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Abstract: This work proposes a two-degree of freedom (2DOF) controller for motion tracking of
nanopositioning devices, such as piezoelectric actuators (PEAs), with a broad bandwidth and high
precision. The proposed 2DOF controller consists of an inversion feedforward controller and a
real-time feedback controller. The feedforward controller, a sequence-to-sequence LSTM-based in-
version model (invLSTMs2s), is used to compensate for the nonlinearity of the PEA, especially at
high frequencies, and is collaboratively integrated with a linear MPC feedback controller, which
ensures the PEA position tracking performance at low frequencies. Therefore, the proposed 2DOF
controller, namely, invLSTMs2s+MPC, is able to achieve high precision over a broad bandwidth.
To validate the proposed controller, the uncertainty of invLSTMs2s is checked such that the inte-
gration of an inversion model-based feedforward controller has a positive impact on the trajectory
tracking performance compared to feedback control only. Experimental validation on a commercial
PEA and comparison with existing approaches demonstrate that high tracking accuracies can be
achieved by invLSTMs2s+MPC for various reference trajectories. Moreover, invLSTMs2s+MPC
is further demonstrated on a multi-dimensional PEA platform for simultaneous multi-direction
positioning control.

Keywords: LSTM; sequence-to-sequence; PEA; system identification; inversion control; feedforward–
feedback control; 2DOF controller

1. Introduction

Nanopositioning devices, such as piezoelectric actuators (PEAs), are broadly used
in many high-precision industries, products, and systems due to their advantages of fast
response and high motion resolution. As one of the most popular nanopositioning devices,
PEAs have been implemented in various applications, such as atomic force microscopes
(AFMs) [1,2], micro forming [3], and adaptive optics [4]. However, the operation of such
a system at high frequency and/or large motion range still remains challenging because
of the PEA’s nonlinear dynamics (e.g., hysteresis and creep), which is more pronounced
when operations are performed under these conditions. As a result, the system operation
bandwidth and motion range are rather limited for commercial applications, especially for
real-time motion control applications.

To address these issues, efforts in PEA position tracking control have been reported.
Feedforward controllers have been proposed to increase the control bandwidth by com-
pensating for the PEA nonlinear dynamics. For example, model-based feedforward
control designs have been implemented to improve control performance by compen-
sating for PEA hysteresis, through inverse dynamics approximation [5,6]. To capture the
frequency-dependent PEA hysteresis dynamics, rate-independent hysteresis models, such
as the improved Preisach model [7], the modified Prandtl–Ishlinskii model [8], and the
Bouc–Wen hysteresis model [9], have been implemented in the feedforward controller
designs. The feedforward controller can then be combined with a real-time feedback con-
troller to form a two-degree-of-freedom (2DOF) controller to increase the overall tracking
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accuracy and robustness [8,10]. In these 2DOF controllers, the feedforward part accounts
for the nonlinear and high-frequency PEA dynamics, and the feedback controller takes care
of the remaining errors to improve the overall control precision. Theoretically, the 2DOF
controller should be able to deliver satisfactory trajectory tracking and positioning perfor-
mance if both feedforward and feedback parts are well designed. However, due to the
complicated PEA nonlinear dynamics, model parameter identification is quite challenging,
and the trajectory tracking improvements obtained are rather limited [11], especially when
system uncertainties exist.

With the recent development of deep learning algorithms, neural networks (NNs)
have been widely proposed for system identification and controller design. With adequate
training data, NNs can capture the entire PEA dynamics presented in the data quite well,
not just limited to hysteresis. Previous studies [12] show a vanilla recurrent neural network
(RNN) performs well at handling the time series input and is increasingly popular in
controller design. However, a vanilla RNN still has its limits. For example, an RNN can
potentially suffer from gradient vanishing or exploding issues [13–15] and is prone to over-
fitting. Furthermore, compared to the long short-term memory (LSTM), it cannot consider
and understand the system’s long-term dependencies subject to sequential input, so the
accuracy of a vanilla RNN in system dynamic identification can be limited [16,17]. The ad-
vantages of LSTM come from the memory cells in network neurons. The memory cells
inherit the time-relevant information from long-term and short-term memory together and
help LSTM make future predictions based on important historical data [16,18]. This feature
enables LSTM to perform better in handling the complexity of nonlinear systems. But LSTM
still can possibly encounter overfitting issues [19–21]. The reason can be originated from
the conventional training mechanism. To train an accurate LSTM, it conventionally uses
a very long single time series that concatenates many training data samples to cover a
broad frequency range [16,18]. As a result, the conventional LSTM training progress could
be extremely time-consuming. To address this issue, sequence-to-sequence LSTM learn-
ing (namely, LSTMs2s) has been recently implemented for PEA system identification [22]
with high accuracy. This provides potential for controller design in high accuracy PEA
position tracking.

Leveraging LSTMs2s in system identification, this work proposes a 2DOF controller
(invLSTMs2s+MPC) consisting of a feedforward controller based on an LSTMs2s model
of the system inverse dynamics (namely, invLSTMs2s) and a model predictive controller
(MPC) as a feedback controller. The MPC was chosen primarily owing to its ability to han-
dle constraints and capability for controlling multivariable plants, among other advantages.
Considering the frequency and range dependent PEA nonlinear dynamics, the invLSTMs2s
training set was generated using sinusoidal and triangle references with various frequency
and amplitude components. To reduce the training data size and training time cost, invL-
STMs2s was primarily designed to capture the PEA dynamics at mid- and high-frequency
ranges (e.g., a range of tens to hundreds of hertz). In this work, the invLSTMs2s model was
trained using a parallel training method, in which groups of training datasets were divided
into mini-batches. After training, the modeling accuracy of invLSTMs2s was validated
by comparing the model hysteresis prediction with the actual PEA response. With the
accuracy of invLSTMs2s in nonlinear dynamics identification confirmed, an MPC based on
a linear model was integrated as a feedback controller to take care of the low-frequency
control and improve the overall tracking accuracy. Weighting factors were incorporated in
the feedforward and feedback control paths to generalize the proposed 2DOF controller
for tracking various references in different frequency regions. For validation and demon-
stration, the proposed 2DOF controller was implemented to control the displacement of
a commercial PEA stage and compared with other approaches. The experiment results
clearly demonstrate the superiority of invLSTMs2s+MPC for PEA trajectory tracking.
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2. Feedforward–Feedback invLSTMs2s+MPC Controller Design
2.1. Feedforward Controller
2.1.1. System Inversion Model

In general, a dynamic system can be modeled in state-space as Equation (1), where
U = [uk, uk+1, . . . . . .] and Y = [yk, yk+1, . . . . . .] are the input and output, respectively.
The corresponding inversion model can be modeled as Equation (2). The inversion
model’s (Equation (2)) output becomes U when the Y is fed as the inversion model’s
input. If an accurate inversion model can be obtained for a time-invariant system and dis-
turbances/uncertainties are not considered, precise control of the system can be achieved
by connecting the inversion model and the system in series where the output of the former
is the input of the latter and directly feeding the desired system reference as the input of
the combination.

xk+1 = f (xk, uk)

yk = h(xk, uk)
(1)

zk+1 = finv(zk, yk)

uk = hinv(zk, yk).
(2)

For a linear system, its inversion model can be directly determined through linear
system theories. However, for a nonlinear system, such as PEA positioning systems in this
work, obtaining an accurate inversion model is not straightforward. One way to solve this
problem is to train and regress an inversion machine learning model using the data pair
{Y, U} from the original system.

2.1.2. LSTMs2s Inversion Model (invLSTMs2s)

The goal of designing an inversion model is to map the output time series of the
original system back to the input time series of the original system. Previous studies have
shown that LSTM networks are more potent for this task compared to other forms of
RNNs [17,22].

In this work, an advanced development of LSTM, sequence-to-sequence LSTM (LSTMs2s),
was selected to generate the nonlinear inversion model of PEA for its efficiency and
accuracy [22–24]. As shown in Figure 1, the LSTMs2s contains two LSTM layers expanded
timewise: an LSTM encoder and an LSTM decoder. Both LSTM layers have similar structures.

In LSTMs2s (see Figure 1), the encoder LSTM layer reads the entire input time series
u(r) and its final hidden states x(r) are saved as context vector Cv. After the encoder
processes the entire input time series, the decoder is coupled with a fully connected
network to predict the output time series y(r) based on Cv. The entire LSTMs2s model can
be formulated as follows:

Encoder:
xe,(k) = f (xe,(k−1), u(r),k). (3)

Decoder:
y(r),k−1 = g(xd,(k−1))

xd,(k) = f (xd,(k−1), y(r),k−1, Cv)

y(r),k = g(xd,(k)),

(4)

where xd,(k) and xe,(k) are the hidden states in the encoder and decoder at the sampling
instant k, respectively. f (·) denotes the LSTM unit function. g(·) represents the output
layer that is implemented by a fully connected network. In this encoder–decoder model, it
is clear that the decoder generates output data points y(r),k at each sampling instant k and
uses it as an input parameter to the decoder for the next output prediction. Note that the
context vector Cv serves as an input parameter to the decoder for each step.
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Figure 1. LSTMs2s structure.

2.1.3. invLSTMs2s Training

invLSTMs2s aims to map the relation from the PEA output to the PEA input, hence
the inverse PEA dynamics. Suppose the measured PEA system output is Y(ts) subject to
the drive input U(ts), and Y(rts) is the inversion model output subject to Y(ts); a perfect
inversion model should generate Y(rts) exactly the same as U(ts). In other words, such a
perfect inversion model satisfies that the error ||U(ts) −Y(rts)|| < ϵ for any ϵ > 0. Therefore,
the invLSTMs2s can be trained using the training set constructed with (Yts, Uts) by solving
the following optimization problem:

min
W f ,b f ,Wi ,bi ,Wo ,bo ,WC ,bC ,W(r),b(r)

J(r) = ||U(ts) − Y(rts)||

subject to : xe,(k) = f (xe,(k−1), y(ts),k)

y(rts),k−1 = g(xd,(k−1))

xd,(k) = f (xd,(k−1), y(r),k−1, s)

y(rts),k = g(xd,(k))

xd,0 = xe,L = s, k = 1, 2, 3, . . . . . . , L

, (5)

where f (·) and g(·) are the LSTM unit function and the fully connected output layer,
respectively. L is the length of the time series.

We utilized parallel training to train this structure with multiple input–output time
series samples for highly efficient system identification. Considering the frequency- and
amplitude-dependent behavior of PEAs, each time series U(ts),i is generated using the
multi-period sinusoidal function S( fi, Ai) and triangular function T( fi, Ai), with fi as the
signal frequency and Ai as the amplitude. Mathematically, the collection of k samples of
U(ts),i, U(ts) is formulated as

U(ts) = {U(ts),1, U(ts),2, . . . , U(ts),k}

with U(ts),i =

{
Si, i = k+1

2 if k is odd number
Ti, i = k

2 if k is even number

Si = S( fi, Ai), Ti = T( fi, Ai), where ( fi, Ai) ∈ Ω

S( fi, Ai) = Ai[sin(2π fit +
3π

2
) + 1], t ∈ [0,

P
f
]

T( fi, Ai) = 4 · Ai| fit −
⌊

fit +
1
2

⌋
|, t ∈ [0,

P
f
],

(6)

where Ω is the set of selected ( fi, Ai) pairs, which can be determined using k-means
clustering [16,25]. P is the number of periods the signal sample contains. The PEA system
output time series set Y(ts) = {Y(ts),1, Y(ts),2, . . . , Y(ts),k} can be then measured subject to the
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input set U(ts) = {U(ts),1, U(ts),2, . . . , U(ts),k}. Then, the entire training set can be constructed
as {Y(ts), U(ts)}. The samples of the entire training set are then sorted based on their length
and divided into mini-batches using a pre-defined batch size n (n samples per batch). Then,
the inversion model is trained batch by batch, and the total training iteration needed is
λKs/n, where λ is the epoch number, and Ks is the total sample size.

Note that the sample length can be very big for small fis. This can dramatically
increase the training time. Given the PEA’s nonlinear dynamics mostly occur for high
driving frequencies [22,25], the invLSTMs2s was primarily designed to capture the high-
frequency and nonlinear dynamics of the PEA system [22].

2.2. Feedback Controller Design

Given the high-frequency dynamics of the PEA can be accurately compensated by the
invLSTMs2s, what is left for the PEA positioning control is to design a controller for the
PEA’s low-frequency dynamics, which is mostly linear. Therefore, a linear MPC is proposed
for its efficiency and flexibility in handling control constraints and system disturbances.
The MPC works in parallel with the invLSTMs2s feedforward controller. The block diagram
of the entire controller design is shown in Figure 2.

The MPC utilizes a state observer and an estimated linear model for the PEA system
state estimation and output prediction. Such a state observer, like the Kalman filter, can be
expressed as,

x(c),k+1 = Ax(c),k + Buk

ŷk = Cx(c),k,
(7)

where x(c),k is the estimated state of the state observer, and uk is the system input. ŷk is the
predicted system output. A, B, C are the estimated state-space matrices that can be obtained
using a linear system identification algorithm based on system frequency response fitting,
and their dimensions depend on the order of the estimated system chosen by the algorithm
and user preference.

State estimation: A steady-state Kalman filter [26] was implemented as the state
estimator for the MPC. To design the Kalman filter, the process noise covariance and
measurement noise covariance were estimated based on the system’s linear model identifi-
cation accuracy, the PEA stage’s measurement noise level, and the manufacturer’s provided
system’s noise-to-signal ratio.

For each control interval k, the system state was estimated as follows:
First, compute the innovation using the current system output measurement yk

ek = yk − [Cx(c),k|k−1]. (8)

Second, update the current state

x(c),k|k = x(c),k|k−1 + Mek, (9)

where x(c),k|k−1 is the k instant controller state estimation at the previous instant, k − 1.
M is the Kalman innovation gain matrix. Then, the MPC uses the updated state x(c),k|k
to predict the system output and to solve for the optimal drive input to the system, uopt

k ,
with quadratic programming (QP).

Finally, the state estimator predicts the state for the next control interval k + 1

x(c),k+1|k = Ax(c),k|k−1 + Buopt
k + Lek, (10)

where L is the Kalman filter gain matrix.
Output prediction: The MPC computes the future system state within the pre-selected

prediction horizon p as follows:

x(c),k+i|k = Ax(c),k+i−1|k + Buk+i−1|k, i = 1, 2, 3, . . . , p. (11)
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For each step i, the PEA’s output is:

ŷk+i = Cx(c),k+i|k. (12)

κfb(ω)

κff(ω) invLSTMs2s

MPC PEA

LPF
Kalman

Es mator

+
+

u(fb),k

u(ff),k

Figure 2. Schematic block diagram of the feedforward–feedback invLSTMs2s+MPC controller.

QP matrices: Let U = [uk+1, uk+1, . . . , uk+m], ∆U = [uk+1 −uk, uk+2 −uk+1, . . . , uk+m −
uk+m−1], and 1n = [1, 1, . . . , 1]T , where m is the control horizon. The aforementioned system
output prediction can be rewritten in an alternative form:

Ŷ = αx(c),k|k + βU + Fuk

= αx(c),k|k + β(S1∆U + 1nuk) + Fuk

= αx(c),k|k + βS1∆U + (β1n + F)uk,

(13)

where

Ŷ =


ŷk+1
ŷk+2

...
ŷk+p


p×1

, U =


uk+1
uk+2

...
uk+m


m×1

.

The terms α and β are defined as

α =


CA
CA2

...
CAp


p×1

, β =


0 0 0 · · · 0

CB 0 0 · · · 0
CAB CB 0 · 0

...
...

...
. . .

...
CAp−2B CAp−3B CAp−4B · 0


p×m

,

F =


CB

CAB
CA2B

...
CAp−1B

, S1 =


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

.

Cost function: With the given QP matrices, the cost function can be mathematically
expressed as

J = (Ŷ − R)T(Ŷ − R) + ρ∆UT∆U, (14)
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where R = [rk+1, rk+2, . . . , rk+p] is the reference of desired system output, ρ is the weighting
coefficient for the reference tracking error and MV movement suppression, respectively.
Let E = αx(c),k|k + (β1n + F)uk − R; the cost function can be rewritten as

J = (βS1∆U + E)T(βS1∆U + E) + ∆UT(ρI)∆U

= ∆UTST
1 βT βS1∆U + ET βS1∆U + (ET βS1∆U)T + ETE + ∆UT(ρI)∆U

= ∆UT(ρI + ST
1 βT βS1)∆U + 2ET βS1∆U + ETE.

(15)

Now, it becomes a convex optimization problem for the QP progress to compute the
optimal ∆U based on the known value uk and x(c),k|k, and add the first element of ∆U with

uk to obtain uopt
k . The convex optimization problem can be formulated as follows:

arg min
∆U

J = ∆UT(ρI + ST
1 βT βS1)∆U + 2ET βS1∆U + ETE. (16)

Solution and stability analysis: The solution for ∆U that can minimize the cost
function J should be

∆U = arg min
∆U

J = −(ρI + ST
i βT βSi)

−1ET βSi. (17)

According to the MPC algorithm, only the first step of the manipulated variable would
be taken for system input. Setting G = [1, 0, 0, . . . , 0], we can compute

uk+1 = uk − G(ρI + ST
i βT βSi)

−1ET βSi

= M1xc(k) + M2uk + M3R,
(18)

where M1 = −G(ρI + ST
i βT βSi)

−1αT βSi, M2 = 1 − G(ρI + ST
i βT βSi)

−1(β1n)T βSi, and
M3 = G(ρI + ST

i βT βSi)
−1βSi. In this case, M1, M2, and M3 are all constant matrices and

can be regarded as the coefficient to x(c),k|k, uk−1, and R, so that the feedback system can be
rewritten as [

x(c),k+1|k
uk+1

]
=

[
A B

M1 M2

][
x(c),k|k

uk

]
+

[
0

M3

]
R. (19)

Based on the alternative form above, it is obvious that the feedback system stability
condition needs to satisfy the following:∣∣∣∣λ([

A B
M1 M2

])∣∣∣∣
max

< 1, (20)

where λ(·) denotes the eigenvalues of the matrix.

2.3. Impact of the invLSTMs2s Uncertainty

Previous studies have shown that the inversion’s modeling uncertainty must be small
such that the inversion-based feedforward input improves the output tracking performance
when compared to the case with feedback control only (regardless of the type of feedback
controller used) [27]. Thus, it is necessary to evaluate the uncertainty of invLSTMs2s in
this work. According to [27], for the SISO PEA system, the criteria that need to be satisfied
such that integrating the inversion feedforward with the MPC improves the tracking
performance can be formulated as

|∆(jω)|2 ≤ |Go(jω)|2, (21)

where ∆(jω) is the modeling uncertainty at different frequencies ω, and it is defined as
∆ := Go − G, with G and Go denote the PEA’s true dynamics and the captured dynamics,
respectively. Therefore, the inverse model G−1

o (jω) is exactly the trained inversion model,
invLSTMs2s. Then, (21) can be rewritten as
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|∆(jω)|2
|G0(jω)|2

≤ 1

|∆(jω)|2|G−1
o (jω)|2 ≤ 1

|G0(jω)− G(jω)|2|G−1
o (jω)|2 ≤ 1

|1 − G(jω)G−1
o (jω)|2 ≤ 1.

(22)

Note that G(jω)G−1
0 (jω) represents the model of the cascaded invLSTMs2s+PEA

system, i.e., when the invLSTMs2s feedforward controller is applied to the PEA alone.
Thus, the tracking error subject to reference R in this case is defined as E f f−only := R −Y =

[1 − G(jω)G−1
o (jω)]R, and (22) becomes

max
|R(jω)|2 ̸=0

|E f f−only(jω)|2
|R(jω)|2

≤ 1, (23)

which matches the Erms in (24) as discussed in next subsection.

Note that
|E f f−only(jω)|2

|R(jω)|2
is the RMS tracking error (see (24)). Therefore, as long as

the RMS tracking error satisfies the above (23) when only the invLSTMs2s feedforward
controller is used, it is guaranteed that the proposed 2DOF controller performs better than
the MPC alone.

Due to the training data limit in practice, such as data length, frequency, and amplitude
limits, invLSTMs2s may not capture the PEA dynamics outside of the training frequency
and/or amplitude ranges. In this case, the modeling uncertainty ∆ may not satisfy con-
dition (21). To solve this issue, we introduced frequency-dependent weighting factors
κ f f (ω) and κ f b(ω), such that the contribution of the inversion feedforward part could be
flexibly adjusted based on the frequency range of the reference (see Figure 2). For example,
for low-frequency (lower than the invLSTMs2s lower training frequency bounds) tracking,
κ f f can be set small so the MPC feedback control is dominant to minimize the uncertainty
effect. Also, a low-pass filter (LPF) was used in the MPC part to avoid high-frequency data
that could be fed into the feedback loop.

3. Experiment Results and Discussion

The proposed invLSTMs2s+MPC 2DOF controller was implemented on a PEA stage
(Nano-OP30, Mad City Labs, Madison, WI, USA) for the experimental validation. The per-
formance was compared with that of feedforward invLSTMs2s only, an MPC only, and a
traditional PI controller. All the signals were acquired using a data acquisition (DAQ)
system (NI PCIe-6353, National Instruments, Austin, TX, USA) installed on a desktop
workstation (Intel Xeon W-2125, RAM 32 GB), as shown in Figure 3. All the models and
controllers were trained/designed using MATLAB (R2023a) and Simulink (10.7) (Math-
Works, Inc., Natick, MA, USA). For all the experiments, the sampling frequency was set at
20 kHz.

Workstation with DAQ

Nanodrive Sensor Amplifier

Nanodrive Input Amplifier

PEA

BNC Connector

Figure 3. PEA control system setup.
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3.1. invLSTMs2s Training Set Construction and Training Process

The prerequisite step for generating the invLSTMs2s training set {Y(ts), U(ts)} is finding
sufficient f –A pairs. To do so, 10,000 points (blue dots in Figure 4) in the f range of
25–325 Hz and amplitude range of 0–4.5 V were first randomly generated in the f –A plane,
and the k-means algorithm [22] picked 1000 points (red points in Figure 4) as Ω’s for the
training set generation. Then, (6) was used to generate U(ts) with P = 3. Using U(ts) as
the drive input of the PEA, the corresponding PEA output Y(ts) was collected by the DAQ
device. Thus, the entire training set (Y(ts), U(ts)) contained 2000 samples.

50 100 150 200 250 300

Frequency (Hz)

0

1

2

3

4

A
m

p
lit

u
d
e
 (

V
)

Figure 4. Ω (set of ( fi, Ai) pairs) selected for generating the training input U(ts). Red dots represent
the selected ( fi, Ai) pairs by the k-means algorithm.

The invLSTMs2s model with 40 hidden states was used to model the PEA inverse
dynamics and trained with λ = 32 epochs using parallel training. A batch size of n = 20
was selected. Therefore, the entire training process took λKs/n = 3200 iterations. Figure 5
shows the invLSTMs2s root-mean-square error (RMSE) learning curve as the epoch number
increases. It clearly shows the convergence of the invLSTMs2s training process with very
low training error.

0 5 15 25
Epoch

0

0.5

1

1.5

2

2.5

3

R
M
S
E

10 20 30

Figure 5. The RMSE learning curve of invLSTMs2s. With 32 epochs and 100 samples in each
mini-batch, the total training iteration number was 3200.

3.2. Accuracy of invLSTMs2s

The model accuracy was tested by checking how well invLSTMs2s could compensate
for the PEA hysteresis, i.e., whether the hysteresis could be mostly removed when invL-
STMs2s was cascaded with the PEA (connected in series). As shown in Figure 6, the original
PEA hysteresis curves were measured using different sinusoidal driving voltages with
the frequencies 30, 120, and 240 Hz and amplitudes of 2 and 4 V, respectively. Please
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note that these frequencies were intentionally selected to avoid overlapping with those
in the training set to minimize the effect of data discrepancy. It can be seen that the PEA
hysteresis tended to be more pronounced with increasing frequency and/or amplitude.
However, the corresponding hysteresis curves of the cascaded invLSTMs2s+PEA system
were barely notable for all measured frequencies and amplitudes (see Figure 6). Therefore,
the invLSTMs2s inversion model was indeed accurate in accounting for the PEA’s non-
linear dynamics. This accuracy ensured that the modeling uncertainty stayed small (i.e.,
(21) was satisfied) and guaranteed that the output tracking performance of the proposed
2DOF invLSTMs2s+MPC controller was better than that of the MPC alone. More detailed
comparisons are presented next.
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Figure 6. PEA displacement vs. input voltage at the frequencies of (a) 30 Hz, (b) 120 Hz, (c) 240 Hz for
the comparison between the PEA and the PEA cascaded with inversion model (invLSTMs2s+PEA).

3.3. Tracking Performance Comparison

The tracking performance of the proposed invLSTMs2s+MPC was demonstrated as
follows. For the MPC, the prediction horizon was set to 60, and the stability condition (20)
was satisfied. To design the Kalman state estimator, the covariance for the process noise
and measurement noise were selected as Q = 10−4 and R = 10−6, respectively, based
on the system’s linear model identification accuracy, the PEA stage’s measurement noise
level, and the system’s noise-to-signal ratio provided by the manufacturer. Also, to avoid
high-frequency noise being fed into the feedback loop, a third-order Butterworth LPF with
the cut-off frequency of 600 Hz was used to avoid high-frequency noise/disturbance being
fed into the feedback loop.

Although the invLSTMs2s was trained up to 300 Hz, the control bandwidth was
expected to reach 350 Hz due to the generalizability of LSTM. Based on the PEA behavior
observed, whose nonlinear dynamics was highly nonlinear at frequencies close or above
200 Hz, frequencies ≥200 Hz were considered as high frequencies. To comprehensively
test the controller performance over broad frequency/amplitude ranges, the reference
trajectories were designed to have low (≤50 Hz), mid (∼100 Hz), and high frequency
(≥200 Hz) profiles: sinusoidal signals (at 30, 120, and 360 Hz), triangle signals (at 25,
100, and 300 Hz), and a multi-frequency reference Γ, where Γ(t) = 0.8 sin(2π5t + 1.5π) +
0.43 sin(2π50t) + 0.12 sin(2π120t + 1.2π) + 0.3 sin(2π180t + π).

First, the accuracy of invLSTMs2s as the feedforward controller only was evaluated.
Then, the proposed invLSTMs2s+MPC 2DOF controller was compared with the cases of
using invLSTMs2s, the MPC, and PI feedback. The PI controller parameters were tuned to
P = 0.312 and I = 1465 to achieve the best performance possible. The tracking errors were
computed as [28]:

Erms =
|r(·)− y(·)|2

|r(·)|2
× 100%, Emax =

|r(·)− y(·)|∞
|r(·)|∞

× 100%, (24)

where r(·) and y(·) are the complex vectors of reference and output obtained through
discrete Fourier transforms, respectively. Table 1 shows the tracking errors for all the
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controllers. Figure 7 shows the detailed tracking performance in the time domain for the
selected references of (120 Hz sinusoidal signal, 100 Hz triangular signal, and Γ).
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Figure 7. Comparison of the tracking results of invLSTMs2s, invLSTMs2s+MPC, the MPC, and the PI
controller for (a) 100 Hz triangular trajectory, (b) 120 Hz sinusoidal trajectory, and (c) Γ. (d–f) are the
corresponding tracking errors, respectively.

Table 1. Performance comparison.

Controller Refs.
Sinusoidal Triangular

Γ
30 Hz 120 Hz 360 Hz 25 Hz 100 Hz 300 Hz

invLSTMs2s Erms 9.35% 7.25% 3.10% 9.04% 6.00% 4.29% 5.64%
Emax 7.91% 6.14% 2.30% 7.13% 4.74% 2.51% 3.49%

invLSTMs2s+MPC Erms 3.19% 2.97% 7.53% 4.05% 1.94% 6.32% 3.63%
Emax 2.09% 2.07% 6.25% 2.85% 1.05% 4.31% 2.39%

MPC Erms 1.66% 6.57% 27.18% 3.28% 6.80% 21.66% 10.06%
Emax 1.12% 4.82% 23.26% 2.63% 3.77% 12.68% 7.57%

PI Erms 6.37% 24.34% 45.89% 5.08% 18.73% 38.01% 8.56%
Emax 5.50% 21.04% 39.47% 3.77% 14.88% 30.60% 5.81%

invLSTMs2s+MPC vs. invLSTMs2s: First of all, condition (23) was satisfied for the
case when only invLSTMs2s was used when tracking all the designed references: the RMS
tracking errors were all much smaller than one. Hence, invLSTMs2s could accurately
capture the PEA nonlinear dynamics and produced very small errors for tracking high-
frequency references; however, relatively higher errors at the low-frequency range were
observed. For example, in Table 1, the tracking error of the invLSTMs2s for both sinusoidal
and triangular references at 30 and 25 Hz were a few percent higher than those for 360
and 300 Hz, respectively. This was mainly because these frequencies were very close to
the lower bound of the training frequency range. Thus, limited knowledge of the system
dynamics at these frequencies was available when training invLSTMs2s. This shortage was
compensated for by the MPC, which was designed using a linear model that primarily
captured the PEA dynamics at low frequencies. The invLSTMs2s+MPC outperformed
invLSTMs2s at the low-frequency range. The tracking errors of the invLSTMs2s+MPC
for both sinusoidal and triangular signals at 30 and 25 Hz were reduced by more than



Machines 2024, 12, 747 12 of 15

50% compared to those of invLSTms2s. As shown in Figure 7, the low-frequency tracking
error was greatly reduced by invLSTMs2s+MPC compared to invLSTMs2s. As the PEA
nonlinear dynamics became more pronounced at higher frequencies, the advantage of
invLSTMs2s became more significant: invLSTMs2s achieved the highest accuracy for
360 Hz sinusoidal and 300 Hz triangular trajectories. Meanwhile, as the linear MPC was not
designed for the PEA’s high-frequency control, it negatively impacted the performance of
invLSTMs2s. Therefore, bigger errors were observed (see Table 1). However, compared to
the errors of MPC, the performance was still greatly improved, and the achieved accuracy
was satisfactory.

invLSTMs2s+MPC vs. MPC: The proposed invLSTMs2s+MPC was compared with
the use of the MPC alone to clearly demonstrate the necessity of integrating the invLSTMs2s
feedforward control. As the performance improvement condition (23) was satisfied for all
the tracking cases (Erms << 1 for the use of invLSTMs2s alone in Table 1), it was expected
that the proposed 2DOF invLSTMs2s+MPC controller would outperform the MPC. Table 1
shows that the invLSTMs2s+MPC had less tracking error than the MPC, especially for
tracking mid-, high-frequency, and the multi-frequency Γ trajectories. However, it made
sense that the tracking errors of invLSTMs2s+MPC at 30 and 25 Hz were a little bit higher
than those of the MPC, since the MPC is more accurate than invLSTMs2s at low frequencies,
as aforementioned. Note that the slight error increase can be eliminated by setting the
feedforward weighting coefficient κ f f (ω) to a very small value to make sure the 2DOF
controller takes full advantage of the MPC at low frequencies.

invLSTMs2s+MPC vs. PI: To demonstrate the significance of this work, invLSTMs2s+MPC
was compared to the case of using a PI controller alone. In Table 1, it can be observed that
the tracking error of the PI controller was more pronounced with increasing frequency.
For the mid and high frequencies, the PI presented the highest tracking error among all
controllers. This is mainly because the PI feedback controller was driven by the errors be-
tween references and PEA outputs, and the control bandwidth was low due to the sluggish
response of this controller subject to fast error changes.

In summary, invLSTMs2s+MPC is capable of achieving high tracking accuracy for
various reference trajectories over a broad bandwidth. The superiority of this 2DOF
controller comes from taking the advantages of feedforward invLSTMs2s for the PEA’s
high-frequency nonlinear dynamics compensation and MPC for low-frequency position
tracking precision.

3.4. Application Demonstration of the invLSTMs2s+MPC

As an application demonstration, invLSTMs2s+MPC was further adopted to control a
two-dimensional (X–Y lateral plane motion) PEA nanopositioning platform to track the
pattern of character string “ISU” along the lateral X–Y plane. The tracked patterns achieved
by different controllers are compared in Figure 8. It was designed to complete the motion
within 0.11 s, with the stage average traveling speed of 320 µm/sec. The designed X and Y
direction trajectories and tracking results for different controllers are shown in Figure 9a,b,
respectively. According to the results, it is clear that the proposed invLSTMs2s+MPC
performed better and could achieve very high accuracy. This clearly demonstrated the
capability of invLSTMs2s+MPC in two-dimensional positioning tracking control in nanofab-
rication applications, such as nano/micromanufacturing systems in which the PEA stages
are required to track the desired fabrication pattern [29,30].

As invLSTMs2s does not assume any specific forms of nonlinearity, the outstanding
performance of invLSTMs2s+MPC directly implies that it can be employed in various
nonlinear systems for applications where position tracking is essential, such as precise
control of friction force generated by deformable actuators in human–robot reaction [31],
AFM applications for material mechanical characterization [32], as well as adaptive optics
for high-resolution imaging [33], just to name a few.



Machines 2024, 12, 747 13 of 15

10 11

X-coordination ( m)

0

1

2

3

4

5

Y
-c

o
o

rd
in

a
ti

o
n

 (
m

)

8 96 74 52 30 1

reference invLSTMs2s invLSTMs2s+MPC MPC

Figure 8. Comparison of the stage motion pattern achieved using controllers invLSTMs2s, invL-
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Figure 9. Tracking results of invLSTMs2s, invLSTMs2s+MPC, and MPC for (a) X–direction trajectory
and (b) Y–direction trajectory. (c,d) are the corresponding tracking errors, respectively.

4. Conclusions

In this work, we proposed a 2DOF controller, invLSTMs2s+MPC, for nanopositioning
control of PEA devices with a broad bandwidth, high precision, and fast response. The key
novelty of the proposed controller includes (1) the idea of implementing an LSTMs2s
structure to model the PEA inverse dynamics for system nonlinearity compensation and
(2) integrating invLSTMs2s and a linear MPC to improve the overall tracking performance.
As the invLSTMs2s model can be trained offline and a linear MPC is used during real-time
control, the proposed controller can achieve broad-bandwidth output tracking with its low
computation requirement.

In the future, the work will focus on designing a dynamics separation mechanism to
efficiently optimize the collaboration between the feedforward and feedback components.
Also, we will explore other modeling network structures to improve the training speed
further and increase the modeling bandwidth, robustness, and accuracy.

Author Contributions: Conceptualization, R.Y. and J.R.; methodology, R.Y. and J.R.; software, R.Y.;
validation, R.Y.; formal analysis, R.Y. and J.R. ; investigation, R.Y.; resources, J.R.; data curation, R.Y.
and J.R.; writing—original draft preparation, R.Y.; writing—review and editing, J.R.; visualization,
R.Y.; supervision, J.R.; project administration, J.R.; funding acquisition, R.Y. and J.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation (NSF) (CMMI-1751503 and
CNS-2409359) and Iowa State University.



Machines 2024, 12, 747 14 of 15

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

LSTM Long short-term memory
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