Duan, H. Distributed bearing-based formation maneuver control of fixed-wing UAVs by
finite-time orientation estimation. Aerosp. Sci. Technol. 2023, 136, 108241. [CrossRef]

6. Zheng, Q.; Zhao, P.; Li, Y.; Wang, H.; Yang, Y. Spectrum interference-based two-level data augmentation method in deep learning
for automatic modulation classification. Neural Comput. Applic. 2021, 33, 7723–7745. [CrossRef]

7. Mao, Y.; Sun, R.; Wang, J.; Cheng, Q.; Kiong, L.C.; Ochieng, W.Y. New time-differenced carrier phase approach to GNSS/INS
integration. GPS Solut. 2022, 26, 122. [CrossRef]

8. Zhang, X.; Pan, W.; Scattolini, R.; Yu, S.; Xu, X. Robust tube-based model predictive control with Koopman operators. Automatica
2022, 137, 110114. [CrossRef]

9. Narayanan, S.S.K.S.; Tellez-Castro, D.; Sutavani, S.; Vaidya, U. SE(3) (Koopman-MPC: Data-driven learning and control of
quadrotor UAVs. IFAC-PapersOnLine 2023, 56, 607–612. [CrossRef]

10. Cao, B.; Zhang, W.; Wang, X.; Zhao, J.; Gu, Y.; Zhang, Y. A memetic algorithm based on two_Arch2 for multi-depot heterogeneous-
vehicle capacitated arc routing problem. Swarm Evol. Comput. 2021, 63, 100864. [CrossRef]

11. Erdelj, M.; Natalizio, E. UAV-assisted disaster management: Applications and open issues. In Proceedings of the International
Conference on Computing, Networking and Communications, Kauai, HI, USA, 15–18 February 2016; pp. 1–5.

12. Mukherjee, A.; De, D.; Dey, N.; Crespo, R.G.; Herrera-Viedma, E. DisastDrone: A Disaster Aware Consumer Internet of Drone
Things System in Ultra-Low Latent 6G Network. IEEE Trans. Consum. Electron. 2023, 69, 38–48. [CrossRef]

13. Pasandideh, F.; da Costa, J.P.J.; Kunst, R.; Islam, N.; Hardjawana, W.; Pignaton de Freitas, E. A Review of Flying Ad Hoc Networks:
Key Characteristics, Applications, and Wireless Technologies. Remote Sens. 2022, 14, 4459. [CrossRef]

14. Majeed, A.; Hwang, S.O. A Multi-Objective Coverage Path Planning Algorithm for UAVs to Cover Spatially Distributed Regions
in Urban Environments. Aerospace 2021, 8, 343. [CrossRef]

https://doi.org/10.1007/s10846-013-9959-7
https://doi.org/10.1109/MCOM.2017.1600238CM
https://doi.org/10.1016/j.ast.2023.108241
https://doi.org/10.1007/s00521-020-05514-1
https://doi.org/10.1007/s10291-022-01314-3
https://doi.org/10.1016/j.automatica.2021.110114
https://doi.org/10.1016/j.ifacol.2023.12.091
https://doi.org/10.1016/j.swevo.2021.100864
https://doi.org/10.1109/TCE.2022.3214568
https://doi.org/10.3390/rs14184459
https://doi.org/10.3390/aerospace8110343

Machines 2024, 12, 65 30 of 31

15. Das, L.B.; Das, L.B.; Lijiya, A.; Jagadanand, G.; Aadith, A.; Gautham, S.; Mohan, V.; Reuben, S.; George, G. Human Target Search
and Detection using Autonomous UAV and Deep Learning. In Proceedings of the IEEE International Conference on Industry 4.0,
Artificial Intelligence, and Communications Technology (IAICT), Bali, Indonesia, 7–8 July 2020; pp. 55–61. [CrossRef]

16. Bandeira, T.W.; Coutinho, W.P.; Brito, A.V.; Subramanian, A. Analysis of Path Planning Algorithms Based on Travelling Salesman
Problem Embedded in UAVs. In Proceedings of the Brazilian Symposium on Computing Systems Engineering (SBESC), Fortaleza,
Porto Alegre, Brazil, 3–6 November 2015; pp. 70–75. [CrossRef]

17. Jain, A.; Ramaprasad, R.; Narang, P.; Mandal, M.; Chamola, V.; Yu, F.R.; Guizan, M. AI-Enabled Object Detection in UAVs:
Challenges, Design Choices, and Research Directions. IEEE Netw. 2021, 35, 129–135. [CrossRef]

18. Yu, X.; Jin, S.; Shi, D.; Li, L.; Kang, Y.; Zou, J. Balanced Multi-Region Coverage Path Planning for Unmanned Aerial Vehi-
cles. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada,
11–14 October 2020; pp. 3499–3506.

19. Yaguchi, Y.; Tomeba, T. Region Coverage Flight Path Planning Using Multiple UAVs to Monitor the Huge Areas. In Proceedings
of the IEEE International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 1677–1682.

20. Kurdi, H.A.; Aloboud, E.; Alalwan, M.; Alhassan, S.; Alotaibi, E.; Bautista, G.; How, J.P. Autonomous Task Allocation for
Multi-UAV Systems Based on the Locust Elastic Behavior. Appl. Soft Comput. 2018, 71, 110–126. [CrossRef]

21. Alotaibi, E.T.; Alqefari, S.S.; Koubaa, A. LSAR-Multi-UAV Collaboration for Search and Rescue Missions. IEEE Access 2019,
7, 55817–55832. [CrossRef]

22. Cabreira, T.; Brisolara, L.; Ferreira, P.R., Jr. Survey on Coverage Path Planning with Unmanned Aerial Vehicles. Drones 2019, 3, 4.
[CrossRef]

23. Jünger, M.; Reinelt, G.; Rinaldi, G. The Traveling Salesman Problem. In Handbooks in Operations Research and Management Science;
Elsevier B.V.: Amsterdam, The Netherlands, 1995; Volume 7, pp. 225–330.

24. Ali, M.; Md Rashid, N.K.A.; Mustafah, Y.M. Performance Comparison between RGB and HSV Color Segmentations for Road
Signs Detection. Appl. Mech. Mater. 2013, 393, 550–555. [CrossRef]

25. Haritha, D.; Bhagavathi, C. Distance Measures in RGB and HSV Color Spaces. In Proceedings of the 20th International Conference
on Computers and Their Applications (CATA 2005), New Orleans, LA, USA, 16–18 March 2005.

26. Pooja, K.S.; Shreya, R.N.; Lakshmi, M.S.; Yashika, B.C.; Rekha, B.N. Color Recognition using K-Nearest Neighbors Machine
Learning Classification Algorithm Trained with Color Histogram Features. Int. Res. J. Eng. Technol. (IRJET) 2021, 8, 1935–1936.

27. Pradeep, A.G.; Gnanapriya, M. Novel Contrast Enhancement Algorithm Using HSV Color Space. Int. J. Innov. Technol. Res. 2016,
4, 5073–5074.

28. Krishna, S.L.; Chaitanya, G.S.R.; Reddy, A.S.H.; Naidu, A.M.; Poorna, S.S.; Anuraj, K. Autonomous Human Detection System
Mounted on a Drone. In Proceedings of the 2019 International Conference on Wireless Communications Signal Processing and
Networking (WiSPNET), Chennai, India, 21–23 March 2019; pp. 335–338. [CrossRef]

29. Mliki, H.; Bouhlel, F.; Hammami, H. Human activity recognition from UAV-captured video sequences. Pattern Recognit. 2020,
100, 107140. [CrossRef]

30. Safadinho, D.; Ramos, J.; Ribeiro, R.; Filipe, V.; Barroso, J.; Pereira, A. UAV Landing Using Computer Vision Techniques for
Human Detection. Sensors 2020, 20, 613. [CrossRef] [PubMed]

31. Lygouras, E.; Santavas, N.; Taitzoglou, A.; Tarchanidis, K.; Mitropoulos, A.; Gasteratos, A. Unsupervised Human Detection with
an Embedded Vision System on a Fully Autonomous UAV for Search and Rescue Operations. Sensors 2019, 19, 3542. [CrossRef]

32. Do, M.-T.; Ha, M.-H.; Nguyen, D.-C.; Thai, K.; Ba, Q.-H.D. Human Detection Based Yolo Backbones-Transformer in UAVs. In
Proceedings of the International Conference on System Science and Engineering (ICSSE), Ho Chi Minh, Vietnam, 27–28 July 2023;
pp. 576–580. [CrossRef]

33. Wijesundara, D.; Gunawardena, L.; Premachandra, C. Human Recognition from High-altitude UAV Camera Images by AI based
Body Region Detection. In Proceedings of the Joint 12th International Conference on Soft Computing and Intelligent Systems
and 23rd International Symposium on Advanced Intelligent Systems (SCIS & ISIS), Ise, Japan, 29 November—2 December 2022;
pp. 1–4. [CrossRef]

34. Jetson Nano Developer Kit|NVIDIA. Available online: https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-nano-developer-kit/ (accessed on 1 December 2023).

35. Itkin, M.; Kim, M.; Park, Y. Development of Cloud-Based UAV Monitoring and Management System. Sensors 2016, 16, 1913.
[CrossRef]

36. Geng, X.; Chen, Z.; Yang, W.; Shi, D.; Zhao, K. Solving the Traveling Salesman Problem Based on an Adaptive Simulated
Annealing Algorithm with Greedy Search. Appl. Soft Comput. 2011, 11, 3680–3689. [CrossRef]

37. OpenCV—Open Computer Vision Library. Available online: https://opencv.org/ (accessed on 1 December 2023).
38. VisDrone-Dataset-github. Available online: https://github.com/VisDrone/VisDrone-Dataset (accessed on 1 December 2023).
39. Pixhawk. Available online: https://pixhawk.org/ (accessed on 1 December 2023).
40. Welcome to DroneKit-Python’s Documentation. Available online: https://dronekit-python.readthedocs.io/en/latest/ (accessed

on 1 December 2023).
41. Mission Planner Home—Mission Planner Documentation (ardupilot.org). Available online: https://ardupilot.org/planner/

(accessed on 1 December 2023).

https://doi.org/10.1109/IAICT50021.2020.9172031
https://doi.org/10.1109/SBESC.2015.20
https://doi.org/10.1109/MNET.011.2000643
https://doi.org/10.1016/j.asoc.2018.06.006
https://doi.org/10.1109/ACCESS.2019.2912306
https://doi.org/10.3390/drones3010004
https://doi.org/10.4028/www.scientific.net/amm.393.550
https://doi.org/10.1109/WiSPNET45539.2019.9032876
https://doi.org/10.1016/j.patcog.2019.107140
https://doi.org/10.3390/s20030613
https://www.ncbi.nlm.nih.gov/pubmed/31979142
https://doi.org/10.3390/s19163542
https://doi.org/10.1109/ICSSE58758.2023.10227141
https://doi.org/10.1109/SCISISIS55246.2022.10002039
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano-developer-kit/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano-developer-kit/
https://doi.org/10.3390/s16111913
https://doi.org/10.1016/j.asoc.2011.01.039
https://opencv.org/
https://github.com/VisDrone/VisDrone-Dataset
https://pixhawk.org/
https://dronekit-python.readthedocs.io/en/latest/
https://ardupilot.org/planner/

Machines 2024, 12, 65 31 of 31

42. Suparnunt, C.; Boonvongsobhon, C.; Eounes Baig, F.; Leelalerthpat, P.; Hematulin, W.; Jarawan, T.; Kamsing, P. Practical Parallel
of Autonomous Unmanned Aerial Vehicle by Mission Planner. In Proceedings of the IEEE International Geoscience and Remote
Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 7831–7834. [CrossRef]

43. Sary, I.P.; Andromeda, S.; Armin, E.U. Performance Comparison of YOLOv5 and YOLOv8 Architectures in Human Detection
using Aerial Images. Ultim. Comput. J. Sist. Komputer. 2023, 15, 8–13. [CrossRef]

44. Gašparović, B.; Mauša, G.; Rukavina, J.; Lerga, J. Evaluating YOLOV5, YOLOV6, YOLOV7, and YOLOV8 in Underwater
Environment: Is There Real Improvement? In Proceedings of the 8th International Conference on Smart and Sustainable
Technologies (SpliTech), Split/Bol, Croatia, 20–23 June 2023; pp. 1–4. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/IGARSS46834.2022.9884577
https://doi.org/10.31937/sk.v15i1.3204
https://doi.org/10.23919/SpliTech58164.2023.10193505

	Introduction
	Related Work
	Traditional Unmanned Aerial Vehicle Path Planning Methods for Search and Rescue Operations
	Search Target Recognition Techniques
	Color Space Exchange
	Extracting Feature Colors of Image
	Transformation of Color Space
	K-Nearest Neighbors (KNN) Color Classification
	UAV Systems for Human Detection

	System Architecture and Algorithms
	System Architecture
	Search Algorithm
	Hierarchical Flight Altitudes for the UAV
	Block Weight in the Search Area
	Hierarchical Human-Weight-First (HWF) Path Planning Algorithm
	Convenient Visit Algorithms Based on HWF
	Flow of the Integrated YOLOv5 and HWF Framework
	Weighting Subroutine Flowchart
	KNN Color Recognition Process

	Simulation Results
	YOLOv5 Image Recognition Model
	Simulation Environment for Search Algorithms
	Average Search Path Length
	Average Number of Search Blocks
	Average Search Time
	Average Search Accuracy

	System Implementation
	Software and Hardware
	Screenshots of the Implemented System
	Limitations of the Proposed System
	Performance Comparison of YOLOv5 and YOLOv8

	Conclusions
	References

