LSTM-Inversion-Based Feedforward–Feedback Nanopositioning Control
Abstract
:1. Introduction
2. Feedforward–Feedback invLSTMs2s+MPC Controller Design
2.1. Feedforward Controller
2.1.1. System Inversion Model
2.1.2. LSTMs2s Inversion Model (invLSTMs2s)
2.1.3. invLSTMs2s Training
2.2. Feedback Controller Design
2.3. Impact of the invLSTMs2s Uncertainty
3. Experiment Results and Discussion
3.1. invLSTMs2s Training Set Construction and Training Process
3.2. Accuracy of invLSTMs2s
3.3. Tracking Performance Comparison
3.4. Application Demonstration of the invLSTMs2s+MPC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LSTM | Long short-term memory |
LSTMs2s | Sequence-to-sequence long short-term memory |
invLSTMs2s | Inversive sequence-to-sequence long short-term memory |
NN | Neural network |
RNN | Recurrent neural network |
2DOF | Two-degree of freedom |
MPC | Model predictive controller |
PEA | Piezoelectric actuator |
AFM | Atomic force microscopy |
QP | Quadratic programming |
References
- Mollaeian, K.; Liu, Y.; Bi, S.; Ren, J. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells. J. Mech. Behav. Biomed. Mater. 2018, 78, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Ren, J. Iterative Learning-based Model Predictive Control for Precise Trajectory Tracking of Piezo Nanopositioning Stage. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 2922–2927. [Google Scholar]
- Tian, Y.; Zhang, D.; Shirinzadeh, B. Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation. Precis. Eng. 2011, 35, 554–565. [Google Scholar] [CrossRef]
- Qin, F.; Zhang, D.; Xing, D.; Xu, D.; Li, J. Laser beam pointing control with piezoelectric actuator model learning. IEEE Trans. Syst. Man Cybern. Syst. 2017, 50, 1024–1034. [Google Scholar] [CrossRef]
- Fan, Y.; Tan, U.X. Design of a feedforward-feedback controller for a piezoelectric-driven mechanism to achieve high-frequency nonperiodic motion tracking. IEEE/ASME Trans. Mechatron. 2019, 24, 853–862. [Google Scholar] [CrossRef]
- Mao, X.; Wang, Y.; Liu, X.; Guo, Y. A hybrid feedforward-feedback hysteresis compensator in piezoelectric actuators based on least-squares support vector machine. IEEE Trans. Ind. Electron. 2017, 65, 5704–5711. [Google Scholar] [CrossRef]
- Baziyad, A.G.; Ahmad, I.; Salamah, Y.B. Precision Motion Control of a Piezoelectric Actuator via a Modified Preisach Hysteresis Model and Two-Degree-of-Freedom H-Infinity Robust Control. Micromachines 2023, 14, 1208. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, W.; Tian, L.; Xie, Y. A feedforward-feedback controller based on modified Prandtl–Ishlinskii model and submodel for tracking control the trajectories of piezoelectric actuator. Microsyst. Technol. 2024, 30, 1007–1024. [Google Scholar] [CrossRef]
- Ahmad, I. Two degree-of-freedom robust digital controller design with Bouc-Wen hysteresis compensator for piezoelectric positioning stage. IEEE Access 2018, 6, 17275–17283. [Google Scholar] [CrossRef]
- Yuan, J.; Wu, H.; Qin, Y.; Han, J. High-Bandwidth Repetitive Trajectory Tracking Control of Piezoelectric Actuators via Phase–Hysteresis Hybrid Compensation and Feedforward–Feedback Combined Control. Micromachines 2023, 14, 2009. [Google Scholar] [CrossRef]
- Gan, J.; Zhang, X. A review of nonlinear hysteresis modeling and control of piezoelectric actuators. AIP Adv. 2019, 9, 040702. [Google Scholar] [CrossRef]
- Xie, S.; Ren, J. Tracking control using recurrent-neural-network-based inversion model: A case study on a piezo actuator. IEEE Trans. Ind. Electron. 2020, 68, 11409–11419. [Google Scholar] [CrossRef]
- Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June 2013; pp. 1310–1318. [Google Scholar]
- Hochreiter, S. Untersuchungen zu dynamischen neuronalen Netzen. Diploma Tech. Univ. München 1991, 91, 31. [Google Scholar]
- Rehmer, A.; Kroll, A. On the vanishing and exploding gradient problem in Gated Recurrent Units. IFAC-PapersOnLine 2020, 53, 1243–1248. [Google Scholar] [CrossRef]
- Patil, M.S.; Charuku, B.; Ren, J. Long Short-term Memory Neural Network-based System Identification and Augmented Predictive Control of Piezoelectric Actuators for Precise Trajectory Tracking. IFAC-PapersOnLine 2021, 54, 38–45. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Wang, Y. A new concept using lstm neural networks for dynamic system identification. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 5324–5329. [Google Scholar]
- Ookura, S.; Mori, H. An efficient method for wind power generation forecasting by LSTM in consideration of overfitting prevention. IFAC-PapersOnLine 2020, 53, 12169–12174. [Google Scholar] [CrossRef]
- Gonzalez, J.; Yu, W. Non-linear system modeling using LSTM neural networks. IFAC-PapersOnLine 2018, 51, 485–489. [Google Scholar] [CrossRef]
- Yin, R.; Ren, J. Sequence-to-sequence LSTM-based Dynamic System Identification of Piezo-electric Actuators. In Proceedings of the 2023 American Control Conference (ACC), San Diego, CA, USA, 31 May–2 June 2023; pp. 673–678. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. arXiv 2014, arXiv:1409.3215. [Google Scholar]
- Xie, S.; Ren, J. Recurrent-neural-network-based predictive control of piezo actuators for trajectory tracking. IEEE/ASME Trans. Mechatron. 2019, 24, 2885–2896. [Google Scholar] [CrossRef]
- Franklin, G.F.; Powell, J.D.; Workman, M.L. Digital Control of Dynamic Systems; Addison-Wesley: Menlo Park, CA, USA, 1998; Volume 3. [Google Scholar]
- Devasia, S. Should model-based inverse inputs be used as feedforward under plant uncertainty? IEEE Trans. Autom. Control 2002, 47, 1865–1871. [Google Scholar] [CrossRef]
- Kim, K.S.; Zou, Q. A modeling-free inversion-based iterative feedforward control for precision output tracking of linear time-invariant systems. IEEE/ASME Trans. Mechatron. 2012, 18, 1767–1777. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, T.; Liang, Y.; Dong, S. Investigation on AFM-based micro/nano-CNC machining system. Int. J. Mach. Tools Manuf. 2007, 47, 1651–1659. [Google Scholar] [CrossRef]
- Du, P.; Han, L.; Qiu, X.; Chen, W.; Deng, J.; Liu, Y.; Zhang, J. Development of a high-precision piezoelectric ultrasonic milling tool using longitudinal-bending hybrid transducer. Int. J. Mech. Sci. 2022, 222, 107239. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, J.; Lee, P.S. Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv. Mater. 2021, 33, 2002640. [Google Scholar] [CrossRef]
- Kathavate, V.; Prasad, K.E.; Kiran, M.S.; Zhu, Y. Mechanical characterization of piezoelectric materials: A perspective on deformation behavior across different microstructural length scales. J. Appl. Phys. 2022, 132, 121103. [Google Scholar] [CrossRef]
- Ren, K.; Gao, X.; Jin, H.; Qiao, L.; Xia, S.; Li, F. Conformal Ordered Solid–Liquid Coupled Piezoelectric Units for Programmable Adaptive Optics. Adv. Funct. Mater. 2024, 2410173. [Google Scholar] [CrossRef]
Controller | Refs. | Sinusoidal | Triangular | |||||
---|---|---|---|---|---|---|---|---|
30 Hz | 120 Hz | 360 Hz | 25 Hz | 100 Hz | 300 Hz | |||
invLSTMs2s | 9.35% | 7.25% | 3.10% | 9.04% | 6.00% | 4.29% | 5.64% | |
7.91% | 6.14% | 2.30% | 7.13% | 4.74% | 2.51% | 3.49% | ||
invLSTMs2s+MPC | 3.19% | 2.97% | 7.53% | 4.05% | 1.94% | 6.32% | 3.63% | |
2.09% | 2.07% | 6.25% | 2.85% | 1.05% | 4.31% | 2.39% | ||
MPC | 1.66% | 6.57% | 27.18% | 3.28% | 6.80% | 21.66% | 10.06% | |
1.12% | 4.82% | 23.26% | 2.63% | 3.77% | 12.68% | 7.57% | ||
PI | 6.37% | 24.34% | 45.89% | 5.08% | 18.73% | 38.01% | 8.56% | |
5.50% | 21.04% | 39.47% | 3.77% | 14.88% | 30.60% | 5.81% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, R.; Ren, J. LSTM-Inversion-Based Feedforward–Feedback Nanopositioning Control. Machines 2024, 12, 747. https://doi.org/10.3390/machines12110747
Yin R, Ren J. LSTM-Inversion-Based Feedforward–Feedback Nanopositioning Control. Machines. 2024; 12(11):747. https://doi.org/10.3390/machines12110747
Chicago/Turabian StyleYin, Ruocheng, and Juan Ren. 2024. "LSTM-Inversion-Based Feedforward–Feedback Nanopositioning Control" Machines 12, no. 11: 747. https://doi.org/10.3390/machines12110747
APA StyleYin, R., & Ren, J. (2024). LSTM-Inversion-Based Feedforward–Feedback Nanopositioning Control. Machines, 12(11), 747. https://doi.org/10.3390/machines12110747