Experimental Study of an Industrial Data Transmission Network in the Automatic Control System of a Wind Turbine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model of a Vertical-Axis Wind Turbine
2.2. Data Collection Network
3. Results and Discussion
4. Conclusions
- Optimal transmission rate: Experimental results showed that a data transmission rate of up to 19,200 baud ensures minimal signal distortion and high transmission stability, making it optimal for these conditions.
- Impact of transmission speed: As transmission speed increases, the distortion coefficient rises, leading to a deterioration in data transmission quality and an increased susceptibility to external influences.
- Climatic considerations: Temperature was found to significantly impact transmission quality, underscoring the need to consider climatic conditions during the design and operation of such systems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RES | Renewable Energy Sources |
HAWTs | Horizontal-Axis Wind Turbines |
VAWTs | Vertical-Axis Wind Turbines |
VAWT | Vertical-Axis Wind Turbine |
DHT22 | Type of the temperature sensor |
References
- Ghafoorian, F.; Mirmotahari, S.R.; Wan, H. Numerical study on aerodynamic performance improvement and efficiency enhancement of the savonius vertical axis wind turbine with semi-directional airfoil guide vane. Ocean. Eng. 2024, 307, 118186. [Google Scholar] [CrossRef]
- Ghafoorian, F.; Mirmotahari, S.R.; Mehrpooya, M.; Akhlaghi, M. Aerodynamic performance and efficiency enhancement of a Savonius vertical axis wind turbine with Semi-Directional Curved Guide Vane, using CFD and optimization method. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 443. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Kim, Y.-C. Communication Network Architectures for Smart-Wind Power Farms. Energies 2014, 7, 3900–3921. [Google Scholar] [CrossRef]
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Xu, C.; Du, X.; Li, X.; Tu, Y.; Li, L.; Jin, X.; Xia, C. 5G-Based Industrial Wireless Controller: Protocol Adaptation, Prototype Development, and Experimental Evaluation. Actuators 2023, 12, 49. [Google Scholar] [CrossRef]
- Bożek, A.; Rzonca, D. Communication Time Optimization of Register-Based Data Transfer. Electronics 2023, 12, 4917. [Google Scholar] [CrossRef]
- Sundararajan, A.; Chavan, A.; Saleem, D.; Sarwat, A.I. A Survey of Protocol-Level Challenges and Solutions for Distributed Energy Resource Cyber-Physical Security. Energies 2018, 11, 2360. [Google Scholar] [CrossRef]
- Zhang, L. A Pattern-Recognition-Based Ensemble Data Imputation Framework for Sensors from Building Energy Systems. Sensors 2020, 20, 5947. [Google Scholar] [CrossRef]
- Bhattarai, U.; Maraseni, T.; Apan, A. Assay of renewable energy transition: A systematic literature review. Sci. Total Environ. 2022, 833, 155159. [Google Scholar] [CrossRef]
- Fazylova, A.; Balbayev, G.; Ilieva, D.; Aliyarova, M. Analysis of rotors’ critical mode of operation to be employed in the design of a wind generation control unit. E3S Web Conf. 2020, 180, 02001. [Google Scholar] [CrossRef]
- Vishnu Namboodiri, V.; Goyal, R. Benchmarking the darrieus wind turbine configurations through review and data envelopment analysis. Clean. Techn Env. Policy 2023, 25, 2123–2155. [Google Scholar] [CrossRef]
- Zhao, J.; Li, B. Evaluation of Data Transmission Protocols for Wind Turbine Networks. IEEE Trans. Ind. Electron. 2019, 66, 1278–1286. [Google Scholar]
- Roberts, T.; Ellis, S. Signal Processing Techniques for Enhancing Data Transmission in Wind Turbine Control Systems. IEEE Access 2020, 8, 139087–139097. [Google Scholar]
- Shen, L.; Wu, J. Fault-Tolerant Data Transmission in Wind Turbine Control Networks. IEEE Trans. Smart Grid 2022, 13, 4781–4789. [Google Scholar]
- Johnson, E.; Perez, L. Temperature Effects on Data Transmission Quality in Wind Turbine Control Systems. IEEE Trans. Ind. Appl. 2019, 55, 6213–6220. [Google Scholar]
- Martinez, R.; Sanz, E. Comparative Analysis of Wired and Wireless Data Transmission in Wind Energy Systems. Renew. Energy 2020, 148, 1245–1253. [Google Scholar] [CrossRef]
- Karaman, Ö.A. Prediction of Wind Power with Machine Learning Models. Appl. Sci. 2023, 13, 11455. [Google Scholar] [CrossRef]
- Kim, D.; Lee, M. Co-Simulation of Wind Turbine Data Transmission Networks Using MATLAB/SIMULINK. Renew. Energy 2023, 187, 437–446. [Google Scholar] [CrossRef]
- Weather Underground. Almaty, Kazakhstan Weather Conditions. Available online: https://www.wunderground.com/weather/kz/almaty (accessed on 13 October 2024).
- Weather Atlas. Current Weather and Forecast for Almaty, Kazakhstan. Available online: https://www.weather-atlas.com (accessed on 13 October 2024).
- Nsafon, B.E.K.; Same, N.N.; Yakub, A.O.; Chaulagain, D.; Kumar, N.M.; Huh, J.-S. The justice and policy implications of clean energy transition in Africa. Front. Environ. Sci. 2023, 11, 1089391. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, L. Analysis of Data Transmission Speeds in Wind Turbine Control Systems. IEEE Access 2021, 9, 46875–46884. [Google Scholar]
- Jung, S.; Han, J. Development of High-Speed Data Transmission Systems for Offshore Wind Turbines. J. Mar. Sci. Eng. 2021, 9, 442. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, X. Advanced Data Transmission Methods for Wind Energy Systems. Renew. Energy 2021, 173, 235–243. [Google Scholar] [CrossRef]
- Sang, L.Q.; Maeda, T.; Kamada, Y.; Li, Q. Experiment and Simulation Effects of Cyclic Pitch Control on Performance of Horizontal Axis Wind Turbine. Int. J. Renew. Energy Dev. 2017, 6, 119–125. [Google Scholar] [CrossRef]
- Gomez, A.; Rodriguez, M. Data Transmission Challenges in Offshore Wind Farms. J. Clean. Prod. 2021, 295, 126345. [Google Scholar] [CrossRef]
- Wang, K.; Liu, H. Technical White Paper-RS-485 Basics Series. Texas Instruments, SLLA545–FEBRUARY 2021. p. 17. Available online: https://www.ti.com/lit/wp/slla545/slla545.pdf?ts=1729491984347 (accessed on 20 August 2024).
- Wang, X.; Li, Y. Enhancing the Robustness of Data Transmission in Wind Turbine Control Systems. Renew. Energy 2019, 140, 647–656. [Google Scholar] [CrossRef]
- Patel, N.; Kumar, R. Data Transmission in Wind Turbine SCADA Systems: A Review. J. Wind. Eng. Ind. Aerodyn. 2022, 213, 104638. [Google Scholar]
- Li, H.; Chen, Q. Impact of Data Transmission Errors on Wind Turbine Performance. IEEE Trans. Ind. Appl. 2021, 57, 7656–7665. [Google Scholar]
- Liu, Y.; Wang, P. Reliability of RS-485 Communication in Wind Turbine Networks. J. Wind. Eng. Ind. Aerodyn. 2023, 228, 105207. [Google Scholar]
- Chen, Y.; Sun, Z. Temperature Compensation Techniques for Data Transmission in Wind Turbine Control Systems. IEEE Trans. Ind. Appl. 2022, 58, 3151–3159. [Google Scholar]
- Perez, R.; Gomez, S. Wireless Communication Protocols for Wind Turbine SCADA Systems. Renew. Energy 2023, 201, 152–160. [Google Scholar] [CrossRef]
- Anderson, K.; Patel, R. Data Acquisition Techniques in Wind Energy Systems. IEEE Access 2020, 8, 23007–23016. [Google Scholar] [CrossRef]
- Lee, W.; Lee, S. Impact of Physical Barriers on Data Transmission in Wind Farms. IEEE Trans. Ind. Electron. 2019, 66, 5311–5320. [Google Scholar]
- Hassan, M.; Guedes Soares, C. Dynamic Analysis of a Novel Installation Method of Floating Spar Wind Turbines. J. Mar. Sci. Eng. 2023, 11, 1373. [Google Scholar] [CrossRef]
- Lins, C.; Esteban, M. The Future of Wind Energy: Technological Advancements and Challenges. Renew. Energy 2021, 169, 1253–1267. [Google Scholar] [CrossRef]
- Smith, J.; Patel, D. Influence of Environmental Factors on Data Transmission in Wind Turbine Networks. IEEE Trans. Ind. Electron. 2020, 67, 2453–2462. [Google Scholar]
- Wen, X.; Xie, M. Performance evaluation of wind turbines based on SCADA data. Wind. Eng. 2021, 45, 1243–1255. [Google Scholar] [CrossRef]
- Müller, M.; Wendt, S. Robustness of Data Transmission in Wind Energy Systems. J. Wind. Eng. Ind. Aerodyn. 2019, 186, 45–53. [Google Scholar] [CrossRef]
Month | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Feb |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Wind Speed (mph) | 5.4 | 5.5 | 5.8 | 6.2 | 6.1 | 6.0 | 6.1 | 6.0 | 5.9 | 5.6 | 5.5 | 5.4 |
Speed | Distortion Coefficient | |
---|---|---|
Ki (Logic 1) | Ki (Logic 0) | |
4800 | 1.04 | 0.98 |
9600 | 1.05 | 0.97 |
19,200 | 1.05 | 0.99 |
38,400 | 1.09 | 1.02 |
57,600 | 1.09 | 1.05 |
115,200 | 1.19 | 1.11 |
460,800 | 1.84 | 1.92 |
T (°C) | ΔT = T − T0 (°C) | β1⋅ΔT | β2⋅(ΔT)2 | 1 + β1⋅ΔT + β2⋅(ΔT)2 | (t) |
---|---|---|---|---|---|
10 | −10 | 0.1 | 0.1 | 1 | 1.05 |
20 | 0 | 0 | 0 | 1 | 1.05 |
30 | 10 | 0.1 | 0.1 | 1.2 | 1.26 |
40 | 20 | 0.2 | 0.4 | 1.6 | 1.68 |
50 | 20 | 0.3 | 0.9 | 2.2 | 2.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazylova, A.; Tultayev, B.; Iliev, T.; Stoyanov, I.; Kabasheva, M.; Kosunalp, S. Experimental Study of an Industrial Data Transmission Network in the Automatic Control System of a Wind Turbine. Machines 2024, 12, 746. https://doi.org/10.3390/machines12110746
Fazylova A, Tultayev B, Iliev T, Stoyanov I, Kabasheva M, Kosunalp S. Experimental Study of an Industrial Data Transmission Network in the Automatic Control System of a Wind Turbine. Machines. 2024; 12(11):746. https://doi.org/10.3390/machines12110746
Chicago/Turabian StyleFazylova, Alina, Baurzhan Tultayev, Teodor Iliev, Ivaylo Stoyanov, Mirey Kabasheva, and Selahattin Kosunalp. 2024. "Experimental Study of an Industrial Data Transmission Network in the Automatic Control System of a Wind Turbine" Machines 12, no. 11: 746. https://doi.org/10.3390/machines12110746
APA StyleFazylova, A., Tultayev, B., Iliev, T., Stoyanov, I., Kabasheva, M., & Kosunalp, S. (2024). Experimental Study of an Industrial Data Transmission Network in the Automatic Control System of a Wind Turbine. Machines, 12(11), 746. https://doi.org/10.3390/machines12110746