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Abstract: Motion control is one of the three core modules of autonomous driving, and nonlinear
model predictive control (NMPC) has recently attracted widespread attention in the field of motion
control. Vehicle dynamics equations, as a widely used model, have a significant impact on the solution
efficiency of NMPC due to their stiffness. This paper first theoretically analyzes the limitations on
the discretized time step caused by the stiffness of the vehicle dynamics model equations when
using existing common numerical methods to solve NMPC, thereby revealing the reasons for the
low computational efficiency of NMPC. Then, an A-stable controller based on the finite element
orthogonal collocation method is proposed, which greatly expands the stable domain range of the
numerical solution process of NMPC, thus achieving the purpose of relaxing the discretized time step
restrictions and improving the real-time performance of NMPC. Finally, through CarSim 8.0/Simulink
2021a co-simulation, it is verified that the vehicle dynamics model equations are with great stiffness
when the vehicle speed is low, and the proposed controller can enhance the real-time performance of
NMPC. As the vehicle speed increases, the stiffness of the vehicle dynamics model equation decreases.
In addition to the superior capability in addressing the integration stability issues arising from the
stiffness nature of the vehicle dynamics equations, the proposed NMPC controller also demonstrates
higher accuracy across a broad range of vehicle speeds.

Keywords: autonomous vehicle; motion control; vehicle dynamics; NMPC

1. Introduction

Since industry pioneers such as Google, Baidu, and Tesla launched their research
projects in self-driving car technologies [1,2], autonomous driving has gained escalating
interest from both academia and industry during past few years.

Motion control is one of the core technologies in autonomous driving, which is re-
sponsible for stably and precisely tracking the reference trajectories. A variety of vehicle
motion control techniques have been proposed over recent years, such as Proportional-
Integral-Derivative (PID) control [3], the Stanley method [4], sliding mode control [5],
Linear Quadratic Regulator (LQR) [6], Model Predictive Control (MPC) [7], and data-
driven methodologies [8], etc. Due to the ability to take into account system constraints
in an explicit fashion and address multivariable and multi-objective challenges, MPC is
extensively utilized among these methods.

Linear model predictive control (LMPC) remains mainstream in existing commercial
solutions. However, it encounters inherent limitations such as an inability to incorporate
nonlinear constraints [9]. The impact of nonlinear tire dynamics on trajectory tracking con-
trol for autonomous vehicles was studied in [10]. The nonlinear dynamic characteristics of
vehicle drift motion was analyzed in [11] and a feedback controller was designed to ensure
stable and agile vehicle behavior during sharp turns on low adhesion surfaces. A Particle
Swarm Optimization-Back Propagation neural network was developed in [12] to enhance
Adaptive Model Predictive Controller for autonomous vehicles, focusing on optimizing
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trajectory tracking under diverse road conditions through real-time adjustments of the
controller parameters and tire lateral stiffness. In [13], tire-road contact state estimation
methods were reviewed and constructive strategies for intelligent tire sensing systems for
autonomous vehicles were proposed, focusing on real-time tire-road contact monitoring to
improve vehicle dynamics control and advance autonomous driving safety.

Recently, nonlinear model predictive control (NMPC) has gained popularity in the
realm of autonomous vehicle motion control due to its proficiency in precisely predicting
the dynamics of nonlinear systems. Compared with LMPC, stability and efficiency are
primary obstacles impeding the adoption of NMPC in autonomous vehicle systems. This
manuscript is dedicated to tackling these two challenges to align with the prerequisites for
the operational deployment of NMPC on actual systems [14].

Both indirect and direct approaches for NMPC involve the transformation of a con-
tinuous system into a discrete-time one. The discretization of continuous system is in
essence the process of integration. Consequently, numerical integration techniques de-
signed for Ordinary Differential Equations (ODEs) could be utilized in the discretization of
continuous systems.

The explicit Euler approach has been extensively employed in MPC-based vehicle
motion control studies due to its simple formulation. Falcone et al. [7] introduced an MPC
strategy based on the Euler discretization for controlling vehicular active front steering
systems. Similarly, Peng et al. [15] proposed a hierarchical MPC control scheme for the dy-
namic wheel torque management in Four-Motor In-Wheel Drive Electric Vehicles (4MIDEV)
steering systems, in which the Euler method is engaged for system discretization. Zhao
and Xu et al. [16] implemented the Euler technique for the discretization of their Linear
Model Predictive Control (LMPC) scheme, taking into account the energy dissipation due
to slippage. Satzger [17] employed an identical approach within an integrated wheel-slip
management and torque blending regulatory strategy. Although the Euler method has
simple form, its precision for integration is insufficient. Furthermore, the region within
which the Euler method maintains integration stability is rather confined.

The zero-order hold (ZOH) method, as referenced in [9], is the most attractive dis-
cretization method in the context of linear MPC-based studies. It could attain an accurate
discretization and ensures stability throughout the discretization process, which means that
the outcomes of its integration are in exact correspondence with the state of the continuous
system at the discrete temporal intervals. Because of these exceptional properties, the ZOH
method finds broad application in vehicle motion control [18] and is similarly instrumental
in the domain of stability control [19-21]. However, the ZOH method does not demonstrate
equivalent efficacy when applied to nonlinear systems.

The fourth-order Runge-Kutta (RK4) method serves as an alternative discretization
technique that is commonly utilized in the context of NMPC-based control strategies. A
real-time implementation of NMPC that utilizes the RK4 method for stabilizing a vehicle
at its performance limits has been put forward in [22]. Allamaa and Listov have also
incorporated the RK4 method within their Nonlinear Model Predictive Control (NMPC)-
based motion control framework for autonomous vehicles [23]. The torque-vectoring
control system proposed by Parra also utilizes the fourth-order Runge-Kutta (RK4) method
for discretization within its framework [24]. While the RK4 method enhances the precision
of integration, the enlargement of the stability region is limited.

The stiffness of the ordinary differential equations that correlate to the nonlinear
dynamics of vehicles will lead to integration stability problems for vehicle motion control.
A common strategy to address the challenge is to utilize a kinematic model as predictive
model. Numerous kinematic-based Nonlinear Model Predictive Controls (NMPCs) have
been confirmed effective through validation on actual vehicles [25-28]. However, relying
solely on kinematics within these systems encounters emerging challenges, since kinematics
fall short in precisely capturing vehicle dynamics at high speed. When utilizing the
dynamics model as the predictive model in motion control systems based on NMPC, a
smaller step size was adopted in [22,24] during the discretization phase to circumvent
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the problem of integration stability. However, this approach may introduce the issue
of real-time performance. Stability control, due to its shorter prediction horizon, is less
affected by real-time issues. Conversely, path following problems in motion control require
a much longer prediction horizon and thus the necessity to use a small-time step for
discretization inevitably poses challenges to real-time issues. The Runge-Kutta—Chebyshev
technique, as employed in [29], is leveraged to deal with the integration stability problem
by broadening the region of stability in the direction of the negative real axis, yet the stable
zone remains restricted.

It is evident from the existing literature that the main challenge for vehicle motion
control based on NMPC lies in the delicate balance between efficiency and stability. To
address this challenge, it is imperative to utilize a smaller step size during the discretiza-
tion of continuous systems within the NMPC problem-solving process. Moreover, path
following control necessitates the adoption of a long prediction horizon. Consequently,
this leads to an escalation in the dimension of the resulting optimization problem, which
in turn increases the computational burden. This paper aims to develop an NMPC con-
troller tailored for autonomous vehicle motion control, enabling the efficient tackling of the
integration stability problem while maintaining the computational efficiency.

The main contributions of this paper are as follows: (1) the stability condition and
corresponding stability region for both the Euler method and the explicit RK4 method
were analyzed in theory to reveal the existing integration stability issue for autonomous
vehicle motion control systems that utilize NMPC. (2) The stability region of the orthog-
onal collocation method was evaluated in comparison with those of the Euler method
and the explicit RK4 method. Furthermore, an NMPC controller based on the orthogonal
collocation method was designed. (3) The proposed NMPC controller was compared with
controllers based on the explicit Euler method and RK4 method to demonstrate its supe-
rior effectiveness in addressing the integration stability problem without compromising
computational efficiency.

2. Vehicle Dynamics

In this section, vehicle dynamics and the characteristics of the tires are described in
detail to facilitate the simulation and the formulation of control strategies. As depicted in
Figure 1, a simplified bicycle model for vehicle dynamics comprising five system states
was established, which was achieved by aggregating the two front and two rear wheels
at the geometric center of their respective axles. This model primarily considers lateral
and yaw movements, with the assumption that the velocity in the longitudinal direction
remains unchanged. The model utilized was formulated based on the following hypotheses:
(i) the vehicle travels on a uniformly flat surface, (ii) the Ackermann steering relation is
ignored and the difference in wheel angles between the left and right sides is not taken into
account, (iii) the load transfer due to pitching and compliance of the suspension can be
negligible. The resulting model was characterized by a set of differential equations, which
are formulated as follows:

X = vy cos(yp) — vy sin(yp),

l:/ = vy sin(y) + vy cos(),

Y=r, (@)
vy = % (Fr,y + Fy,cosd — mvxr>,

P = i (Ff/ylf cosd — Fr,ylr)/

where m denotes the mass of the vehicle, I, signifies the moment of inertia around the
vertical (Z) axis, and ¢ and I, are the distances from the center of gravity (CoG) to the

front and rear wheels, respectively. The state vector x = [Uy ry Y X| Tis composed of
the coordinates of the center of gravity (COG), denoted as X and Y, the orientation angle of
the vehicle with respect to the inertial reference frame ¢, the lateral velocity of the vehicle
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at the COG vy, and the yaw rate r. The control input, denoted as u = J, is the steering angle
of the front wheels. As a result, the dynamics of the continuous-time vehicle system can be
expressed in a condensed form x = f(x, u).

Figure 1. Schematic diagram of nonlinear bicycle model.

The tire forces play a pivotal role in the interaction between the automobile and
the pavement, acting as the primary external influences on the vehicle’s maneuverability
with the exception of aerodynamic forces. The pronounced nonlinear characteristics in
vehicle dynamics, particularly at high speeds, are predominantly manifested through the
complex behavior of tire forces. In this study, the Dugoff tire model [30] was employed to
characterize the tire-road contact forces and the lateral tire forces could be expressed as:

[ —Cytana, |tana| < uFN/(2Cy)
=1 fana| < pl : @)
{ sign(a)uFN [1 — uEN / (4Cq|tanal)], else

where FN signifies the nominal vertical load exerted on the tire (3), « represents the tire
sideslip angle (4), C, denotes the lateral stiffness coefficient (5), and u symbolizes the
friction coefficient between tire and the road surface.

1 lem
e y B = 71[ g (3)

2<lf+ly) 2<lf—|—lr)l
ap = arctan(lplfvjvy ) — 0= Llfz;rvy -6

pl,— pl,—
oy Zarctan<¢r vy) ~ P

Ff=

/ 4)

Ux Ux

_ L5 AV N _ Ny _ 1 N |
CulF:) = 15 {zc,x (Fz ) 5Ca (21?Z ) {2@ (FZ ) 5Ca <2FZ ) i ®
The related vehicle and tire parameters are shown in Table 1, which will be used in
the subsequent sections.

Table 1. Vehicle parameters.

Symbol Definition Value (Unit)
m Vehicle total mass 1650 (kg)
I Vehicle yaw inertial 3234 (kg-m?)
Iy Distance from CG to front axle 1.4 (m)
Iy Distance from CG to rear axle 1.65 (m)
Cy Cornering stiffness of front tires 66,900 x 2 (N/rad)

C, Cornering stiffness of rear tires 62,700 x 2 (N/rad)
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3. NMPC Formulation

This section begins with a detailed description of the general formulation for an op-
timal control problem. Subsequently, the specific design methodology for autonomous
driving trajectory tracking based on nonlinear model predictive control (NMPC) is intro-
duced. Finally, this section provides a theoretical analysis of the integral stability issues
inherent in motion control problems based on NMPC.

3.1. Nonlinear Optimal Control Problem Formulation

Nonlinear Model Predictive Control (NMPC) involves the iterative solution of an
online Nonlinear Optimal Control Problem (NOCP), taking into account the predicted
future dynamics of the system. This prediction is facilitated by a high-fidelity model, which
is essential for maintaining the system output in accordance with reference trajectories. The
NMPC approach yields a feasible control law by minimizing a pre-designed cost function,
subject to a suite of constraints. The general formulation of an NOCP can be articulated
as follows:

o t
Obj : min: | = E(x(tr)) + fi L(x(t), u(t), t)at

(1) = f(x(B)u(t), 1
x(to) = xo (6)
st g(x(f),u(t),t) <0
Xmin < x(t) < Xmax
Umin < u(t) < Umax

where, t denotes time, with ty and t; representing the initial and final time instances,
respectively. The state variable vector is represented by x(t) € RN, the control vari-
able vector by u(t) € RN« and the initial state vector by x,. The performance index,
denoted by ], encompasses both the Mayer term E(-): RNx — R and the Lagrange term
L(-): RNx x RNu x [to, t] — R. Additionally, g(-) signifies the state constraints, and Xpmin,
Umin, Xmax, Umax represent the lower and upper bounds on the control variables, respectively.

3.2. Path Tracking Control Strategy

The objective of path tracking control for autonomous vehicles is to ensure that
the vehicle adheres precisely to a predefined reference trajectory, characterized by the
heading angle ¢ and the lateral displacement Y. In Section 2, state variables are defined as
x=[o, r ¢ Y X] " and control variable is designated as the front steering angle u = 4.
The output map, represented by p, serves as the functional relationship that projects the
state vector x onto the observable outputs.

1= = 005 00 | 7)

whereyy = [Y ] T, encapsulating lateral displacement Y and the yaw angle .
Then, the objective function, which takes into account the reference signal 77,.f =

(Yrer  $ref] T could be expressed as follows.
2
Y-,
J= I AR+ pe?, ®)
¢ — goref
Q

where Q = diag(Q1, Q2) are weights assigned to lateral error. The matrix R signifies the
weight attributed to the control increment, the term & denotes the relaxation factor, which is
crucial for the optimization process and p serves as the weight factor for the slack variable,
ensuring the robustness of the solution.

The objective function is composed of several terms, each serving a distinct purpose.
The first term encapsulates the sum of the squares of the lateral displacement error and the
heading error, quantifying the system’s deviation from the reference path during tracking.
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The second term, which is the sum of the squares of the control increment quantities,
emphasizes the need to minimize control increments under normal conditions to prevent
abrupt maneuvers. The third term introduces slack variables to ensure that the solvability
of the optimization problem.

Within the domain of vehicular control systems, it is essential to impose constraints
on the control quantities to guarantee the operational integrity and safety of the vehicle.
As previously discussed, the control input for the vehicle is selected to be the front wheel
steering angle, denoted by ¢. Taking into account the mechanical properties of the steering
system, it is imperative that the variation in the front wheel steering angle is kept within
reasonable limits. Consequently, the permissible range of the front wheel steering angle
and the increment of this angle are both subject to constraints.

Umin < U < Umax, Ay < Au < Altgygy, )

3.3. Integration Stability Analysis

Whether employing direct or indirect optimal control techniques, the process of
discretizing a dynamic system relies heavily on the application of integrators. Consequently,
the stability of these integrators is critical for guaranteeing the reliability and precision of the
resulting control strategies. An integrator that exhibits instability is incapable of providing
accurate predictions regarding the system’s future state, thereby compromising the tracking
accuracy. Furthermore, the stability of the entire closed-loop system is also jeopardized.
Drawing upon the principles of integration stability theory, this analysis delves into the
integration stability issues encountered in the lateral motion control of vehicles.

As previously outlined, vehicle dynamics represented by ordinary differential equa-
tions (ODEs) are included in NMPC-based vehicle motion control problems. The stiffness
inherent in these ODE-formulated vehicle dynamics equations exerts a significant influ-
ence on the integration stability of the control system when solving NMPC problems. To
further the understanding of this stiffness, a rigorous analysis leveraging the Dahlquist test
equation [31] is hereby presented.

y = Ay, y(0) = yo, (10)

when any single-step integrator is substituted into the above equation, the resulting discrete
relationship is derived as follows,

Ykr1 = R(hA)yx, (11)

where / denotes the integration step size. Set z = hA, the stability function could be
represented by R(z). While the Dahlquist test equations are inherently formulated as linear
systems, their significance extends to the analysis of general nonlinear systems as well.
This is because nonlinear systems x = f(x) could be linearized around specific state x = xy.
The Jacobian matrix for resulting linearized systems could be further converted to diagonal
or Jordan form. Consequently, the parameters A in Dahlquist test equations correspond
directly to the eigenvalues of the system’s characteristic matrix, which in turn determine
the stability properties of the numerical integration method.

Subsequently, the integration stability condition for the numerical integration methods
is introduced.

Theorem 1 ([31]). The numerical integration method is stable if any eigenvalue of Jacobian matrix
of the system satisfies | R(z)| < 1.

In conjunction with Equation (11), the following relationship needs to be satisfied in
order to avoid y; divergence.
[R(rA)[ <1, (12)
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When employing the explicit Euler method to discretize continuous systems which

utilizes the forward difference to approximate the derivative, the following equation can
be derived.

Vir1 = L+ M)y = (14 2)y, (13)

Thus, the stability function associated with the explicit Euler method is given by
R.(z) = 1+z.

While explicit Runge-Kutta methods of the same order may exhibit variations in
their specific computational procedures, they are characterized by having identical stability
functions. The stability function for the explicit Runge-Kutta method of order p is presented
as follows:
2z zP
Ry (z) =1+Z+E+§+-'- +E’

As demonstrated in proceeding analyses, stability functions of numerical integrators
are related to both the eigenvalues of systems’ Jacobian Matrices and the integration
step size.

For specific vehicle motion control problem based on NMPC, the Jacobian matrix
corresponding to vehicle dynamics state equations is,

(14)

- o - -
ECuizy,  LCuft
i : S — Dy 0 0 0
E1iCui oy S1iCui B
A= j— L 0 0 0f (15)
0 1 0 0 0
cos@ 0 vxcosp —vysing 0 0
| —sing 0 —vxsing—ovycosp 0 0]

L ot 1 9o _ L o 1 ~ . O9Fi dtanoy _
Whel'el—f,r = vy’ or vy’ BrI Vi’Cm T otanog  dog =

7 dvy

sign(e0) (uF) )
4Cq (tan or)? 7
The Jacobian matrix of the state equations possesses two distinct nonzero eigenvalues,

which are

—Cq, Jtan o < pFY /(2Cx)
otherwise

1/2
(An+An)—[(An—An)*+4A1 Ay |

A= ) ’
_ (A11+A22)+[(A11*A22)2+4A12A21]1/2 (16)
Ay = 2 7

Further analysis of Equation (16) indicates that the eigenvalues are correlated with the
vehicle’s speed and the cornering stiffness of the tires. The eigenvalues, as indicated by
their relationship, increase with lower vehicle speeds and higher tire stiffnesses. Figure 2
illustrates the spectral Radii of the vehicle dynamics model at a vehicle speed of 1 m/s and
0.2 m/s, indicating the maximum eigenvalue magnitude of the Jacobian matrix associated
with the state equation. This spectral radius is an indication of change rates for the
corresponding system states, which confers a stiff nature upon the system.

To maintain integration stability, it is necessary to set limits on the length of integration
step size referring to the stability condition and the limits vary for different integration
method. As depicted in Figure 2, the spectral radius exceeds 180 at a vehicle speed of
1 m/s when the tire stiffness exceeds 150,000 N/m. When employing the explicit Euler
method, the integration step size must be constrained to a maximum of 11 milliseconds
to ensure that the stability function of the method complies with the criteria established
in Equation (12). Similarly, when utilizing the explicit fourth-order Runge-Kutta method,
the step size must not surpass 16 milliseconds to maintain the method’s stability criteria.
That is, a relatively small integration step size is imperative to ensure the stability of the
numerical integration process, which inevitably increase the online computing burden and
can degrade the system’s real-time performance.
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(a) vi=1m/s (b) v=0.2m/s
Figure 2. Spectral radius of vehicle dynamics equation.

4. Orthogonal Collocation on Finite Elements Method

Integration stability necessitates the adoption of a small step size when employing
both the Euler discretization method and the explicit fourth-order Runge-Kutta method.
However, to ensure the stability of the integrator as a prerequisite, a comparatively larger
step size is typically favored in the implementation of NMPC integration because it can
enhance computational efficiency which is critical for the performance of NMPC. In this
section, orthogonal collocation method is introduced, which is an A-stable method [32] and
allows for a relaxation of the constraints on integration step size.

Orthogonal collocation method is a member of the weighted residual methods, which
approximate the solutions of differential equations through a linear combination of trial
functions [33]. When integrated with the finite element approach, the entire horizon is seg-
mented, and the orthogonal collocation technique is applied within each individual element.

4.1. The Discretization of State Variables

As illustrated in Figure 3, the time domain is partitioned into Ny elements. Within
the i-th time element, defined by the interval [t/~!,#], the state is approximated using
the nodal approximation given by Equation (9). This approximation employs Lagrange
interpolation polynomials, as described by Equation (8), based on a dimensionless time
coordinate T.

State x(t)
A
Collocated states
Timeg subinterval
. A > Time t
L O C e

Figure 3. Collocation of state variables.

According to the principles outlined in orthogonal collocation [34], the discrete points
within the method can be categorized into two distinct groups: collocated points and
non-collocated points. The collocated points coincide with the zeros of the orthogonal
polynomials, whereas the non-collocated points are typically situated at the endpoints of
the time subintervals. Let N; denote the number of collocation points for state variables
within each time element. Considering the i-th time subinterval [ti_l, ti] as an exemplar,
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the set comprises N; + 1 discrete points, which include a non-collocated point at # and N
collocated points. This configuration is adopted when employing Legendre-Gauss—Radau
(LGRY) collocation points.

T= i telth ], (17)
T— Tk
Hk 0,k#j T — Tk (18)
. N .o
K (1) =Y Lo LT (1), (19)
where, tNTE = ¢ ; 1j represents the Lagrange basis polynomial. The set {Tk}k 1 consists

of orthogonal collocat10n points, with Ty being the initial point. The state vector x/ () is
defined at the collocation point 7; within the i-th time subinterval. Here, j ranges from 0 to
N; and i ranges from 1 to NTE.

4.2. The Discretization of Control Variables

Control variables are discretized within the time domain in a manner analogous
to that of state variables. Let N,, denote the number of collocation points allocated for
control variables within each time element. It is important to note that, due to the potential
discontinuity of control actions at the boundaries of these elements, the inclusion of a
non-collocated point is typically precluded

Ny T—Tk
I = _ 20
(%) k:},‘k[#mq — (20)
W (t) = Y 0 L (T) U (E), (21)

wheren =1,2,--- ,NTE.
More specifically, a piecewise-constant control strategy can be realized by setting
N, =1, whereas a piecewise-linear control approach is achieved when N, = 2.

4.3. Orthogonal Collocation Equations

The first-order derivatives of the Lagrange interpolating polynomials, commonly
referred to as differential matrices, are presented in Equation (20). This expression illustrates
that the differential matrices are solely dependent on the positions of the discrete points
{t%} ]I{\l 1, suggesting that these matrices can be precomputed offline, thereby reducing the
computational load during the online phase.

dls (1) _
dT /rl s - 0/1/ /NI (2'2)

=7

rs =

Consequently, the first-order derivatives of the state variables, as detailed in
Equation (21), are computed by differentiating the trial function presented in Equation (19).

dx’ 1 N
= = 7 Za],kx (%),i=1,2,--- ,NTE;j=0,1,--- N, (23)
t=t

where 4 represents the differential matrix computed at the discrete temporal point 7; and
A = — =1

Hence, the original constraints of the ordinary differential equations (ODEs) can be
discretized into a sequence of algebraic equations derived from the orthogonal collocation
method, which are denoted by

F( Wi )—o (24)
wherei=1,2---NTE,j=0,1,---Ny,m = 0,1, - - Nj.
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4.4. Initial Conditions and Continuity Conditions

Assuming that xj represents the state value at initial time £, then the initial condition
is defined as follows:
200 = xp, (25)

Furthermore, to ensure the attachment of time elements, appropriate continuity condi-
tions must be imposed. With the selection of Legendre—Gauss—Radau (LGR) points, the
final collocation point is precisely positioned at the right endpoint, which results in

X0 — 3N 1 0 ... NTE, (26)

4.5. Stability Region

As mentioned at the beginning, orthogonal collocation method is A-stable, whose
stability domain satisfies S O C~ = {z;RE(z) < 0} referring to [31]. If the Legendre-Gauss—
Radau (LGR) collocation points are selected and the number of collocation points is specified
as three, the stability function of the orthogonal collocation method can also be articulated
as follows by linearizing the nonlinear system and applying to the Dahlquist equation:

B 1+42z/5+2%2/20
T 1—-3z/5+4+322/20—23/60"

R(z) (27)

Substituting Equation (25) into (12) to satisfy the stability condition, the stable region
for orthogonal collocation method is illustrated in Figure 4, alongside the stability regions
for the explicit Euler method and the fourth-order Runge-Kutta (RK4) method. The x-y
plane in the figure represents the complex plane of variable z.

Stability region

Euler RK4 OCFE

Image

Figure 4. Stability regions for integrators.

The stable region of each method encompasses those areas within the complex plane
where the method yields solutions that are both stable and accurate. It is evident that the
stability region of the orthogonal collocation method is significantly expanded relative to
that of the explicit Euler method and RK4 method. Furthermore, the orthogonal collocation
method imposes no restrictions on the integration step size h, attributable to the entire
left half-plane comprising its stability region. This characteristic renders the orthogonal
collocation method particularly advantageous for addressing integration stability issues
in stiff systems, as opposed to the explicit Euler and fourth-order Runge-Kutta (RK4)
methods, which typically necessitate smaller step sizes to maintain stability.
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5. Simulation and Discussions

In this section, the efficacy of the proposed control algorithm is rigorously evaluated
within the CarSim/Simulink co-simulation environment, under the U-Turn maneuvers at
different vehicle speeds. The open-source optimization framework CasADi is utilized to
address the optimization problem [35]. For the sake of clarity in illustration, controllers
that implement the control algorithm introduced in this study are designated as OCFE
controllers. Controllers discretized based on the Euler discretization method are categorized
as Euler controllers, while those founded on the fourth-order Runge-Kutta method are
identified as RK4 controllers.

5.1. Simulation of Low-Speed U-Turn Maneuver

The U-turn reference path is defined by the following equations:

Xref(Y) =50+ /2R,p0aY Y2,

_ Rypad—Y .
cot7l—Srad—l ___if Y <R
50+ /2R 00 Y — Y2 = Troad (28)
Pref = ;
7 —cot™! Y —Rroad ifY > Rypna

50++/2R,p0a Y — Y2’

where X,.r, Yier, @rer represent the position and heading angle of the reference path in
global coordinate frame, respectively.

Under the low-speed condition specified, the vehicle’s longitudinal driving speed is
set to vy = 1.0 m/s. The road surface adhesion coefficient is denoted by p = 0.85. Initially,
the vehicle travels in a straight line for a distance of 5 m before commencing a U-Turn
maneuver with a designated turning radius R,,q = 6 m.

Figure 5 shows the trajectory tracking results of the OCFE controller, Euler controller,
and RK controller. Specifically, OCFE-T1 denotes the trajectory traced by the controller
employing the OCFE discretization method at a discrete time step of T7= 0.05s. The tra-
jectories Euler-T1 and Euler-T2 correspond to the tracking performance of the controller
utilizing the forward Euler discretization method at discrete time steps T; and T, respec-
tively, where T,= 0.01 s. Moreover, RK4-T3 signifies the tracking result of the controller
based on the fourth-order Runge-Kutta discretization method with a discrete time step of
T3=0.015s.

I Reference Path  — — — - T.;=0.05s Te=0.01s Te=0.015s |
12 12 27— r—————
\
10 10} \ 10 ~N |
\\. I
8 8 ! 8 \\ /
—_ = Il E /
E 6 E s ) ! E s Iy
> s [/ s i
4 4 /7 4 4
/s /
2 2 e 2 g
/; -~ -~
0 0 = 0 R e
45 55 45 50 55 45 50 55
X (m) X (m)

Figure 5. Trajectories of controllers with three integration methods.

It can be seen from the figure that when the discrete time step is large (T;= 0.05 s), the
controller Euler-T1 based on the forward Euler discrete method fails to completely track the
given reference trajectory. Upon entering the turning part, the Euler-T1 controller struggles
due to the problem of low-speed integral stability. Specifically, the state variations of the
vehicle’s lateral and yaw speed of the vehicle characterized by large integral stiffness are
ignored under large discrete time steps, leading to an inability to effectively manage the
vehicle’s steering. Consequently, the tracking error accumulates, ultimately resulting in a
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complete divergence from the reference trajectory. In contrast, when the discrete time step
is reduced to 1= 0.01 s, the Euler-T2 controller demonstrates the capacity to guide the
vehicle in accurately following the reference trajectory. This simulation-based validation
further verified the theoretical discrete stability analysis detailed in Section 3. Specifically,
under the predefined vehicle parameter conditions, a vehicle speed of 1 m/s requires a
discrete time step of 0.01 s or smaller to guarantee the discrete stability when employing
the Euler discretization method.

The fourth-order Runge-Kutta discretization method also faces a comparable chal-
lenge. When subjected to large discrete time steps, it is unable to accurately capture the state
changes in vehicle lateral speed and yaw velocity, thereby hindering the vehicle’s ability to
track the prescribed U-shaped reference trajectory. By reducing the discrete time step to
Tz= 0.015 s, the RK4-T3 controller is capable of executing the vehicle trajectory tracking
task effectively while circumventing the integral stability issues during the discretization
process with a smaller time step.

In contrast to the traditional Euler discretization method and the fourth-order Runge—
Kutta (RK4) discretization method, the OCFE-T1 controller demonstrates the ability to
effectively track the reference trajectory even when the discrete time step is T1= 0.05 s.
This indicates that the NMPC trajectory tracking control algorithm based on the OCFE
discretization proposed in this study exhibits resilience against the challenges posed by
low-speed integral stability. The stability remains preserved even under the condition of
employing a large discrete time step.

From the foregoing analysis, it is evident that the OCFE-T1, Euler-T2, and RK4-T3
control methods are capable of ensuring integral stability within the numerical solutions of
NMPC. The computational time required for their single-step iterative processes is depicted
in Figure 6. This depiction illustrates the performance of the entire computation process,
which was conducted on a personal laptop equipped with an Intel Core i5-9400 processor
running at 2.9 GHz.

0.05F T T ' ]
W F
:: i
0.04 } —+ + l
- | T
< | |
2 003} | | .
— -1
o I I |
= |
> |
5 0.02} ;
) |
1
0.01} I .
i 1
Euler RK4 OCFE

Figure 6. Single-step calculation time of OCFE-T1, Euler-T2, and RK4-T3 controllers.

As illustrated in the Figure 6, the OCFE-T1 controller demonstrates a significant
reduction in calculation, which is attributed to the increase in the discretization step length.
The average computation time for the OCFE-T1 controller is recorded at 0.013 s, marking
a reduction of 23.5% and 35% relative to the Euler-T2 controller’s 0.017 s and the RK4-
T3 controller’s 0.02 s, respectively. This enhancement in computation time consequently
bolsters the real-time performance.

Due to the vehicle’s low longitudinal speed, all three controllers are capable of guiding
the vehicle to more accurately track the reference trajectory when an appropriate discrete
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time step is selected. The quantization results for lateral tacking errors are presented in
Table 2. It is observed that selecting a larger integration step does not adversely affect
the tracking performance of the orthogonal collocation controller. The maximum lateral
tracking error for the three controllers is less than 0.11 m, indicating high tracking accuracy.
Among them, the orthogonal collocation controller demonstrates the highest level of
control precision.

Table 2. Lateral tracking error of three controllers.

Orthogonal-Ts1 Euler-Ts2 RK-Ts3

Controller Controller Controller
eymax (M) 0.0985 0.1058 0.0995
€yRSME (M) 0.0118 0.0218 0.0214

5.2. Simulation of High-Speed U-Turn Maneuver

The conditions for high-speed U-Turn maneuvers are defined as follows: road adhe-
sion coefficient is 4 = 0.85, and the vehicle’s longitudinal speed is v, = 72 km/h. The
geometric configuration of reference path is similar to that of the low-speed U-Turn con-
dition, where it first travels 40 m along a straight path before initiating the U-Turn with a
steering radius of R;y,q = 60 m. The reference track for the U-Turn under high-speed con-
ditions is obtained by substituting the appropriate parameters of the described trajectory
into Equation (26).

The preceding analysis in Section 3 indicates that vehicle dynamics model equations
transition to a non-stiff form with the increase in the vehicle’s longitudinal driving speed.
Consequently, the constraints on the discrete-time step inherent in traditional discrete-time
methods within the NMPC solution process are alleviated. In this condition, Figure 7
presents the simulation results for the OCFE, RK4, and Euler controllers. As depicted in the
figure, under the condition of a discrete time step of T} = 0.05 s, all three controllers are
capable of successfully executing the tracking task for the reference U-shaped trajectory.

The yaw angle errors exhibited by the three controllers are closely comparable. The
average course angle errors for the OCFE, RK4, and Euler controllers are recorded as
0.0051 rad, 0.0049 rad, and 0.0051 rad, respectively. Moreover, the absolute value of the
maximum yaw angle error does not exceed 0.04 rad. Regarding lateral tracking error,
the OCFE and RK4 controllers demonstrate average errors of 0.0451 m and 0.0479 m,
respectively, with maximum errors reaching 0.1719 m and 0.1915 m, respectively. The
OCFE controller exhibits enhanced precision in comparison to the RK4 controller. As
depicted in the lateral error distribution Figure 7b, these two statistical indicators for
the OCFE controller are significantly superior to those of the Euler discrete controller.
Specifically, the average tracking error of the OCFE controller is 24.45% lower than that of
the Euler controller, which is 0.0597 m. Additionally, the maximum lateral error is reduced
by 27.19% in comparison to the Euler controller’s error of 0.2361 m. Therefore, the proposed
OCFE-based NMPC controller shows higher accuracy compared to traditional controller
while ensuring stability.
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Figure 7. Simulation results of controllers with different discrete methods in high-speed U-Turn

scenarios.

6. Conclusions

Vehicle dynamics equations, serving as a widely used model in motion control for
autonomous vehicles, exert a considerable influence on computational efficiency of NMPC
primarily due to its stiffness. This study first presented a theoretical analysis of the stiffness
of the vehicle dynamics model equations and then derived the resulting constraints imposed
on the integration time step when employing conventional numerical methods. The analysis
revealed that the adoption of small-time steps leads to the increasing online computational
loads. To address the issue, the finite element orthogonal collocation method (OCFE)-based
NMPC controller was proposed, which could relax the discretized time step restrictions.
The proposed controller was compared with the traditional NMPC controller through the
CarSim/Simulink co-simulation platform. The results showed that the vehicle dynamics
model equations are stiffer when the vehicle speed is low and the proposed OCFE-based
NMPC controller can improve the real-time performance while ensuring the path tracking
accuracy. The influence of the stiffness on the online computational time of the NMPC
controller diminishes as the vehicle speed is larger. In addition to the superiority of
addressing integration stability issues caused by the stiffness nature of the vehicle dynamics
equations, the OCFE-based NMPC controller also showed its higher accuracy across a wide
of vehicle speeds, from low to high speed. In the future work, the efficacy of the proposed
strategy will be validated in both hardware-in-loop simulations and real-world vehicle
testing scenarios.
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