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Abstract: For the safe and efficient use of lithium-ion batteries, the state of charge (SOC) is a
particularly important state variable. In this paper, we propose a method for the online estimation
of SOC and model parameters based on a fractional-order equivalent circuit model. Firstly, we
constructed a fractional-order battery model that includes pseudo-capacitance and determined the
values of the circuit elements offline using the least squares method from actual input–output data
based on the driving profile of an automobile. Compared to the integer-order battery model, we
confirmed that the proposed fractional-order battery model has higher accuracy. Secondly, we
constructed a fractional-order Kreisselmeier-type adaptive observer as an observer that performs
state estimation and parameter adjustment simultaneously. Applying the general adaptive law to
the battery model results in a redundant design with many adjustable parameters, so we proposed
an adaptive law that reduces the number of adjustable parameters without compromising the
stability of the observer. The effectiveness of the proposed method was verified through numerical
simulations. As a result, the high estimation accuracy and convergence of the proposed adaptive law
were confirmed.

Keywords: lithium-ion battery; state of charge; adaptive observer; fractional calculus; hybrid electric
vehicle

1. Introduction

With air pollution, global warming, and the energy crisis becoming important and
pressing issues, electric vehicles (EVs) have been drawing increasing attention [1]. Lithium-
ion batteries, with their advantages of high energy density, long lifespan, and low cost,
are widely used as a power source for EVs [2]. To ensure the safe and efficient use of
lithium-ion batteries, battery management systems (BMSs) monitor the state variables of
the batteries [3]. These state variables include temperature, state of health (SOH) and state of
power (SOP). Among the monitored states, state of charge (SOC) is particularly important.
SOC is defined as the ratio of the remaining capacity to the maximum capacity of the battery.
Accurate SOC measurement enables the prevention of overcharging and overdischarging
of the battery, as well as the prediction of the driving range, so SOC is necessary for battery
control [4]. However, SOC cannot be measured directly and must be estimated using
observable values such as battery current and voltage.

In previous studies, various methods for estimating the SOC of batteries have been
proposed [5,6], which can be classified into model-free and model-based approaches.
The Coulomb counting method, categorized as a model-free approach, is the simplest
method with low computational cost. However, due to its lack of a feedback structure,
errors from the battery current sensor and initial SOC estimation continue to accumulate.
The open-circuit voltage (OCV) method estimates SOC from measured OCV values using
the OCV-SOC relationship. This method is effective when accurate OCV values can be
obtained. However, it has been reported that stabilizing the OCV in lithium-ion batteries
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requires prolonged rest periods, and the OCV-SOC relationship varies with temperature
and degradation [7–9]. In data-driven SOC estimation methods, neural networks [10] are
often employed. However, these methods require large amounts of data and the estimation
accuracy depends on the training dataset. Additionally, low extrapolation capability has
been pointed out [11].

Model-based methods, on the other hand, combine a model describing battery be-
havior with an observer to estimate SOC. Compared to model-free methods, they offer
advantages such as higher reliability and better control performance. There are two primary
types of battery models: electrochemical models and equivalent circuit models (ECMs).
Electrochemical models are based on diffusion phenomena inside the battery and can accu-
rately replicate battery responses, but their high computational burden is a challenge [12].
ECMs, on the other hand, consist of basic circuit elements and are simpler, which makes
them widely used in research. It is common to combine ECMs with Kalman Filters (KFs)
for SOC estimation. For instance, Ref. [13] linearizes the model and uses a KF for SOC
estimation. For models with nonlinearities, Ref. [14] uses an Extended Kalman Filter (EKF),
while Ref. [15] uses the Unscented Kalman Filter (UKF) for SOC estimation.

It has been reported that the characteristics of batteries fluctuate due to degradation
and other factors [16]. Against this background, many methods have incorporated adapt-
ability into filtering algorithms. For example, Ref. [17] simultaneously performs SOC
estimation and parameter adjustment of the equivalent circuit model using the Unscented
Kalman Filter.

In recent years, there have been numerous reports on using fractional calculus-based
models for batteries. Ref. [18] plots the frequency response of the battery impedance
on the complex plane and shows that constant phase elements with fractional order are
needed to reproduce its characteristic shape. Ref. [19] utilizes a fractional-order adaptive
observer to estimate the internal state of batteries. Ref. [20] performs SOC estimation using
a fractional-order EKF, achieving improved estimation accuracy compared to integer-order
EKF. Ref. [17] conducts SOC estimation using fractional-order EKF and parameter adjust-
ment using fractional-order UKF. However, KF-based methods require the prior knowledge
of noise variance as a design parameter, which is a trial-and-error process. Therefore,
in practical use, the design parameters need to be adjusted each time the magnitude of the
noise changes. In the case of a Luenberger-type observer, if estimation has been performed
on data containing a certain amount of noise, the estimation accuracy tends to improve
with the data containing a smaller amount of noise without changing the design parame-
ters. In contrast, the KF-based method may lose estimation accuracy in similar situations.
In EVs, where a variety of operating environments are expected, it is difficult to know the
characteristics of the noise, and this is an issue with the KF-based estimation method.

The contributions of this study are as follows. First, a fractional-order model is used
as the battery model, which can accurately reproduce the battery’s response. Second, SOC
estimation is conducted by a fractional-order Kreisselmeier-type adaptive observer that
is adaptive to deal with variations in battery characteristics. This has advantages over
KF-based methods in that it does not require a priori noise information and does not
require changes in design parameters when noise characteristics change. For the method of
constructing the observer, refer to [19].

The rest of this paper is organized as follows. Section 2 describes the fundamentals
of fractional calculus and a simulation method. Section 3 describes a battery model and a
parameter identification result. A fractional-order Kreisselmeier-type adaptive observer
and a proposed adaptive law are described in Section 4. The numerical simulation results
of the proposed method under the US06 and FUDS tests are discussed in Section 5. Finally,
Section 6 concludes this article.



Machines 2024, 12, 738 3 of 19

2. Fractional Calculus

In this section, we briefly outline Caputo’s definition, which is widely used among
various fractional calculus definitions [21,22]. Additionally, we introduce approximate
simulation methods for fractional-order systems.

2.1. Definition of Fractional Calculus

For a function f (t), the q-th order Caputo fractional derivative is defined as follows:

0Dq
t [ f (t)] =

∫ t

0

(t − τ)n−q−1

Γ(n − q)
f (n)(τ)dτ (1)

where n − 1 < q < n. In this definition, the n-th derivative of f (τ) is first computed,
followed by integrating it n − q times with respect to τ to obtain the q-th order derivative.
An important property is that this fractional derivative satisfies the additivity of orders:

0Dq2
t

[
0Dq1

t [ f (t)]
]
= 0Dq1+q2

t [ f (t)] (2)

The results of calculating the fractional derivative of the power function according to
Caputo’s definition are shown in Figure 1.

Figure 1. The graph of 0Dq
t [x

0.5].

From Figure 1, we can see that the fractional derivative has properties on the graph
that are intermediate between the original function and the first-order derivative.

2.2. Simulation Methods for Fractional-Order Systems

Consider a q-th-order linear fractional-order system as shown below.

Dqx(t) = Ax(t) + bu(t), x(0) = x0 (3)

y(t) = c⊤x(t) (4)

When conducting simulations of this system, operations involving real power transfer
functions s−q are necessary. However, fractional calculus requires the computation of con-
volution integrals from the initial time, which is difficult to achieve accurately considering
the computational cost. Therefore, in this study, we approximate fractional integrals using
a method called the Manabe approach [23].

The Bode diagram of the frequency response of the fractional-order integral s−q shows
that the amplitude response is a straight line with a slope of −20q [dB/dec] and the phase
response is constant at −90q [deg] regardless of frequency. In the Manabe approach, this
Bode diagram is approximated by an integer-order transfer function. A schematic diagram
is shown in Figure 2.
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Figure 2. Schematic diagram of the Manabe approach.

In the Manabe approach, the approximate transfer function is expressed by the follow-
ing equation:

s−q =
j

∏
i=1

s + ai
s + bi

×
k

∏
i=1

1 + bis
1 + ais

, Ωlow < ω < Ωhigh (5)

where

0 < q < 1 (6)

δ = 20 log10 α (7)

β = α
− 2

q(1−q) (8)

a1 = α
− 1

q (9)

ai+1 = aiβ (10)

bi = aiα
− 2

1−q (11)

Ωlow = aj+1 (12)

Ωhigh =
1

ak+1
(13)

[Ωlow, Ωhigh] denotes the frequency range to be approximated. For the design parame-
ters, k determines the approximate range on the high frequency side, and j determines the
approximate range on the low frequency side. Additionally, δ determines the approxima-
tion accuracy.

3. Battery Model

In this section, we will explain the fractional-order equivalent circuit model and the
integer-order equivalent circuit model of the battery. Additionally, using actual input–
output data from the battery, we will perform offline optimization of the circuit component
values and compare the accuracy between the integer-order model and the fractional-
order model.

3.1. Battery Data

The battery datasets used in this paper are from open-source datasets provided by the
Center for Advanced Life Cycle Engineering (CALCE), a research group at the University
of Maryland, and was used at an ambient temperature of 30 ◦C [24]. The battery is an
18650 type, manufactured by A123 systems, a company headquartered in Novi, MI, USA.
The specifications of the battery are shown in the Table 1.

Using the low current test included in the dataset, we obtain the OCV-SOC curve that
represents the relationship between the OCV and SOC of the battery. In this test, the battery
is first charged to the upper limit of terminal voltage, 3.6 V (SOC: 1), and then left for one
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hour to stabilize. Following this, the battery is discharged at a current rate of 0.05 C until the
terminal voltage reaches the lower limit of 2.0 V (SOC: 0), with the OCV measured during
this period. Subsequently, the battery is left for another hour before being recharged at a
current rate of 0.05 C until the terminal voltage again reaches the upper limit of 3.6 V. SOC
during discharge and charge is calculated using the Coulomb counting method. The use of
a small current rate of 0.05 C is intended to minimize the effects of battery overpotential.
Additionally, the rest periods between charging and discharging are included to ensure the
battery is in an equilibrium state before measurements are taken. The OCV-SOC curves
obtained from these measurements during discharge and charging are shown in Figure 3.

From Figure 3, it can be seen that the OCV has hysteresis with respect to the SOC.
To minimize this effect, the OCV-SOC curve in this study is the average of the charging and
discharging values.

Figure 3. The OCV-SOC curve at 30 ◦C.

3.2. Fractional-Order Battery Model

The fractional-order equivalent circuit diagram used in this study is shown in Figure 4.
In Figure 4, UOC represents the OCV, IL the battery current, UL the terminal voltage,

and Up the voltage on the parallel part. CPE is the constant phase element, and the
impedance ZCPE in the Laplace domain is expressed by the following equation.

ZCPE =
1

Cpsα
, 0 < α < 1 (14)

Assuming α = 0.5, the following equation is obtained for the battery current IL(t).

IL(t) =
Up(t)

Rp
+ CpD0.5Up(t) (15)

This transforms into the following equation.

D0.5Up(t) = − 1
CpRp

Up(t) +
1

Cp
IL(t) (16)

The following relationship holds for the terminal voltage UL(t).

UL(t) = UOC(SOC(t))− Up(t)− R0 IL(t) (17)
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The dynamics of SOC can be expressed as follows.

d
dt

SOC(t) = − η

Cn
IL(t) (18)

Figure 4. The fractional-order equivalent circuit diagram.

Cn represents the nominal capacity, which for the battery used in this study is
Cn = 1100 mAh, as described in Table 1. η represents the charge–discharge efficiency
and, in this study, η = 0.98. Combining these equations results in the following state-space
representation.

x(t) =
[
Up(t) SOC(t) D0.5SOC(t)

]⊤ (19)

D0.5x(t) =

−
1

RpCp
0 0

0 0 1
0 0 0

x(t) +


1

Cp
0

−
η

Cn

IL(t) (20)

UL(t) = UOC(SOC(t))−
[
1 0 0

]
x(t)− R0 IL(t) (21)

Table 1. Battery specification.

Parameter Value

nominal capasity 1100 mAh
nominal voltage 3.3 V

maximum discharge current 30 A
upper cut-off voltage 3.6 V
lower cut-off voltage 2.0 V

Thus, the battery can be modeled as a fractional-order system with input IL(t) and
output UL(t).

3.3. Integer-Order Battery Model

An integer-order equivalent circuit diagram used as a comparison for fractional-order
equivalent circuits is shown in Figure 5.

The CPE in the fractional-order equivalent circuit of Figure 4 is replaced by the
capacitance Cp in the integer-order equivalent circuit of Figure 5. In this integer-order
equivalent circuit, the following relationship is obtained for the battery current IL(t).

IL(t) =
Up(t)

Rp
+ Cp

d
dt

Up(t) (22)
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Figure 5. The integer-order equivalent circuit diagram.

This transforms into the following equation.

d
dt

Up(t) = − 1
CpRp

Up(t) +
1

Cp
IL(t) (23)

The same relationship holds for the terminal voltage UL(t) and SOC as in the fractional-
order equivalent circuit. From these equations, the following state-space representation
is obtained.

x(t) =
[
Up(t) SOC(t)

]⊤ (24)

d
dt

x(t) =

− 1
RpCp

0

0 0

x(t) +


1

Cp

−
η

Cn

IL(t) (25)

UL(t) = UOC(SOC(t))−
[
1 0

]
x(t)− R0 IL(t) (26)

Thus, the battery can be modeled as an integer-order system with input IL(t) and
output UL(t).

3.4. Offline Optimization

In the state-space representation of the fractional-order and integer-order models,
the values of the circuit parameters Rp, Cp, R0 must be identified using battery input–
output data. The time series of battery current IL(t) and terminal voltage UL(t) used as
battery input–output data in this study are shown in Figures 6 and 7. This current time
series is determined based on the profile DST, with positive values of current indicating
discharge and negative values indicating charging.

Under the condition that the initial value of SOC can be obtained and the exact value of
the current is available, the battery can calculate the time series of SOC using Equation (18).
In this offline estimation, the initial value of SOC is available, and the time series of the
current can be obtained as shown in Figure 6, so the time series of SOC can be calculated.

Using these data, the model parameters Rp, Cp, R0 that minimize the output esti-
mation error for fractional order and integer order, respectively, were obtained using the
least squares method. The data were taken from within the range where the OCV can be
approximated linearly, and the interval used for the data was 2000 ≤ t ≤ 5000 s. The root
mean square error (RMSE) values for each circuit element and output estimate are shown
in the Table 2.
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Figure 6. Time series of battery current IL(t) at DST.

Figure 7. Time series of terminal voltage UL(t) at DST.

From Table 2, the RMSE of a fractional order model is 6.3 mV, while that of the
integer order is 9.7 mV. This indicates that the fractional-order equivalent circuit shown in
Figure 4 reproduces the input–output of the battery more accurately than the integer-order
equivalent circuit shown in Figure 5.

Table 2. Offline optimization result.

Model Parameter Fractional Order Integer Order

R̂0 0.145 Ω 0.158 Ω
R̂p 0.0618 Ω 0.0530 Ω
Ĉp 168 F 1.17 × 103 F

RMSE 6.3 mV 9.7 mV

4. Observer

The Kreisselmeier-type observer is an adaptive observer proposed by Kreisselmeier [25].
The fractional-order Kreisselmeier-type adaptive observer, which extends this to fractional
orders, is described in this section with reference to [19].
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4.1. Fractional-Order Kreisselmeier-Type Adaptive Observer

The following single-input, single-output fractional-order plant is the observed object.

D1/mx(t) = Ax(t) + bu(t), x(0) = x0 (27)

y(t) = c⊤x(t) (28)

A =



−α1 1 0 · · · · · · 0
−α2 0 1 0 · · · 0

...
...

. . .
...

...
...

. . .
...

−αn−1 0 · · · · · · 0 1
−αn 0 · · · · · · · · · 0


(29)

b⊤ =
[
β1 β2 · · · · · · βn−1 βn

]
(30)

c⊤ =
[
1 0 · · · · · · 0 0

]
(31)

where u(t), y(t) are the plant input and output, respectively, and αi, βi are the unknown
parameters.

Now, the following assumptions are made for this fractional-order plant.

1. Plant is asymptotically stable;
2. Observable;
3. Highest degree n/m is known.

Under these assumptions, we construct a fractional-order adaptive observer that
estimates the state x(t) and identifies the unknown parameters αi, βi online from the
input–output signals u(t), y(t).

The state equation in Equation (27) can be rewritten as follows:

D1/mx(t) = Fx(t) + (α − f )y(t) + βu(t) (32)

where

F =

 g⊤

f
K

 (33)

f⊤ =
[

f1 f2 · · · fn
]

(34)

α⊤ =
[
−α1 −α2 · · · −αn

]
(35)

β⊤ =
[
β1 β2 · · · βn

]
(36)

g⊤ =
[

1 0 · · · 0
]

(37)

K =


0
... In−2
...
0 · · · · · · 0

 (38)

Suppose Ry(t), Ru(t), ζy(t), ζu(t) are given by the following formula.

D1/mRy(t) = FRy(t) + Iny(t), Ry(0) = 0 (39)

D1/mRu(t) = FRu(t) + Inu(t), Ru(0) = 0 (40)

ζy(t) = Ry
⊤(t)c (41)
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ζu(t) = Ru
⊤(t)c (42)

In this case, Equations (28) and (32) can be rewritten as follows:

x(t) =
∞

∑
j=0

F jt
1
m j

Γ( 1
m j + 1)

x0 + Ry(t)(α − f ) + Ru(t)β (43)

y(t) = c⊤
∞

∑
j=0

F jt
1
m j

Γ( 1
m j + 1)

x0 + ζy
⊤(t)(α − f ) + ζu

⊤(t)β (44)

Furthermore, the following equations hold for ζy(t), ζu(t).

D1/mζy(t) = F⊤ζy(t) + cy(t) (45)

D1/mζu(t) = F⊤ζu(t) + cu(t) (46)

Moreover, Ry(t), Ru(t) can also be expressed as follows.

Ry(t) =


c⊤

c⊤F
...

c⊤Fn−1


−1

ζy
⊤(t)

ζy
⊤F(t)

...
ζy

⊤(t)Fn−1

 (47)

Ru(t) =


c⊤

c⊤F
...

c⊤Fn−1


−1

ζu
⊤(t)

ζu
⊤(t)F

...
ζu

⊤(t)Fn−1

 (48)

When Equations (39) and (40) are used to obtain Ry(t), Ru(t), it is necessary to
calculate the fractional calculus for each n2 element. On the other hand, if we use
Equations (47) and (48), the number of calculations of fractional calculus can be reduced to
n times, which is required to obtain ζy(t), ζu(t).

Using these expressions, Equations (43) and (44) can be expressed as follows:

x(t) = R(t)θ+ z(t) (49)

y(t) = ζ⊤(t)θ+ c⊤z(t) (50)

θ =
[
(α − f )⊤ β⊤

]⊤
(51)

R(t) =
[
Ry(t) Ru(t)

]
(52)

ζ(t) =
[
ζy

⊤(t) ζu
⊤(t)

]⊤
(53)

z(t) =
∞

∑
j=0

F jt
1
m j

Γ( 1
m j + 1)

x0 (54)

The state estimate x̂(t) and output estimate ŷ(t) are designed using the initial estimate
x̂0 and parameter estimate θ̂(t) as follows:

x̂(t) = R(t)θ̂(t) + ẑ(t) (55)

ŷ(t) = ζ⊤(t)θ̂(t) + c⊤ẑ(t) (56)
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ẑ(t) =
∞

∑
j=0

F jt
1
m j

Γ( 1
m j + 1)

x̂0 (57)

θ̂(t) =
[
(α̂(t)− f )⊤ β̂

⊤
(t)

]⊤
(58)

where α̂(t), β̂(t) denote the estimated value of α, β at each time.
The error ϵ(t) between the plant output y(t) and its estimated value ŷ(t) can be

expressed as follows:

ϵ(t) = ŷ(t)− y(t)

= ζ⊤(t)θ̂(t) + c⊤ẑ(t)− ζ⊤(t)θ− c⊤z(t)

= ζ⊤(t)θ̃(t)− c⊤(ẑ(t)− z(t)) (59)

where
θ̃(t) =

[
(α̂(t)− α)⊤ (β̂(t)− β)⊤

]
(60)

c⊤(ẑ(t)− z(t)) represents the effect of the initial error. By choosing the matrix F to
satisfy the stability condition of the fractional-order system, c⊤(ẑ(t)− z(t)) → 0 can be
converged as t → ∞. Therefore, the output error equation becomes as follows:

ϵ(t) = ζ⊤(t)θ̃(t) (61)

By properly constructing the parameter adjustment law, the output error ϵ(t) can be
asymptotically reduced to 0.

The adaptive law should be designed to vary the parameters in the direction of
decreasing ϵ2(t), the square of the output error. The gradient of ϵ2(t) with respect to θ̂(t) is
obtained by the following equation.

∂ϵ2(t)
∂θ̂(t)

= 2ζ(t)ϵ(t) (62)

From this result, the following adaptive law is obtained as follows:

˙̂θ(t) = − Γζ(t)ϵ(t)
1 + ζ⊤(t)ζ(t)

, θ̂(0) = θ̂0, Γ > 0 (63)

Stability can be proved by giving the Lyapunov function as follows:

V(t) =
1
2

θ̃
⊤
(t)Γ−1θ̃(t) > 0 (64)

The derivative of the Lyapunov function is as follows:

V̇(t) = θ̃
⊤
(t)Γ−1 ˙̃θ(t)

= − θ̃
⊤
(t)ζ(t)ϵ(t)

1 + ζ⊤(t)ζ(t)

= − ϵ2(t)
1 + ζ⊤(t)ζ(t)

< 0 (65)

Therefore, we can set ϵ(t) → 0 as t → ∞. If the signal input to the parameter
adjustment part satisfies the persistent excitation (PE), we can set θ̃(t) → 0 as t → ∞.

With the above flow, a fractional-order Kreisselmeier-type adaptive observer can be
constructed from the plant’s input u(t) and output y(t).
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4.2. Battery Model Transformation

Battery characteristics may change as the battery degrades or the temperature changes.
The battery dataset includes a time series of surface temperatures, but they change only
about 2 degrees within a cycle. The degradation effect has a long time scale. Therefore,
we assume that the circuit elements Rp, Cp in the battery model are time invariant and
unknown. We consider using an adaptive observer to simultaneously perform identification
and state estimation. To apply the adaptive observer, the plant must be converted to an
observable canonical form. In this subsection, we show the process of converting the
equation Equations (19)–(21).

Although UOC(SOC(t)) in Equation (21) is a nonlinear function, it shows approx-
imately linear behavior in the range of 0.1 < SOC(t) < 0.9. Therefore, in this study,
the range of 0.1 < SOC(t) < 0.9 is first-order approximated as follows:

UOC(SOC(t)) = a · SOC(t) + b (66)

By the least-squares method, the coefficients are set to a = 0.1503 V, b = 3.2228 V.
The result of the first-order approximation is shown in the following Figure 8.

Figure 8. The result of first-order approximation of the OCV-SOC curve.

From the above, Equation (21) can be rewritten as follows, where Y(t) := UL(t) +
R0 IL(t)− b is newly defined as the output after transposing the direct and constant terms
from the right side.

Y(t) =
[
−1 a 0

]
x(t) (67)

Furthermore, the system is converted to an observable canonical form.

D0.5xo(t) = Aoxo(t) + bo IL(t) (68)

Y(t) = co
⊤xo(t) (69)

where

xo(t) =


−Up(t) + a · SOC(t)

a
RpCp

SOC(t) + a · D0.5SOC(t)

a
RpCp

D0.5SOC(t)

 (70)
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Ao =

−
1

RpCp
1 0

0 0 1
0 0 0

, bo =


−

1
Cp

−a
η

Cn

−
a

RpCp

η

Cn


, co =

1
0
0

 (71)

The Kreisselmeier-type adaptive observer can estimate the first column of Ao and all
entries of bo, at most six entries. In this study, we adjust three of these six entries: the (1, 1)
entry of Ao and the first and third entries of bo, which contains the unknown parameters
Rp, Cp.

4.3. Proposed Adaptive Law

The battery model is a system with two unknown parameters Rp, Cp. However,
the adaptive law in Equation (63) has three adjustable parameters, which increases the
possibility that the parameters will converge to a local solution. Therefore, we propose an
adaptive law with fewer adjustable parameters derived below by transforming the formula.

Substitute the specific expression for the observed object into Equation (61) and trans-
form the expression as follows:

ϵ(t) = ζ⊤(t)θ̃(t)

=



ζ1(t)
ζ2(t)
ζ3(t)
ζ4(t)
ζ5(t)
ζ6(t)



⊤


1
RpCp

− 1
R̂p(t)Ĉp(t)
0
0

1
Cp

− 1
Ĉp(t)

0
aη
Cn
( 1

RpCp
− 1

R̂p(t)Ĉp(t)
)



=



ζ1(t)
ζ2(t)
ζ3(t)
ζ4(t)
ζ5(t)

ζ1(t) +
aη
Cn

ζ6(t)



⊤


0
0
0

1
Cp

− 1
Ĉp(t)

0
1

RpCp
− 1

R̂p(t)Ĉp(t)


= ζ⊤n (t)θ̃n(t)

(72)

The gradient is calculated in the same way as for the first adaptation law, and the
adaptation law can be derived as follows:

˙̂θn(t) = − Γζn(t)ϵ(t)
1 + ζ⊤n (t)ζn(t)

, θ̂n(0) = θ̂n,0, Γ > 0 (73)

The proof of convergence is presented in a similar procedure. This reduces the number
of adjustable parameters while keeping the observer stable.

5. Results and Discussion

The following three types of observers were used to simulate SOC estimation.

1. Fractional-order Luenberger observer;
2. Fractional-order Kreisselmeier adaptive observer with adaptive law Equation (63);
3. Fractional-order Kreisselmeier adaptive observer with adaptive law Equation (73).
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The specification of the battery is shown in Table 1 and simulation conditions are
shown in Table 3. The values of the model parameter from Table 2 obtained by offline
optimization were taken as true values. An initial error of +5% was given for Rp, Cp.
The initial value of SOC was 0.735, and the initial estimate was given an error of +10%.

Table 3. True values and initial values of the simulation.

True Value Initial Value

Rp 0.0618 Ω 0.0649 Ω
Cp 168 F 176 F

initial SOC 0.735 0.809

Simulations were run on two different datasets, US06 and FUDS. The inputs are shown
in Figures 9 and 10, and the output data are the output obtained through the equivalent
circuit model. The datasets are mainly discharging scenarios, but a few charging scenarios
are included.

Figure 9. Time series of battery current IL(t) at US06.

Figure 10. Time series of battery current IL(t) at FUDS.
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In the simulations, the observer design parameters were adjusted for each. The design
parameters of the proposed observer (adaptive law Equation (73)) were set as follows:

f =
[
−3 −3 −1

]⊤ (74)

Γ =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 20 0 0
0 0 0 0 0 0
0 0 0 0 0 1.1 × 105

 (75)

The design parameters of the Manabe approach are j = 15, k = 5, δ = 1.2.

5.1. US06

The simulation results using US06 are shown below Figures 11–13.

Figure 11. Simulation results of SOC estimation under the US06 test by the fractional-order Luen-
berger observer and fractional-order Kreisselmeier adaptive observer with adaptive law 1 and 2.

Figure 12. The result of parameter estimation under the US06 test using fractional-order Kreisselmeier
adaptive observer with adaptive law 1.
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Figure 13. The result of parameter estimation under the US06 test using fractional-order Kreisselmeier
adaptive observer with adaptive law 2.

Because Luenberger-type observers are not adaptive, the state estimate will never
converge to the true value when the plant parameters are unknown. As in the case
of fractional-order Kreisselmeier adaptive observers of both adaptive laws, due to the
adaptability, the parameters converge to true values. As a result, the SOC estimates also
converge to the true values in both adaptive laws. The overshoot near the initial time in the
parameter estimation with adaptive law 2 is smaller than that with adaptive law 1.

The Tables 4 and 5 show the estimation accuracy and convergence time for two
adaptive laws, where the mean absolute error (MAE) of the estimation error is calculated
as a measure of the SOC estimation accuracy. The convergence time is defined as the time
at which the error falls below the tolerance and then does not exceed the tolerance again. A
value of 0.01 was set as the tolerance for the SOC estimation error, and 0.03 and 0.01 for the
parameter errors. The Luenberger-type observer was excluded from this table because it
did not adjust parameters and SOC estimation never converged.

Table 4 shows that the estimation accuracy is better for adaptive law 2. Table 5 also
shows that the convergence time of SOC is better for adaptive law 2. This can be explained
by the fact that the parameters converge to their true values in a shorter time in adaptive
law 2. The reason for the shorter convergence time of the parameters can be attributed to
the fact that convergence is easier due to the reduced number of adjustable parameters.

Table 4. Comparison of SOC estimation accuracy under the US06 test between adaptive law 1 and 2 .

Adaptive Law 1 Adaptive Law 2

MAE 0.0039 0.0024

Table 5. Comparison of SOC and parameter convergence time under the US06 test between adaptive
law 1 and 2.

Adaptive Law 1 Adaptive Law 2

SOC (tolerance : 0.01) 386 s 300 s
parameter (tolerance : 0.03) 1212 s 357 s
parameter (tolerance : 0.01) 2831 s 422 s

5.2. FUDS

Simulation result using FUDS are shown below Figures 14–16 and Tables 6 and 7.
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Figure 14. Simulation results of SOC estimation under the FUDS test by the fractional-order Luen-
berger observer and fractional-order Kreisselmeier adaptive observer with adaptive law 1 and 2.

Figure 15. The result of parameter estimation under the FUDS test using fractional-order Kreis-
selmeier adaptive observer with adaptive law 1.

Table 6. Comparison of SOC estimation accuracy under the FUDS test between adaptive law 1 and 2.

Adaptive Law 1 Adaptive Law 2

MAE 0.0100 0.0059

Table 7. Comparison of SOC and parameter convergence time under the FUDS test between adaptive
law 1 and 2.

Adaptive Law 1 Adaptive Law 2

SOC (tolerance: 0.01) 554 s 295 s
parameter (tolerance: 0.03) 1404 s 364 s
parameter (tolerance: 0.01) 2827 s 484 s
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Figure 16. The result of parameter estimation under the FUDS test using fractional-order Kreis-
selmeier adaptive observer with adaptive law 2.

Similar trends to US06 are found: SOC estimation by the Luenberger-type observer
did not converge to the true value; adaptive law 2 is superior to adaptive law 2 in terms of
the convergence time of SOC and parameters.

6. Conclusions

In this study, we confirmed the superiority of the fractional-order model over the
integer-order model of the battery and simulated the SOC estimation. When an observer
was applied to the equivalent circuit model, SOC and model parameters could be estimated
by using an adaptive fractional-order Kreisselmeier-type observer. The convergence and
estimation accuracy were improved by changing the adaptive law to combine redundant
adjustable parameters while maintaining the stability of the observer.

In the simulation of SOC estimation conducted in this study, an equivalent circuit
model was set up as a plant. For practical use, real data should also be used for the plant
output. In addition, various restrictions were attached, such as not including disturbances,
the range of SOC for linearization of OCV, making R0 known, and not explicitly considering
the effect of temperature. These should be addressed in future studies.
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