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Abstract: Robotic systems are crucial in modern manufacturing. Complex assembly tasks require
the collaboration of multiple robots. Their orchestration is challenging due to tight tolerances and
precision requirements. In this work, we set up two Franka Panda robots performing a peg-in-
hole insertion task of 1 mm clearance. We structure the control system hierarchically, planning
the robots’ feedback-based trajectories with a central policy trained with reinforcement learning.
These trajectories are executed by a low-level impedance controller on each robot. To enhance
training convergence, we use reverse curriculum learning, novel for such a two-armed control task,
iteratively structured with a minimum requirements and fine-tuning phase. We incorporate domain
randomization, varying initial joint configurations of the task for generalization of the applicability.
After training, we test the system in a simulation, discovering the impact of curriculum parameters on
the emerging process time and its variance. Finally, we transfer the trained model to the real-world,
resulting in a small decrease in task duration. Comparing our approach to classical path planning
and control shows a decrease in process time, but higher robustness towards calibration errors.

Keywords: reinforcement learning; curriculum learning; simulation-to-reality transfer; dual-arm
robots; robotic assembly; peg-in-hole assembly

1. Introduction

In this paper, we build upon the foundational work presented in our earlier publication
“Curriculum-organized Reinforcement Learning for Robotic Dual-Arm Assembly” at the
Automation, Robotics & Communications for Industry 4.0/5.0 (ARCI’ 2024): 4th IFSA
Winter Conference [1]. We aim to expand the original study’s scope by performing a
simulation-to-reality (Sim2Real) transfer for the proposed dual-arm robotic assembly task.
This extension not only broadens the theoretical framework but also incorporates additional
experimental results, enhancing the relevance and applicability of our findings.

In modern manufacturing, assembly consumes about 50% of total production time
and accounts for 30% of costs [2]. Especially insertion tasks—critical in the final integration
of assemblies in consumer electronics like mobile phones—account for 60% of manual
human labor time [3]. Assembly tasks typically involve multiple sequential insertion
operations, making the use of dual-arm robots advantageous as they can eliminate the
need for reorientation and reclamping of workpieces, thus reducing overall process time.
However, this solution adds layers of complexity to the control problem. Traditional robotic
systems for such assembly are hindered by high costs associated with image processing
systems and force/torque measurement sensors, as well as the involvement of human
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programming. They are also limited regarding the adaptability to varying workpiece
geometries, initial inaccuracies, and tight clearances.

In response, this work introduces a strategy utilizing reinforcement learning (RL)
to train control algorithms for such tasks. Our approach not only aims at predicting the
average process time but also models the variability and resulting distribution introduced
by uncertainties in simulation.

We set up two Franka Panda robots to collaboratively perform a square peg-in-hole
task. Training control systems in reality can be slow due to its confinement to real-time op-
erations, costly because it necessitates multiple hardware units for parallelization, and risky
due to potential damage during exploration phases. Consequently, simulations have
become an essential element in the control design stage. We use the Python library robo-
suite [4], which interfaces with the MuJoCo physics engine [5]. Our control architecture
adopts a hierarchical approach, with a low-level impedance control receiving desired tra-
jectories from a central policy trained with RL. The RL training methods are implemented
via Stable Baselines3 (SB3) [6] and utilize a sparse reward function proposed by robosuite.
The training process is designed as a reverse curriculum: we begin the training with the
insertion task nearly completed. As the policy’s performance improves, we progressively
enhance the difficulty of the task until it reaches a configuration that is realistic for practical
applications in terms of the initial peg–hole distance. To ensure the policy’s adaptability to
varying initial robot configurations, we incorporate domain randomization (DR).

Nevertheless, a significant challenge persists, known as the simulation–reality gap,
which complicates the transfer of control systems from simulation to real-world applica-
tions [7]. This gap often results from discrepancies such as model mismatches (e.g., inaccu-
rate dynamic parameters) and disturbances affecting the inputs and outputs in the actual
system. Additionally, RL faces difficulties in terms of interpreting the trained policy’s
actions and adapting to changing system conditions without considerable retraining. These
issues underscore the importance of exploring the robustness of Sim2Real transfer. We
assess the efficacy of this policy in simulation compared to traditional control methods and
compare its performance in real-world to the simulation environment.

In this study, we address the research question of how to train a dual-arm robotic
assembly policy in simulation and transfer it to a real-world setup. How robust performs
the resulting control system to varying tasks in reality, especially compared to a classical
method? A more detailed insight into the particular task as problem formulation is provided
by Section 3. To approach these research questions, we have structured our investigation
into the following points:

• We establish a simulation and training environment for dual-arm robotic assembly
using robosuite, coupled with the MuJoCo physics engine.

• We integrate the simulation with SB3 RL methods, employing the OpenAI Gym
standard [8].

• We design a training methodology based on a reverse curriculum, enhancing both
convergence rates and sample efficiency.

• We investigate how variations in curriculum parameters influence the process charac-
teristics observed in simulations.

• We transfer the trained policy to a real-world setup, comparing its performance to
simulation and traditional control strategies.

The remainder of this paper is organized as follows. The following Section 2 introduces
related work in the fields of simulation environments, robotic assembly control strategies,
and curriculum learning as well as Sim2Real transfer. We use Section 3 to concisely specify
the task of this study. In Section 4, we detail the methodological foundation of our research,
describing the interplay between low-level controllers and the policy, the reverse curriculum
design for training and the eventual Sim2Real transfer. Section 5 first examines the setup
and outcomes of experiments in simulation. It explores the transfer of the trained policy
to a real-world setting and compares results to those achieved using traditional control
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strategies. Finally, Section 6 discusses implications of these results, before Section 7 sums
up our work, highlights limitations, and derives potential directions for future research.

2. Related Work

In this section, we first present previous work on relevant methods and techniques
used in our study, before we provide more details on their implementations in the context
of our specific assembly task in Section 4.

2.1. Reinforcement Learning

Reinforcement learning (RL) is a branch of Machine Learning that seeks to mimic
the learning processes observed in both humans and animals. Unlike traditional Machine
Learning approaches that rely on predefined datasets, RL involves the dynamic generation
of data through interaction within a specific environment. In this framework, an agent en-
gages with the environment by performing actions, guided by a reward system that informs
the suitability of its decisions based on the currently observed system state. This continuous
interaction facilitates the development of a policy, which decides on the agent’s responses
to different environmental conditions. Such policies may be deterministic, prescribing
explicit actions, or stochastic, suggesting actions with certain probabilities. The overarching
goal of the agent is to optimize its reward accumulation, thereby progressively refining its
decision-making process by training and adapting to novel states within the environment.
Consequently, the essence of an RL system is encapsulated in the interaction between the
agent and its environment [9].

2.2. Robust Sim2Real Transfer

Transferring policies trained in simulation environments with RL to reality is a nec-
essary step towards actual application of learning-based robotic systems. This process,
known as Sim2Real transfer, faces the challenge of being robust to deviations, uncertain-
ties, and unforeseen situations, known as Sim2Real gap, between the two domains. We
address this challenge at different stages from decisions on the control system design
until deployment.

First, such robustness by architecture can be achieved through a hierarchical control
model. This structure integrates classical controllers for low-level hardware actuation with
a high-level policy framework. The high-level policy is designed to process all measured
values as observations, subsequently generating setpoints for the low-level control. By this
architecture the action space is adapted for an accelerated exploration during training and
improved safety at deployment. Furthermore, the robustness of the Sim2Real transfer
with respect to model mismatch is increased due to decoupling of the policy and system
dynamics [10]. In this paper, leveraging experience from past research, as outlined in
Section 2.4, we specifically select a suitable low-level controller, as explained in Section 4.1.

Furthermore, it is possible to improve the robustness at the training stage in simulation
by applying DR. This technique introduces variations in the simulation settings, such as
initial conditions, to more accurately reflect the distribution of real-world data, bridging
the gap created by biases between simulated and actual environments. Additionally,
DR allows for the modeling of time-varying behaviors that result from system drifts
or degradation [11]. This is achieved through dynamics randomization by altering the
system’s dynamic parameters. To prevent a distribution shift between simulation and
reality, it is crucial to consider the diversity of randomization within a dataset—not merely
the quantity of samples [12]. In our work, we apply DR described in Section 4.4 matching to
a task-specific curriculum with its general concept explained in Section 2.5 and task-specific
implementation as a reverse curriculum in Section 4.3.

During the deployment stage on real hardware, the robustness of Sim2Real transfer can
be further enhanced by employing methods such as policy-level action integration (PLAI).
While dynamics randomization is a common strategy to address model inaccuracies and
improve robustness, it often requires extensive additional training and may compromise
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precision eventually. Drawing inspiration from PID control, PLAI modifies incremental
setpoints by integrating policy actions based on the previous desired state rather than the
current state. This adaptation significantly improves the control system’s ability to reject
disturbances and minimize steady-state errors, thereby enhancing overall performance [13].
Our particular utilization of PLAI is detailed in Section 4.5.

2.3. Simulation Environment

For robotics simulations, the gym interface often serves as the cornerstone for con-
necting with RL toolboxes. A notable example is PyBullet [14], a lightweight yet robust
simulation engine, which has been successfully integrated into various RL frameworks,
including PyTorch [15]. This integration is used in several studies [16–18]. Additionally,
NVIDIA’s Isaac Sim has gained traction as a robotics simulator within the RL commu-
nity, distinguished by its comprehensive and so far most advanced GPU support [19]. It
commonly interfaces with PyTorch-based libraries such as skrl [20]. Furthermore, past
research [21–23] has utilized MuJoCo within the robosuite framework for its efficient
low-level control implementations, a lean framework compared to Isaac Sim. Our work
leverages this particular setup, capitalizing on its streamlined integration and benefits
in development.

2.4. Control of Robotic Assembly

For single-arm peg-in-hole assembly tasks, compliant control systems such as
impedance control have been extensively applied, demonstrating their effectiveness across
various studies [24–26]. This conventional approach has been successfully extended to
dual-arm setups, with notable implementations detailed by [27]. In these configurations,
while one robot actively manipulates the peg, the other typically plays a passive role by
just holding the hole part with high compliance. However, engaging both robots actively
could significantly enhance process time and reliability. This potential improvement has
spurred interest in applying RL techniques. RL has been effectively used to generate
reference trajectories for established low-level impedance controllers, as shown in recent
research [16].

2.5. Curriculum Learning

Curriculum learning is a technique applicable to goal-oriented tasks that do not require
prior domain knowledge, depending exclusively on achieving a state indicative of task
completion. The method entails a progressive learning process where the robot starts
from various initial states, each incrementally increasing in difficulty (easy2hard), often
measured by the spatial distance from the goal. Previous research, such as [28], has explored
the automatic generation of such learning curricula. In contrast, our approach involves
manually defining the learning steps, tailored to our specific needs.

A recent advancement in this field is the introduction of a sampling-based curricu-
lum [13], which involves gradually elevating the lower bound of a task difficulty. The initial
system configurations are selected from a distribution determined by this bound. In sce-
narios involving dual robots, like in our study, setting these difficulty bounds is more
complex. The condition for activating DR in the curriculum is crucial, as it is chosen based
on the insertion state to prevent the system from initializing into a potential jamming
situation. To our knowledge, this work is the first implementation of curriculum-organized
RL specifically applied to a dual-arm robotic assembly task. Moreover, the two-phase
structure of our curriculum introduces a novel approach to this field.

3. Problem Formulation

Our aim is to develop a control policy in simulation and successfully transfer it to a
real-world setup for tactile assembly applications. Specifically we focus on a peg-in-hole
problem with squared objects, implying the relative orientation of the parts to be crucial.
Figure 1 illustrates our experimental setup in both simulation and reality, featuring squared
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objects with a 1 mm clearance, and both Frankas’ bases positioned 1.4 m apart. The parts
used in the experiments were manufactured from PLA material using a 3D printer, with a
printing resolution of 0.1 mm—ten times more precise than the clearance. The gripping
process of both parts is out of scope of this work and assumed to be performed in advance.

(a) (b)
Figure 1. Environment consisting of two robot arms, peg and hole workpieces. (a) Setup in simulation.
(b) Setup in reality.

4. Methodology

We propose a hierarchically structured control system consisting of two decentral
low-level impedance controllers, one per robot, which directly deliver torque commands to
the joint motors. A central policy in form of a neural network (NN), trained with RL in a
curriculum-based framework, generates setpoint values for these impedance controllers
feedbacking current measurements as observations. This architecture is illustrated in
Figure 2. To enhance the robustness of the policy and facilitate a successful Sim2Real
transfer, DR is applied during specific training sections.

Low-level Control

Observations Robot 1

Robot 1

Observations Robot 2

Robot 2

Impedance
Controller 1

Impedance
Controller 2

Policy (NN)

Figure 2. Hierachical control system architecture with a central policy in form of a NN generating
setpoints for the decentral low-level impedance controllers.

4.1. Low-Level Control

To optimize the action space for the policy network, on each robot, impedance control
is implemented, as outlined by [29]. The recommendation to adapt the action space
through Cartesian impedance control facilitates rapid policy exploration in simulation.
Furthermore, for deploying policies in the real world, the use of joint velocity impedance
control is advisable to enhance the efficacy of the Sim2Real transfer. However, to simplify
implementation efforts and reduce the need for coordinate transformations, we opted for
joint position impedance control. Reducing the amount of Franka Panda specific terms
and retaining a mainly robot-agnostic implementation, we omit the moment of inertia
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matrix, the Coriolis, and centripetal matrix. This leaves a PD-like controller with gravity
compensation similar to the joint space position controller with fixed impedance provided
by robosuite. To emphasize the compliant behavior of the robot controllers, necessary for
small-tolerance insertions, we still refer to this as impedance control. Also, the controller’s
setpoints are expressed as delta positions. The control law is expressed as:

τ = Kp(qd − q)− Kdq̇ + g(q), (1)

qd = q + ∆qd. (2)

where τ denotes the joint motor torques, the variable ∆qd refers to the desired delta joint
positions, and q and q̇ denote the measured joint positions and velocities, respectively.
Adding the configuration dependend gravity compensation g(q) to the control law will
be accomplished by the Franka control implementation in the real-world setup internally.
The matrix Kp represents the stiffness and Kd the damping as control gains, which are
maintained at standard values of the robosuite implementation:

Kp = 50 Nm

1
. . .

1

, Kd = 2
√

50 Nms

1
. . .

1

, Kp, Kd ∈ R7×7. (3)

The relationship between these gains is defined by Kd,i = 2
√

Kp,i, ensuring aperiodical
damping and stability.

4.2. Reinforcement Learning

We formulate the problem as a Markov decision process, explicitly defining the obser-
vation space, action space, and reward function. We utilize a state-of-the-art model-free,
off-policy RL algorithm known as Soft Actor-Critic (SAC) [30], employing the implementa-
tion provided by SB3. To address the computational demands of the CPU-based physics
simulation in MuJoCo and enhance sample efficiency, we integrate a replay buffer us-
ing Hindsight Experience Replay (HER) [31]. Table 1 presents relevant hyperparameters
involved in the RL training as well as network parameters of the policy.

Table 1. Relevant training and network parameters of the actor-critic policy trained with SAC.

Parameter Value

Optimizer Adam
Learning Rate 3 × 10−4

Discount Factor 0.99
Entropy Coefficient Auto (init 1.0)

Batch Size 256
Buffer Size 1 × 106

Replay Buffer Size 6
Architecture Actor 1 × 256 neurons as hidden layer
Architecture Critic 2 × 256 neurons as hidden layers

Activation Function ReLU with bias

The observation space O ∋ o for our RL setup is based on the default configuration
provided by robosuite for the TwoArmPegInHole environment:

• Positions and quaternions of the peg and the hole;
• A difference vector and angle φ between the peg and the hole;
• Parallel distance c and perpendicular projected distance d between the peg and

the hole;
• The state of each robot, which encompasses the sine and cosine of the joint angles q,

joint velocities q̇, as well as positions and quaternions of the end-effectors (EE).
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It is important to note that this observation space does not include any force or torque
measurements from additional sensors. The geometric quantities described are illustrated
in Figure 3.

Figure 3. Quantities describing the geometric relationship between the peg and the hole.

The action space is defined by the choice of joint position impedance control, specif-
ically targeting the desired deltas of joint coordinates for each robot. The range of these
actions is symmetrically scaled by the parameters output_min and output_max, with the
maximum delta values set at:

∆qd,max = −∆qd,min = (0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05)T rad. (4)

Limiting the actions in form of delta joint positions given a fixed control period
results in a rate limit of the joint velocities. Furthermore, this specification determines the
maximum achievable speed for task completion during training and if not scaled during
deployment. The numerical limits were empirically established through simulation trials
and are subject to further refinement based on the absolute maximum ratings of robot
components, work pieces, and the specific requirements of the assembly task.

The reward function utilizes the default sparse reward setup of the TwoArmPegInHole
environment, structured as follows:

r =

{
1, d < dmax; |c| < cmax; cos φ > cos φmax

0, else.
(5)

where dmax = 1 mm is determined by the part clearance, cmax = 2 mm, and
cos φmax = 0.95 rad is set based on intuitive experimentation. This goal-oriented and
sparse reward structure is particularly effective for facilitating the application of HER.

4.3. Reverse Curriculum Generation

A reverse curriculum arranges a sequence of related tasks in reverse order, beginning
with an initialization close to the goal state and progressing towards more complex initial
conditions. This approach leverages the reversible nature of most assembly tasks, aiming to
optimize learning efficiency in environments characterized by sparse rewards concentrated
in a limited portion of the state space. Under such a curriculum, a policy trained with RL,
exploring with randomized actions, is able to quickly accumulate rewards and expedite
its learning progression. The policy applies the capabilities acquired at simpler stages to
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increasingly difficult scenarios. As its competence grows, the initial peg–hole distance or
task difficulty is systematically increased to maintain alignment with the policy’s improving
performance. Specifically, in goal-oriented tasks, the initial system state s0 can be adjusted
to more challenging configurations based on the cumulative reward (return) R(s0) gathered
during inference, thus tailoring the difficulty to the policy’s evolving capabilities.

In this study, we structure the curriculum into two distinct phases within each iteration:

1. Minimum Requirements: After a predetermined number of training episodes, an in-
ference test determines whether the policy achieves a return R that surpasses a set
threshold Rmin. If successful, the curriculum progresses to the fine-tuning phase. Else,
this phase is repeated.

2. Fine Tuning: Subsequent to additional training over a fixed number of episodes,
another inference is evaluated. If there is a relative improvement R across a specified
number of inferences, the fine-tuning phase is extended. If improvement stalls, the dif-
ficulty of the initial state is increased, advancing the curriculum to the next iteration,
which starts again at the Minimum Requirements phase.

The curriculum is completed successfully by finishing the Fine Tuning step with
an initial configuration equivalent to the original task formulation. Figure 4 illustrates
this curriculum.

Start with minimum initial
Peg-Hole Distance

Return Increase initial
 Peg-Hole Distance

yes

Evaluate Inference with
current Policy

Train fixed Number of
Episodes

no improved
in previous

Runs?

Train fixed Number of
Episodes

Evaluate Inference
with current Policy

M
inim

um
 R

equirem
ents

Fine Tuning

yes

no

Curriculum completed

yes

Peg-Hole
 completely
separated?

Activate Domain
Randomization

noyes

no

Maximum
Peg-Hole
Distance?

Figure 4. Iterative training procedure of the dual-robot peg-in-hole task as reverse curriculum.
Quantities represented by positions marked red will change if DR is activated.

To specify the initial system state, we manually configured the joint angles of both
Franka robots as:

qinit = (0, 0.20, 0, −1.20, 0, 2.90, 0.79)T rad. (6)

This setup places the peg tip with c = 80 mm away from the hole, defining the baseline
for the original task. The curriculum begins with the peg nearly fully inserted into the
hole by 24 mm. Initially, during the deterministic phase of the curriculum, which spans
40 iterations and excludes DR, the peg is gradually extracted by 1 mm per iteration at
initialization. Following this, starting from a peg–hole distance of 5 mm, DR is applied
as white noise to all initial joint angles over the next 15 iterations. During this phase,
the peg–hole distance is increased by an average of 3 mm per iteration until the system
reaches to the original configuration.

The threshold parameter is set to Rmin = 50 mm, which requires the insertion to be
completed for at least a third of the episode, consisting of 150 steps. Choosing the parameter
this way strikes a balance between training efficiency and the reliable continuation of the
insertion task. In the Fine Tuning phase, the curriculum is designed to allow for three infer-
ence evaluations before the reward is considered to have stagnated, indicating proceeding
into the next iteration. Each phase of the curriculum involves 100 training episodes in one
step. However, an exception is made during the Minimum Requirements phase following
the activation of DR. Due to the increased stochastic nature of the environment with DR,
the first phase involves not just one but 30 inference evaluations, with returns averaged to
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account for variability. To ensure an appropriate ratio of training and inference episodes,
the number of training episodes per step is increased to 300 during this as long as DR
is applied.

4.4. Domain Randomization

In this work, DR plays a critical role in enhancing the policy’s ability to adapt to a
broad range of initial system configurations. We implement DR by introducing normally
distributed white noise with a standard deviation of σq = 1.15◦ to all joint angles during
initialization. However, to prevent the emergence of undesirable states—such as the peg
and hole starting in an condition of both objects penetrating each other—DR is deactivated
at first. DR is applied when the initial state involves a complete separation between the peg
and the hole. We do not use DR in form of dynamic parameters or sensor measurements,
but similar to [13], we choose to implement PLAI instead.

4.5. Deployment on Real-World Hardware

To successfully transfer the trained policy from a simulated environment to the real-
world setup, we developed a toolchain that embeds the NN into a control system structured
according to Section 4.1. The toolchain for Sim2Real transfer includes the following steps
and components:

• Training the Policy: The first step involves training the policy within the introduced
simulated environment. After finishing the training, the policy is exported as a
PyTorch file. This format is chosen for its flexibility and compatibility with various
deployment environments.

• Low-Level Control System: The low-level joint space impedance controllers are
implemented in C++ to interface with the libfranka library on each robot. This ensures
real-time control of the robot’s joint motors with a frequency of 1 kHz.

• Connecting both Robots: Both robots are connected to a central computer that runs
the Robot Operating System 2 (ROS 2) [32]. ROS 2 facilitates communication between
the robot’s specific low-level controllers and the central policy, enabling coordinated
actions and reliable low latency data exchange. The motion planning framework
MoveIt 2 [33] is used in tandem with ros2_control and RViz to provide an interface
for managing and visualizing the robot state as well as an option for classical trajec-
tory planning and execution with interchangeable low-level controllers on the robot
hardware. The policy is embedded within ROS 2, providing setpoints for the low-
level controllers. This integration allows the high-level policy to guide the robot’s
actions based on sensory inputs while still meeting real-time constraints. To further
streamline the process of integrating a policy into the real-world control system, we
developed several ROS 2-based tools. This control utils package provides a simplified
python interface for trajectory planning and interfacing MoveIt 2 by wrapping its API
utilizing pymoveit2.

• Data Recording: To evaluate the performance of the policy, we set up a recording and
logging mechanisms to capture the joint efforts, joint velocities, and EE forces of every
robot arm as well as the total time needed for every episode.

To enhance the robustness of the policy during real-world execution, we apply PLAI to
minimize steady-state errors. In simulation, incremental setpoints are based on the current
measured joint positions, as stated in Equation (2). In contrast, in the real world setup, we
derive these desired joint positions from the previous desired values (last setpoints) and
the output of the policy ∆qd(t) = π(o(t)):

qd(t) = qd(t − 1) + π(o(t)). (7)

This approach enhances the stability and robustness of the policy during real-world
execution by reducing the dependency on immediate sensor feedback and instead relying
on the consistent application of the policy’s outputs over time. The result is a more resilient



Machines 2024, 12, 682 10 of 17

control strategy that better accommodates the uncertainties and variances inherent in
real-world robotic systems (e.g., sensor noise).

5. Results
5.1. Training in Simulation

The primary objectives of the simulation is to train a robust policy for a subsequent
Sim2Real transfer and investigate the impact of curriculum parameters on the characteristics
and performance of the trained control system. By modifying the distance between both
robots and object geometries of robosuite’s TwoArmPegInHole environment, we establish a
simulation consistent with the task description outlined in Section 3.

The moving average of the return R sampled during training is illustrated in Figure 5.
The curriculum spans approximately 35,000 episodes to complete. Notably, the reward
curve exhibits distinct discontinuities, corresponding to adaptations in the initial joint
configuration as the curriculum progresses by iterations. The deterministic learning phase
concludes around 17,000 episodes, marked by a significant increase in difficulty due to the
activation of DR. This change leads to a slower ascent in the learning curve. With noise intro-
duced at initialization, changes to the joint configuration caused by curriculum progression
begin to exert less influence on the task difficulty. After 28,000 episodes, the reward curve
plateaus and eventually begins to decline, reflecting the challenges posed by increased
initial distances and the speed limitations imposed by actuation constraints. The specified
maximum episode length is just sufficient to achieve the threshold Rmin = 50 mm.

Following the training phase, the control policy was evaluated across 10,000 inference
episodes using DR at the original initial task configuration. The histogram shown in
Figure 6 illustrates the distribution of the process cycle time derived from the simulation
step, which posed the first positive sparse reward. On average, the task is accomplished
within 4.99 s with a standard deviation of 0.80 s. Notably, the insertion task succeeds
in 99.8% of all inference episodes in less than 7.5 s, demonstrating a high reliability and
effectiveness of the trained control system in simulation.
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Figure 5. Return per training episode. Each color highlights a new iteration of the curriculum.
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Figure 6. Comparison of process time for the proposed RL-based control system in simulation
and reality.

5.2. Transfer to Reality and Evaluation

To evaluate the effectiveness of the trained control policy beyond simulation, we de-
ployed it on the physical robots leveraging the methods explained in Section 4.5. Dur-
ing 100 inference episodes initiated from the original joint configuration stated in Equation (6),
the policy achieved a success rate of 100%. Figure 6 compares the process times for both
the simulated and real-world setup. In reality, the average process time was measured as
4.31 s, with a standard deviation of 0.34 s, both smaller than in simulation. This could be
caused by overestimating uncertainties in the initial configuration due to measurement
noise and limited encoder resolution by a high amount of DR in simulation, while having a
very narrow distribution of actual initial states close to the nominal original setup in reality.
Additionally, 48% of all real-world inferences completed the insertion within this average
time. The high success rate of 100% in reality proves the robustness of the trained policy,
confirming its effectiveness in real-world settings for the original task configuration.

Additionally, we compared a classical trajectory planning approach using MoveIt 2
to our RL-trained policy. The classical control method, which employs low-level PD joint
controllers, used a pre-defined trajectory with parameters noted in Table 2.

Table 2. Planning parameters for a classical joint trajectory controller.

Parameter Value

Planning Time 1 s
Planner RRTConnect
Max. Velocity 20% of max. values
Max. Acceleration 20% of max. values
Cartesian planning True

It also achieved a success rate of 100%. Moreover, it significantly outperformed the
RL-based system in terms of insertion speed: the average process time for classical control
was only 1.84 s, with a standard deviation of 0.10 s. The histogram in Figure 7 depicts the
distribution of process times for both control strategies, clearly showing that the classical
control completes the task in less than half the time required by the RL-based control
on average.
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At the deployment stage, the libfranka library calculates EE forces from measured joint
torques. While not highly precise, these calculations are adequate for rough estimations
of the applied forces. A comparison of the 3D EE forces exerted by the robot holding the
peg during one representative insertion attempt are presented in Figure 8. They reveal
the classical control approach to apply significantly less contact force, particularly in the
pushing direction x. This method is carefully calibrated to insert the peg without contacting
the surface of the hole, thus avoiding jamming. In contrast, the RL control exerts more
than double the maximum force—up to 10 N—compared to approximately 5 N for classical
control. This indicates that RL control maintains the ability to manage insertion tasks even
when not precisely calibrated, making it more adaptable to variations in the environment
and minor changes in the setup.
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Figure 7. Comparison of process time for the classical and the proposed RL-based control in reality.
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Figure 8. Comparison of EE forces during insertion of a squared peg for the classical and RL
control strategy.
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5.3. Adapted Peg Shape

We further modified the peg object to have a round shape, with its diameter matching
the previous square length. For this variant as well, both control strategies achieved a 100%
success rate. The average process time for inserting this round peg applying RL-based
control was 3.62 s, with a standard deviation of 0.20 s. The classical control approach
achieved an average cycle time of 1.78 s with a standard deviation of 0.09 s. The histogram
in Figure 9 shows the distribution of the process times for both control strategies. Once
again, the classical control significantly outperformed the RL-based system in terms of
cycle time, requiring less than half as long on average.
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Figure 9. Adaptation of the peg to a circular base area. Comparison of process time for the classical
and the proposed RL-based control system in reality.

5.4. Injected Calibration Offset

We evaluated the robustness of the control system towards calibration offsets of
both arms, i.e., a perpendicular deviation of the right robot’s basis from the original axis
introduced in software. The classical trajectory control failed to complete the task in 100%
of the cases for an offset bigger than 1.5 mm. This motivates to examine the RL-based
control system’s performance under similar conditions for a maximum episode duration of
10 s. The histogram in Figure 10 illustrates the distribution of process cycle times for both
an offset of 2 mm and 3 mm.

At a shift of 2 mm, the RL approach still achieves a success rate of 47%, while for an
offset of 3 mm, the success rate even increases to 63%. However, the average process time
increases from 7.64 s to 8.64 s between both setups.
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Figure 10. Distribution of process cycle times for RL control with an injected base offset of 2 mm and
3 mm.

6. Discussion

The selection of Rmin for the curriculum implicitly predetermines the average process
time by influencing the convergence of the return R toward this threshold. The maximum
episode length parameter, here set to 150 steps, establishes a maximum process duration
equivalent to 7.5 s. The simulation reveals a substantial variance in the normally distributed
insertion duration, determined by the difference between Rmin influencing the time needed
to accumulate this reward and the maximum episode length. This variance can be reduced,
albeit at the expense of a more complex learning process, by narrowing the gap between
these two values. This finding is pivotal, as it indicates that for cyclic assembly processes,
crucial characteristics can be statistically determined a priori by the curriculum parameters.

The classical control reaches a success rate of 100% in reality and so does our RL-based
approach. We expected this, given that the clearance of both peg and hole are 1 mm and
thereby one order of magnitude above the Franka’s repeatability of pose and path of 0.1 mm.
To rank this result in the state of research, we refer to [16]. They achieved a success rate
of less than 70% in reality for a similar task. As we also utilized RL with a hierarchical
control system, we identified the curriculum-based training strategy and application of
PLAI as the key to our success. Even if classical control performed twice as fast as the
RL-based control system regarding the process time, the latter offers several advantages.
The RL-based control system is more flexible and could be adapted to strongly differing
workpiece geometries with minimal effort of retraining given updated CAD files. On the
other hand, the classical control system is more sensitive to variations in the environment
that may lead to jamming and not finishing the insertion, requiring careful (re)calibrations.
Figure 8 shows that the RL-based control actually has a lot of contact at the beginning of the
insertion process and manages to prevent jamming by correcting its forces from feedback of
the observations. An experiment introducing an error for one of the robot’s base positions
proved the classical control to fail at an offset of more than 1.5 mm, while the RL-based
control system still achieved a success rate of 63% at an offset of 3 mm.

Experiments with a round peg in the real-world setup confirm the classical control to
maintain the same process cycle time compared to the squared peg, as minimal contact and
no dynamic behavior changes are observed. Meanwhile, the RL-based policy achieves a
shorter cycle time compared to the squared peg scenario. This improvement is due to the
elimination of the need for precise orientation, which reduces contacts and the likelihood
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of jamming situations. It also confirms the ability of the RL approach to solve errors in
orientation without jamming.

7. Conclusions

In this study, we build upon our previous work by successfully transferring a
curriculum-based RL approach for robotic dual-arm assembly from simulation to real-
ity. We focus on a peg-hole task with a 1.0 mm clearance, employing well-established
software libraries such as robosuite for impedance control, MuJoCo for physics simulation,
SB3 for RL, and gym for seamless interfacing. ROS 2 connects the robots to a worksta-
tion that runs the supervisory control policy. The control system architecture employs
a low-level impedance controller on each robot, receiving joint position setpoints from
the policy.

The training in simulation follows a reverse curriculum strategy, starting each itera-
tion with fulfilling basic return thresholds and progressing to fine-tuning afterwards. We
introduce DR in the form of noisy joint angles at initialization to enhance the system’s
adaptability to various initial states. Post-training, we analyze inferences from the con-
trolled system to assess reliability and average process time, confirming that the curriculum
parameters can effectively predict these outcomes, even after deployment on the real-world
setup. Traditional control algorithms show less variance and shorter process times com-
pared to our RL approach. Nevertheless, training a control system in simulation enables
the system to be confronted with a wide distribution of situations and thereby increases
adaptability and flexibility particularly demonstrated for calibration errors.

Currently, high training durations of more than 10 hours on a state-of-the-art desktop
PC are limitting the deployment for fast changing requirements. We also require human
expertise to manually construct a specific curriculum. This procedure has to be automated.
As we first explored capabilities of such Sim2Real transfers, we decided to employ a large
clearance of 1 mm. The range of relevant assembly applications reaches 0.5 mm at the
upper bound of ISO 286.

Our future work will investigate the effects of bootstrapping a policy leveraging
imitation learning from a small number of expert demonstrations to reduce the training
time. We plan to explore tighter clearances and different geometries to enhance applicability
to relevant real-world assembly tasks. Additionally, integrating low-cost cameras into
the setup will allow us to increase adaptivity to task variations, thereby expanding the
system’s flexibility.
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HER Hindsight Experience Replay
MDPI Multidisciplinary Digital Publishing Institute
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PLAI policy-level action integration
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Sim2Real simulation-to-reality
SAC Soft Actor-Critic
SB3 Stable Baselines3
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