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Abstract: Various types of numerical control (NC) machine tools can be standardly operated and
controlled based on NC data that can be easily generated using widespread CAD/CAM systems. On the
other hand, the operation environments of industrial robots still depend on conventional teaching
and playback systems provided by the makers, so it seems that they have not been standardized
and unified like NC machine tools yet. Additionally, robotic functional extensions, e.g., the easy
implementation of a machine learning model, such as a convolutional neural network (CNN), a
visual feedback controller, cooperative control for multiple robots, and so on, has not been sufficiently
realized yet. In this paper, a hyper cutter location source (HCLS)-data-based robotic interface is
proposed to cope with the issues. Due to the HCLS-data-based robot interface, the robotic control
sequence can be visually and unifiedly described as NC codes. In addition, a VGG19-based CNN
model for defect detection, whose classification accuracy is over 99% and average time for forward
calculation is 70 ms, can be systematically incorporated into a robotic control application that handles
multiple robots. The effectiveness and validity of the proposed system are demonstrated through
a cooperative pick and place task using three small-sized industrial robot MG400s and a peg-in-
hole task while checking undesirable defects in workpieces with a CNN model without using any
programmable logic controller (PLC). The specifications of the PC used for the experiments are CPU:
Intel(R) Core(TM) i9-10850K CPU 3.60 GHz, GPU: NVIDIA GeForce RTX 3090, Main memory: 64 GB.

Keywords: industrial robot; HCLS data; sequence control; cooperative control; without PLC;
peg-in-hole task; misalignment; convolutional neural network; defect detection

1. Introduction

Articulated-type and selective compliance assembly robot arm (SCARA)-type indus-
trial robots have been introduced in automation lines for manufacturing and assembling
industrial products. Recently, there has been an increasing need for multiple small-sized
robots to dexterously automate such manufacturing, assembling, or working processes that
skilled workers have manually dealt with. For example, Sen et al. proposed a robot that
could cope with a peg-in-hole task with only a small clearance by detecting the contact
state between a workpiece and hole with their originally developed elastic displacement
sensor and by adjusting the robot’s orientation [1]. Moreover, Piotr and Krzysztof proposed
the modular, didactic production system called MDSP, which was equipped with minia-
tures of typical devices commonly used in automation lines so that the characteristics of
manufacturing, storage, transport and assembly subsystems, and quality control could be
actually simulated [2]. When robots are used in manufacturing lines, teaching data are
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generally created by off-line robot programming using a teaching pendant. Still, it requires
a language specific to the robot manufacturer, leading to the lack of versatility.

On the other hand, various types of numerical control (NC) machine tools can be
standardly operated and controlled based on numerical control data called NC data that can
be easily generated using computer aided design (CAD)/computer aided manufacturing
(CAM) systems. In the general process to produce NC data, the main processor for CAM
generates cutter location source (CLS) data as intermediate data, then the post processor
for CAM transforms CLS data to target NC data according to various types of NC machine
tools. The technical vocabulary of CLS data is defined in ISO 2806:1994(en). On the
other hand, operation environments of widely used industrial robots still depend on the
conventional teaching and playback method, in which each maker’s original robot language
is uniquely used. Traditional robot programming by teaching is still time consuming and
not cost-effective. However, it seems that the operation environment of industrial robots
has not been well standardized and unified yet like NC machine tools controlled based on
common NC data precisely generated by CAD/CAM systems.

As for the integration of an industrial robot with a CAD or CAD/CAM system to
reduce the load of the robotic teaching task, several results utilizing CAD systems have
been reported. Zeng et al. proposed an automatic trajectory planning based on CLS data to
cope with the problem of obtaining trajectory in robotic finishing with complex surfaces in
the manufacturing industry, in which KUKA robot path programs are generated from CLS
data [3]. Amersdorfer and Meurer proposed a method to generate equidistant coverage
paths on a free-formed curved surface, in which a transformation is achieved between
3D Cartesian coordinates and 2D parameters based on the arc-lengths along the surface.
In the transformation, the shape is generated by a CAD/CAM or a 3D scan and is directly
processed for robotic machining [4]. Molotla et al. proposed a hybrid integral system that
can perform subtractive and additive manufacturing by 3D printing using robotic arms [5],
in which it is reported that CAD/CAM design is essential for manufacturing desired
workpieces. Furthermore, Ma et al. proposed an actual welding path generation method
from a CAD model, in which point clouds sampled from a CAD model of a workpiece and
those captured by vision sensors are reconfigured for generation [6]. However, up to now,
there does not seem to be a unified robotic data interface based on CLS data.

Moreover, as for recent functional extensions of industrial robots, many research
results can be found. For example, Su et al. presented a robotic visual-based controller
with a time-delay compensator to deal with the problem of inserting a moving peg [7]. The
time-delay compensator was configured based on a radial basis function neural network,
and a feedback compensator was incorporated for eliminating the tracking errors caused
by the time delays. Park et al. developed a robotic bin picking system with cluttered objects
using human guidance and convolutional neural network (CNN) [8], in which a robot bin
picking system that uses a CNN model trained by human data is proposed. The robotic
system increases the accuracy of the model by continuous training by the robot itself.

In the realm of defect detection, advancements such as the integration of singular
spectrum analysis (SSA) with hierarchical hyper-Laplacian prior prototypes (HHLP) have
demonstrated efficient flaw extraction methods in industrial robot operations, leading to
enhanced fault diagnosis and system performance monitoring [9]. Likewise, dual-metric
neural networks with attention guidance have shown remarkable success in surface defect
detection, mainly when limited training data are available, making such systems highly
applicable in real-world industrial settings [10]. Choi et al. proposed a multimodal 1D
CNN that can predict delamination defects from time series multi-sensor data [11], in
which it is reported that the predictive accuracy and real-time operational capability, i.e.,
inference time, are superior to the previously proposed methods in industrial settings.
Wang et al. proposed a surface roughness prediction method based on deep learning for a
large shaft grinding robot, in which three types of signals, including spindle current, vibra-
tion, and acoustic emission, were extracted for inputs [12]. The multiple process signals are
fused through an attentional CNN-based long short-term memory (LSTM) architecture.
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Programmable logic controllers called PLCs have played an important role in enhanc-
ing the performance of industrial robots, mechanical systems, and automation lines, e.g.,
for sequence control and cooperative control. For example, Jacob and Felipe identified the
lack of a modernized version targeting the functionality of an Industry 4.0-oriented control
system as a problem and proposed a lot-PLC with control functions, fog-computing as
filtering and field data storage, and multiple wireless interfaces managed independently.
This allowed them to conduct loop reconfiguration without restarting the controller, thus
increasing flexibility [13]. In addition, Ossama et al. identified a problem where PLC pro-
grams used in large applications in the food, oil, and gas industries make troubleshooting
very difficult and require very competent engineers. To solve this problem, machine learn-
ing technology and add on instruction (AOI) were applied to the PLC program to create an
easier structure, reduce the number of rungs, reduce the processor memory, and speed up
execution time, in contrast to conventional ladder diagrams [14].

Moreover, as for the cooperative control of multiple industrial robots, Edgar et al. pre-
sented a mechatronics system to couple two industrial robots to a parallel kinematic system
to temporarily increase the mechanical stiffness property. It is reported that the coupled
two robots enable load sharing, higher process forces, and eventually, higher precision [15].
Fathi et al. systematically reviewed assembly-line balancing studies targeted at assembly
lines with industrial and collaborative robots [16], in which it is observed that balancing
assembly lines with collaborative robots has been receiving more attention in the last five
years with the emergence of Industry 4.0. For example, if a robot is not able to execute a
wide working range task since the position of the target workpiece is out of the movable
area, then cooperation by multiple robots is effective in coping with the task. Up to now,
open architecture types of industrial robots (OAIRs) have been developed and released to
product manufacturers so that the developments of original robotic applications become
possible on the user side [17]. Generally, OAIRs are provides with each maker’s software
development kit (SDK), such as dynamic link library (DLL); however, it seems that the
available number of connections between a PC and robot is limited to only one owing to the
specification of the provided SDK. Hence, some kind of PLC device is needed to implement
sequence control or cooperative control of multiple robots while taking each motion timing.
For an actual implementation, it is forced to the user side to apply some sequential control
or cooperative control to multiple robots.

Collaborative robots (COBOTs) have also seen substantial improvements, with modern
control technologies integrating artificial intelligence (AI) and machine learning, enabling
more flexible and efficient cooperation between robots and humans in various industrial
contexts [18]. Moreover, recent surveys on industrial defect detection using computer
vision and machine learning techniques have highlighted the growing importance of
automated quality control [19]. In contrast, our approach introduces a unified data interface
that integrates cooperative control, defect detection using a CNN model, and automatic
teaching point generation, systematically described through HCLS data. This resolves
many of the limitations found in previous systems and provides an efficient, scalable
solution for complex industrial tasks.

As the authors have surveyed, it seems that an easy implementation and operation
environment for a machine learning model such as CNN, visual feedback controller, and
cooperative controller for multiple robots have not been realized for industrial robots in
an integrated manner yet. In this paper, a hyper cutter location source (HCLS)-data-based
robotic interface is proposed to cope with the above issues without using any PLC. Due
to the HCLS-data-based robot interface, the robotic operation sequence can be visually
and unifiedly described as NC codes. In addition, for example, visual feedback control
for object tracking, CNN model for defect detection, and cooperative control for multiple
robots can be systematically described in HCLS data and executed. The effectiveness and
validity of the proposed system are demonstrated through a cooperative pick and place
task using three small-sized industrial robot MG400s and a peg-in-hole task while checking
undesirable defects in workpieces by a CNN model.
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While our previous work in Abe et al., 2023 [20], introduced the core functionality
of the HCLS data interface for sequence control of multiple robots without a PLC, this
manuscript presents significant extensions and new scientific contributions. The novel
aspects of this work include the following:

1. Implementing cooperative control for multiple robots performing large-scale work-
piece handling tasks, expanding the application of the HCLS interface.

2. Integration of a neural-network-based defect detection system (CNN) for peg-in-hole
tasks, leveraging ONNX models converted from MATLAB and running on Python.
This builds on recent developments in defect detection techniques, including singular
spectrum analysis (SSA) and AI-driven defect recognition methods [9,10].

3. Introducing an automatic teaching point generator resolved misalignment issues
between robot and work coordinate systems, thus improving efficiency and accuracy
in teaching tasks.

4. Demonstrating these capabilities in an industrial setting highlights the proposed
system’s scalability, cost-effectiveness, and real-world application.

These contributions advance the field of collaborative robotics by enhancing the func-
tionality, scalability, and practical applicability of industrial robot systems. They address
current challenges in cooperative control, defect detection, and automated system design.

The remainder of this paper is organized as follows. In Section 2, we describe the
design and implementation of the HCLS data interface and its integration with coop-
erative robot systems. Section 3 details the methodology for developing the automatic
teaching point generator and integrating the defect detection system. Section 4 discusses
the experimental setup and presents the results of the cooperative pick-and-place task
and the peg-in-hole task with defect detection. Finally, Section 5 concludes the paper by
summarizing the essential findings and outlining potential directions for future research.

2. Hyper CLS-Data-Based Robotic Interface
2.1. Robot Arm MG400

Major industrial robot manufacturers provide a variety of small-sized industrial robots.
However, it is not easy for small- and medium-sized manufacturers in terms of introduction
cost to introduce multiple robot systems to meet the need for the automation of segmented
work processes. To cope with this problem, the authors decided to employ low-cost 4-DOF
robot arms. The robot is Dobot MG400 (from now on referred to as MG400) provided
by Shenzhen Yuejiang Technology Co., Ltd. (Shenzhen, China) [21]. It is equipped with
a suction cup or an electromagnetic gripper as an end-effector. This robot has only 4-
DOFs, less than the 6-DOFs generally required for industrial robots. However, this is not a
problem when the robot is used only for tasks in which controlling the roll and pitch angles
of the end-effector is not needed. In addition, the robot manufacturer provides an easy-
to-use teaching interface [22], by which position data for the end-effector can be manually
obtained. However, a CAD/CAM interface like for NC machine tools is not provided.
Furthermore, it seems that visual feedback control for object tracking, cooperative control
for multiple robots, and the CNN model for defect detection are not supported yet. The
main objective of this study is to give MG400s such functionalities based on HCLS data.

2.2. Proposal of Hyper CLS Data Interface

The authors have introduced the concept of an HCLS-data-based robotic interface, in
which not only conventional teaching points but also advanced statements for a camera
control, convolutional neural network called CNN, visual feedback control [23], and se-
quence control of multiple robots [20] can be described. The concept of HCLS data allows
conventional teaching and playback-type robots to enhance their practical potential ability.

The software for robot control based on HCLS data is developed on Python, which
allows users to control the robot through the dialogue application shown in Figure 1. For
example, an HCLS data file is loaded by clicking “(1) HCLS data load”; an HCLS data file
loaded is executed by clicking “(2) Execute”; a CNN model saved with the open neural
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network exchange (ONNX) format is loaded for defect detection by clicking “(3) CNN
(ONNX model) load”; the availability of the camera for visual feedback control is checked
by clicking “(5) Camera check”; a YOLOv2 model saved in the ONNX format is loaded
for defect detection by clicking “(7) YOLOv2 (ONNX model) load”; 10 × 10 positions
and the corresponding 100 GOTO statements are automatically generated by clicking
“(6) Position(XY) for MG400” or “(12) Position(XYZ) for MG400” after only giving four
corner positions.

Figure 1. Developed dialogue application running on Python to cooperatively control multiple
small-sized robot arms based on HCLS data, in which the position generation function considering
the misalignment of robot and work coordinate systems is essentially incorporated.

In the case of MG400, essential target trajectories of the end-effector, such as for pick-
and-place tasks, can be created using the teaching software named DobotStudio provided
by the robot maker. When DobotStudio is used for a teaching task for the MG400, the
taught data are not exported as a single playback file but as seven related files. Although
these files (.lua) are composed of text codes and can be modified with a simple text editor
such as Notepad, it is not easy for users to understand the coordinate values and their
meanings intuitively.

To deal with this problem, the data converter implemented by the authors can system-
atically generate the corresponding HCLS data file from two of seven data files, as shown
in Figure 2. One is src0.lua containing interpolation instructions. The other is point.json.lua
containing teaching points. Although HCLS data basically have a structure based on the
CLS data generally used in CAD/CAM systems, the superiority is its extendability of
function. Table 1 shows the proposed HCLS statements currently available for the MG400
manipulator. For example, each statement from SNAPSHOT to CNN_DEFECT, SNAP-
SHOT_DIFF, and WEIGHT_CHECK provides us unique benefits that are not supported
by NC codes.

Table 1. Examples of the proposed HCLS statements currently available for the MG400 manipulator.

Absolute Header of HCLS
GOTO/x,y,z,r,0.0,0,1 Go to a position

SNAPSHOT Take a photo using a camera
ORIENTATION Pose estimation by image processing

CNN_ORIENTATION Pose estimation using CNN
VF_CONTROL Visual feedback control
CNN_DEFECT Defect detection or feature extraction using CNN

GRIPPER_DISABLE Gripper power off
GRIPPER_OPEN Gripper open
GRIPPER_CLOSE Gripper close

PAUSE Wait a pause time as ‘PAUSE 2’
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Table 1. Cont.

MOVZ Z-directional motion as ‘MOVZ 10’
SET Sent a number to a MG400 as ‘SET 10’
GET Obtain a number from a MG400 as ‘GET 20’

SPEED Set motion rate [%] as ‘SPEED 50’
OFFSET Camera offset in x-direction

GRIPPER_SUCK Sucking using a suction cup
GRIPPER_BLOW Blowing using a suction cup

R Tool, e.g., gripper rotation angle [degree] as ‘R 45’
DO 12 1 Set DO port No. 12 to 1 (ON)
DO 5 0 Set DO port No. 5 to 0 (OFF)

GRIPPER_OPEN Electromagnetic gripper open
GRIPPER_CLOSE Electromagnetic gripper close
LOOP_START 3 Repeating to LOOP_END for 3 times

LOOP_END End position of LOOP_START
SNAPSHOT_DIFF 3000 2 To next statement in 2 s after 3000 pixels area is changed

WEIGHT_CHECK Monitoring of current torques of 4 joints

src0.lua

Initial Pose= {… {350, 0, 0, 0, 0, 0} … tool=0, user=0}

P1= {… {370, 40, 20, 0, 0, 0 } … tool=0, user=0}

P2= {… {370, 40, -20, 0, 0, 0} … tool=0, user=0}

P3= {… {370, 40, 20, 0, 0, 0} … tool=0, user=0}

P4= {… {280, -20, 20, 0, 0, 0} … tool=0, user=0}

P5= {… {280, -20, -20, 0, 0, 0} … tool=0, user=0}

P6= {… {280, -20, 20, 0, 0, 0} … tool=0, user=0}

point.json.lua

MovJ (InitialPose)

MovJ (P1)

MovL (P2)

MovL (P3)

MovJ (P4)

MovL (P5)

MovL (P6)

HCLS data

Absolute

GOTO/ 350, 0, 0, 0, 0, 0, 1

GOTO/ 370, 40, 20, 0, 0, 0, 1

GOTO/ 370, 40, -20, 0, 0, 0, 2

GOTO/ 370, 40, 20, 0, 0, 0, 2

GOTO/ 280, -20, 20, 0, 0, 0, 1

GOTO/ 280, -20, -20, 0, 0, 0, 2

GOTO/ 280, -20, 20, 0, 0, 0, 2

…

Figure 2. Example of an HCLS data file converted from original seven playback files.

2.3. Handling of Multiple MG400s Using TCP/IP

This study has been conducted to cope with the needs of an industrial product manu-
facturer in Japan who wants to apply multiple MG400s to a production line for automation.
The problems to be identified have been investigated, and the solutions concerning co-
ordinate misalignment and multiple robots control have been considered. The standard
user interface DobotStudio provides several functions such as teaching playback, script
language editing, and language editing with diagrams named DobotBlockly. In addition, a
dynamic link library (DLL) is optionally provided for application developments on the user
side. However, even when using DobotBlockly and DLL, only one robot can be operated
from one application; therefore, sequential or cooperative operation by multiple robots
cannot be directly achieved.

On the other hand, the proposed HCLS data interface easily realizes the cooperative
pick and place task, as shown in Figure 3, by using remote control commands through
TCP/IP protocol [24], for example, only by giving the HCLS data listed below.
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...

TCP1_29999_OPEN:192.168.2.7
TCP1_30003_OPEN:192.168.2.7
TCP2_29999_OPEN:192.168.2.8
TCP2_30003_OPEN:192.168.2.8
TCP3_29999_OPEN:192.168.2.9
TCP3_30003_OPEN:192.168.2.9
TCP1_SV_ON
TCP2_SV_ON
TCP3_SV_ON
SNAPSHOT_DIFF 5000 2
TCP1_GOTO/308.0,-20.47,-10.0,22.74,1,1
TCP2_GOTO/308.0,-20.47,-10.0,22.74,1,1
TCP3_GOTO/308.0,-20.47,-10.0,22.74,1,1
...

where SNAPSHOT_DIFF is the statement to take a timing of the three robots. In this
example, after detecting the changes in values over 5000 pixels in an image captured by
the camera attached to the head of the second robot, if the situation continues for 2 s, the
sequence moves to the next statement as “TCP1_GOTO” for synchronous control.

Endoscope 
camera

No. 1

No. 2

No. 3

Suction cup

Figure 3. Cooperative control by three 4-DOF robot arms named MG400 for picking a long-size
workpiece, which can be operated based on HCLS data by the developed application shown in
Figure 1. The second robot has an endoscope camera to detect a long-size workpiece.

2.4. Automatic Generation of Teaching Points Considering Misalignment Between Robot and Work
Coordinate Systems

When an industrial robot tries to automate a peg-in-hole task into many holes, the
teaching task is much more complicated. Furthermore, a misalignment between the robot
and work coordinate system as shown in Figure 4 cannot be ignored. Such a misalignment
unfortunately tends to cause serious troubles such as breakage of workpieces. However,
empirically, it seems that such a misalignment problem sometimes occurs by over- and
under-fastening the screws and bolts used to fix jigs on a working table and tends to cause
serious troubles such as breakage of workpieces. It also tends to occur more frequently
as the end-effector moves around the work table’s edge. This undesirable phenomenon
is caused by the relative position and orientation misalignments between the two coordi-
nate systems.
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To solve the problem, the authors have proposed a generation function considering
the misalignment that automatically generates teaching points for picking and placing by
only giving the actual four corner positions of a working table. The function is available on
the application developed in Python, as shown in Figure 1.

x

y

y’

x’
��� �����������	
���������� ������������	
�������

O

O’

P1

P2

P3

P4

Figure 4. Image to explain undesirable misalignment between a robot and work coordinate systems
in x and y dimensions. Actually, z direction must be noted.

In an example of the peg-in-hole task shown in the next section, which handles many
small resin-molded articles, the clearance between an article and a hole on a jig side is
about 1.0 mm. Therefore, picking and placing cannot be performed normally if the robot
coordinate system and work coordinate system are misaligned, as shown in Figure 4. The
proposed method can deal with the problem by setting only four corner positions.

3. Robotic Peg-in-Hole Task Cooperatively Using Two MG400s

Figure 5 shows the overall configuration framework of the experimental system, in
which any PLC is not needed. The endoscope camera attached to the MG400-2 is used for
object detection in Figure 3. Furthermore, the Basler GigE camera is used for the defect
detection experiment in Section 3. Figure 6 shows an experiment scene of a peg-in-hole
task using two MG400s to evaluate the effectiveness of the proposed system, in which
two MG400s named No. 1 and No. 2 are cooperatively used. One hundred prototypes of
cylindrical resin-molded articles with the length: 44 mm, the diameter of insertion part:
8 mm, and the diameter of grasping part: 7 mm were made using a 3D printer. On the jig
side, two work tables with 100 holes are prepared and named work Tables 1 and 2. The
diameter of each hole is 9 mm and the adjacent holes are located at an interval of 15 mm. In
addition, a small jig with three holes of 9 mm diameter is placed between the two work
tables, where articles are temporarily placed for a next sequence.

The workflow of this peg-in-hole task is as follows.

1. No. 1 chucks the article placed on work Table 1 and places it on the small jig called
temporarily placed position.

2. No. 2 chucks the article placed on the temporary position and puts it in the target hole
on the work Table 2.

3. Chucking and placing operations are synchronously and alternately conducted by
No. 1 and No. 2 while considering the efficiency to reduce the task execution time and
the safe timing to avoid a collision.

The authors confirmed two results from the experiment. One is that HCLS data con-
sisting of 100 GOTO statements with coordinate values of 100 workpieces were generated
by the proposed position generation function while considering the misalignment. The
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other is that due to the HCLS data, the peg-in-hole task by the two MG400s was successfully
performed without using any PLC.

Table 2. Network parameters and training condition of transfer-learning-based CNN (VGG19-
based CNN).

Item Value or Setting

Model name VGG19-based CNN
Number of total layers 47

Number of total weights 139,578,434
Training images 156 (OK), 196 (NG)

Test images 156 (OK), 196 (NG)
Resolution of input images 224 × 224 × 3

Epoch size 50
Mini batch size 32

Initial learning rate 0.0001
Optimizer SGDM

Loss function Cross entropy loss
Convergence time [s] 871 (average)

Forward calculation time [s] 0.07 (average)

Endoscope Camera

MG400-1

Robot Control App. 
Running on Python 

MG400-2

192.168.2.7

192.168.2.8

192.168.2.10

Windows PC
PoE HUB

MG400-3

192.168.2.9

HCLS Data

192.168.2.254

Basler GigE Camera

ONNX Runtime Model

CNN Model Built on MATLAB

Figure 5. Overall configuration framework of the experimental system without using a PLC.

Robot

No. 1

Robot

No. 2

9 mm

15 mm

Work table1Work table2

Camera

Temporarily placed position

Tip shape

WorkpiecesGripper Gripper

Figure 6. A cooperative peg-in-hole task experiment using two robot arms MG400 controlled by the
developed application shown in Figure 1.
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4. Advanced HCLS Data Statement for Calling a Defect Detection CNN Model

In this section, an advanced HCLS data statement coded as CNN_DEFECT is intro-
duced to call a CNN model for defect detection of an industrial product. One of promising
applications by industrial manipulators is for a robotic peg-in-hole task while checking
undesirable defects. Figure 7 shows typical defects seen in the actual production line of this
product. These types of defects tend to appear around the tip during the manufacturing
process. Due to the statement of CNN_DEFECT, it is expected that undesirable defects
around the tips of workpieces can be detected and sorted by the robots.

Defect

DefectDefectNormal

Figure 7. Typical defects of an industrial product.

Figure 8 shows the CNN model consisting of 47 layers for binary classification, i.e.,
OK or NG, built by the VGG19-based transfer learning method on MATLAB. The model is
additionally trained using a training dataset consisting of 156 OK images and 196 NG ones.
In designing the VGG19-based transfer-learning CNN model from the original VGG19
for 1000-class classification, we replace only the final fully-connected layers, the softmax
layer, and the class output layer, then use the dataset for additional training to deal with
the binary-class classification task. The additional training is conducted with a learning
rate of 0.0001 up to the 42nd layer and with a learning rate of 0.001 from the 43rd layer to
the final one in order that the powerful feature extraction capability originally acquired by
the convolutional layers of VGG19 is not declined. Note that the resolution of input images
has to be downsized into 224 × 224 × 3 before training and test to fit the input layer of
VGG19. Other training conditions are tabulated in Table 2.
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Figure 8. Transfer-learning CNN model designed based on VGG19 for binary classification, i.e., nor-
mal or anomaly. The CNN model built on MATLAB can be used in Python due to the interoperability
provided by ONNX.

Table 3 shows the classification results of test images, in which an accuracy over 99%
is achieved. The CNN model can be exported to an open neural network exchange (ONNX)
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model [25] that can be imported into Python. ONNX is the open standard format for
machine learning interoperability, so that the exported ONNX model for defect detection
can be applied to the robots running on Python.

For example, the statement of CNN_DEFECT in the HCLS data is utilized as listed in
the following codes.
...

SNAPSHOT
R 120
SNAPSHOT
R -120
SNAPSHOT
CNN_DEFECT
PLACE
...

where SNAPSHOT is for the photo shoot of a workpiece by a camera set between the two
robots, as shown in Figure 6. R 120 and R −120 rotate the workpiece with 120◦ and −120◦

around the yaw angle using the robot’s fourth joint, respectively. Consequently, three
images captured from three directions are obtained at the step just before CNN_DEFECT.
Then, the CNN_DEFECT statement calls the CNN model, i.e., imported ONNX model,
shown in Figure 8, to predict each label of the three images. If all the three images are
predicted as OK, the workpiece is classified as normal. Otherwise, the workpiece is regarded
as an anomaly. Finally, the PLACE statement controls the robot so that the workpiece is
placed into the designated hole according to the classification result.

Table 3. Confusion matrix classified by a trained CNN model transferred from VGG19 (row: predicted
labels, column: true labels).

OK (Normal) NG (Anomaly)

OK (Normal) 153 0

NG (Anomaly) 3 196

The effectiveness and usefulness of the above HCLS data were demonstrated through
a cooperative peg-in-hole task using two small-sized industrial robots, MG400, while
alternately checking defects in workpieces by the VGG19-based CNN model.

As for the scalability of size of the available robots, if a target robot is provided by
the same maker of MG400, then the Python application shown in Figure 1 can be directly
used. Whereas if a target robot is provided by a different maker, regardless of the robot’s
size, its servo system has only to be technically opened to be able to implement the HCLS-
data-based interface. Furthermore, although the available number of robots for cooperative
control depends on that of allowable TCP connections, as can be guessed, the response
between a PC and multiple robots tends to become slower with the increase in the number
of connections.

To objectively evaluate the proposed system, quantitative results related to the perfor-
mance improvements offered by the HCLS data interface are shown. For instance,

• The use of the automatic teaching point generator approximately resulted in a 50%
reduction in teaching time compared to manual programming.

• The CNN-based defect detection system demonstrated an accuracy of over 99% in
detecting anomalies during the peg-in-hole task, as shown in the confusion matrix
in Table 3.
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• The system’s PLC-free cooperative control showed a significant reduction in coordina-
tion time compared to traditional PLC-based systems, improving the overall efficiency
of multi-robot operations.

While directly comparable systems were not found in the literature, as discussed in
the Introduction, these quantitative results demonstrate the effectiveness and scalability of
the proposed approach. The improvements in time efficiency, accuracy, and overall system
performance confirm the practical applicability of our system in industrial settings.

Actually, the authors have presented several industrial robot systems based on original
CLS data for automating sanding, polishing, and machining processes, in which conventional
position and orientation control and force control were only implemented [26]. The target
robots with an open architecture controller were provided by Kawasaki Heavy Industries,
Ltd. (Tokyo, Japan) and YASKAWA Electric Corporation (Fukuoka, Japan), and so on. Hence,
the hyper CLS-data-based interface will be able to also be applied to other makers’ industrial
robots if the servo controllers are technically opened by, e.g., SDK or API functions.

5. Conclusions

In this paper, an HCLS-data-based robotic interface has been proposed to enhance the
functionalities of industrial robots without using any PLC. Due to the HCLS-data-based
robot interface, a robotic operation sequence can be visually and unifiedly described as NC
codes. In addition, advanced functions such as visual feedback control for object tracking,
a CNN model for defect detection, and cooperative control for multiple robots can be
systematically described in HCLS data and stably executed. The effectiveness and validity
of the proposed system have been demonstrated through a cooperative pick and place task
using three small-sized industrial robots MG400s and a peg-in-hole task while checking for
undesirable defects in workpieces by a CNN model.

It was observed from our past conducted experiments that VGG19-based CNN models
are able to perform superior defect detection; therefore, in this case also, a VGG19-based
CNN model was applied. However, as shown in Table 2, since the number of weights
to be trained is more than 139 M, other simpler structured models should be applied.
In future work, a lightweight model named WearNet is planned to be implemented in the
HCLS-data-based robot interface. It is reported by Li et al. that WearNet could perform an
excellent defect detection accuracy with a much smaller weight size of 0.16 M and faster
detection speed [27].

While the proposed HCLS data interface offers significant advancements in coopera-
tive control and defect detection, its application is currently limited to robots with open
architecture controllers. Additionally, implementing the interface for complex multi-robot
scenarios may face scalability challenges as the number of connections increases. Future
work will address these limitations by optimizing the communication framework and
expanding compatibility.
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Abbreviations
The following abbreviations are used in this manuscript:

SCARA Selective compliance assembly robot arm
NC Numerical control
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CAD Computer-aided design
CAM Computer-aided manufacturing
HCLS Data Hyper cutter location source data
CNN Convolutional neural network
PLC Programmable logic controller
OAIR Open architecture types of industrial robot
SDK Software development kit
DLL Dynamic link library
ONNX Open neural network exchange
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