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Abstract: This work concerns an experimental investigation dealing with the machinability of
60CrMoV18-5 cold-work tool steel under dry CNC hard turning conditions using a CBN cutting
insert. A response surface experiment based on the central composite design was set to conduct
dry CNC hard-turning experiments with three different levels for cutting conditions, cutting speed
Vc (m/min), feed rate f (mm/rev), and depth of cut α (mm) while selecting main cutting force and
surface roughness Ra as the two machinability responses. The results were analyzed by applying
analysis of variance (ANOVA). The effect of cutting conditions on main cutting force and surface
roughness was studied through contour plots. Full quadratic regression models were generated to
model the relationships between inputs and outputs. Finally, the NSGA-III algorithm was applied to
simultaneously optimize the selected machinability parameters by providing beneficial values for
determining cutting conditions. The results have shown that surface roughness is mainly affected by
feed rate and cutting speed, whereas main cutting force is affected by depth of cut and feed rate.

Keywords: 60CrMoV18-5 tool steel; CNC turning; machinability; optimization; NSGA-III

1. Introduction

New developments in industrial applications and customers’ requirements for reliable
products impose the need for ongoing research concerning the machinability of special
engineering alloys. To machine engineering alloys, production lines found in industry
implement CNC machine tools adhering to either conventional [1–4] or non-conventional
material removal principles [5–8]. As regards conventional material removal machining
operations, milling, turning, drilling, and grinding are distinguished, all of which are
integrated with CNC resources. Rounded bars of cold-work tool steels are preferred to be
machined in CNC turning centers or conventional high-power lathes for hard turning. As
a machining operation, hard turning utilizes a single-point tool contact and materials to be
hard-turned exhibit increased hardness that exceeds 45 HRC [9–12].

Undoubtedly, extensive know-how currently exists concerning a variety of machin-
ability studies presenting different quality aspects for engineering alloys. Nevertheless,
the availability of research results as regards machinability does not encourage their gen-
eralization towards the prediction of crucial outputs of other materials or special alloys
yet to be exploited. Consequently, machinability studies continue exploring key objectives
that characterize engineering alloys and other materials related to industrial applications.
Material removal by cutting may exhibit complex interactions among independent process
parameters (cutting conditions) owing to the mechanics of metal cutting [9]. During metal
removal by cutting, a significant outcome owing to increased cutting force components,
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rising temperature, and extensive tool wear is experienced with potential tool breakage [13].
This outcome negatively affects surface finish, dimensional accuracy, roughness indicators,
and cutting tool life.

Benlahmidi et al. [14] investigated the influence of cutting conditions, including
cutting speed, feed rate, depth of cut, and work piece hardness, on the quality criteria of
surface roughness, cutting pressure, and cutting power during hard turning of hardened
X38CrMoV5-1 (AISI H11) of 50HRC with CBN7020 cutting inserts. They concluded that
surface roughness indicators are primarily affected by feed rate and workpiece hardness,
whereas the effect of cutting depth was found to be insignificant. The dominant parameter
concerning the response of cutting power was cutting speed. The later parameter affects
tool life, with feed rate being the second influential parameter in hierarchy as regards
tool life response. In [15], Çydaş studied the performance of AISI 4340 steel under dry
turning conditions by testing a variety of cutting tools involving CBN, P10-grade carbide
and ceramics. The effect of these tools on workpiece hardness was examined as well as
surface roughness, tool flank wear, maximum tool-chip interface temperature and micro
hardness variations. The results referring to these performance metrics were evaluated
by implementing several statistical analysis methods. Santhosh et al. [16] examined the
same alloy, AISI 4340, under a systematic design of experiments based on face-centered
central composite design (CCD) according to the response surface methodology (RSM).
As the independent process parameters, feed rate, rotational speed, and cutting depth
were selected, whilst arithmetic surface roughness average was considered as the objective.
In addition, the standard genetic algorithm and a neural network topology were applied
to suggest an optimal combination among machining parameters and optimize surface
roughness response. Abbas et al. [17] conducted an extensive examination on AISI 4340
hard turning using two types of cutting tool geometries: wiper nose and typical round
nose tips. Having cutting conditions as the independent variables, they proceeded to
simultaneously optimize surface roughness and productivity using MOPSA and MOEPCA
algorithms. In their work, MOPSA suggested the optimal solution for parameter setting for
the case of wiper cutting inserts, whereas MOEPCA provided the optimal solution for the
cutting insert with the conventional rounded tool tip geometry. Chavan and Sargade [18]
focused on examining AISI 52100 machinability improvements with coated carbide tools,
referring to a group of surface integrity indicators including surface roughness and micro
hardness by controlling cutting speed and feed rate under several cutting environments,
including dry cutting. Davoudinejada et al. [19] studied the machinability of hardened
DF-3 tool steel under continuous dry turning with different cutting conditions. Their
objectives under examination were tool life, tool wear, and surface roughness. The cutting
insert employed was coated in mixed ceramic with honed edge geometry. They designed
their experiments by assigning two levels for cutting speed, three levels for feed rate, and a
constant depth of cut equal to 0.2 mm. They found that the lowest cutting speed facilitates
tool life as opposed to surface roughness, where reduced results were obtained at high
cutting speed and low feed rate. The objective of maximum material volume removal was
beneficial when operating with low cutting speed and high feed rate. Flank and crater wear
observations were experienced owing to abrasive conditions exerted in the ceramic cutting
tool-work piece interface. Sun et al. [20] performed dry cutting experiments on Ti6Al4V
alloy using two types of cutting inserts: polycrystalline cubic boron nitride (PCBN) and
polycrystalline diamond (PCD). In their work, the influence of cutting speed and feed rate
on tool life, cutting temperature, and surface roughness were examined. They reported that
chipping, notch, adhesion, and crater were the main failure mechanisms for PCBN cutting
insert, whilst adhesion, crater, and dissolution-diffusion were observed in the case of the
PCD tool that exhibited better cutting performance. Muthuswamy and Murugesan [21]
studied the machinability of Ti6Al4V alloy through a full factorial design of experiments
and corresponding analysis of variance. The objectives selected were surface roughness
and cutting force components. They mentioned that feed rate is a significant independent
variable for Ra, whereas the interactions between feed rate and cutting depth are influential
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for cutting forces followed by cutting speed. They used AlTiNPVD-coated tools to conduct
their turning experiments. Malik et al. [22] examined the machining behavior of Ti6Al4V
alloy by studying different levels of input values for cutting parameters on the responses
of cutting force and surface roughness. Interesting results concerning the machinability
of laser-melted 316L stainless steel were presented by Li et al. [23]. They examined the
effect of cutting depth on cutting force and surface quality, whilst their analysis involved
white layer formation at different cutting depths as well as work-hardening and thermal
softening mechanisms. Along with the extensive research concerning the machinability
attributes for examination and the phenomena that warrant identification with proper
analysis, a remarkable amount of research is also directed towards the optimization of
crucial performance criteria related either to productivity or quality or both simultaneously.
Such criteria are surface roughness parameters, cutting force, cutting temperature, tool
wear, tool-chip interface with emphasis to temperature, material removal rate, etc. [24–27].
In addition, several efforts have focused on utilizing the properties of lubricants to study
their effect on process-related criteria while they have implemented machine learning
techniques for optimization [28–35].

In this framework, the current study focuses on the examination of cutting speed,
feed rate and depth of cut effects on cutting forces and surface roughness during dry CNC
turning of 60CrMoV18-5 cold-work tool steel. This material is preferred for engineering
applications related to injection molds for fabricating plastic components, cold forming
tools, cutting blades, stamping equipment, and punches. The variety of applications of
60CrMoV18-5 cold-work tool steel is favored owing to the material’s properties such as
high toughness and wear resistance. High-stress applications (i.e., cutting tools and special
molds) can also be facilitated by the selection of 60CrMoV18-5 cold-work tool steel with
working hardness up to 60 HRC.

As an original aspect of this study, the non-dominated sorting genetic algorithm III
(NSGA-III) is employed to obtain a variety of non-dominated “optimal” solutions that
will balance the trade-off between main cutting force, Fz (N), and surface roughness, Ra
(µm), according to the needs and response importance determined by workshops and
manufacturing facilities. The methodology for obtaining the number of non-dominated
solutions is a pure two-objective optimization problem without its transformation to a
single-objective one using weighted coefficients. By taking advantage of the “pre-allocated”
function of NSGA-III, referring to the reference set for non-dominated solutions, a stronger
diversity is achieved among solutions according to the predetermined population size in
the problem domain. The proposed methodology aims at supporting machinability studies
for engineering materials towards the major objective of optimizing performance criteria
related to general manufacturing processes and machining operations.

2. Materials and Methods
2.1. Design of Experiments

A systematic design of experiments comprising 20 independent tryouts was estab-
lished with reference to the central composite design (CCD) of Response Surface Methodol-
ogy (RSM) to examine the effect of cutting conditions: cutting speed Vc, feed rate, and depth
of cut on main cutting force, Fz (N), and arithmetic surface roughness average, Ra (µm).
This type of experimental design allows for fitting a reliable second-order (full quadratic)
regression model by selecting corner, axial, and center points under the assumption that
relatively few independent variables are to be questioned [36]. As independent variables,
the cutting conditions of cutting speed, Vc (m/min); feed rate, f (mm/rev); and depth of cut,
α (mm), were selected whilst varying levels were determined according to the tool vendor’s
recommendations (Uddeholm®-Sweded). Since the number of independent variables is
low enough to reduce experimental cost, the selection of the aforementioned type of ex-
perimental design is justified. To maintain an equidistant radial length “r” and therefore a
common prediction error magnitude for all experimental points with reference to the center
point, the CCD was also rotatable. Given the number of cutting conditions-independent
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variables while considering uniform precision, the CCD involves eight factorial, six axial,
and six center points, resulting in the total number of 20 runs. Table 1 gives the design of
experiments according to the cutting conditions and their levels.

Table 1. Cutting conditions-independent variables and experimental levels.

Central Composite Design of Experiments

Parameter Symbol Level

Low (−1) Center (0) High (1) Unit

Cutting speed Vc 141.3 164.8 188.4 m/min
Feed rate f 0.050 0.125 0.200 mm/rev

Depth of cut α 0.500 1.000 1.500 mm

2.2. Materials, Machining Set-Up and Measuring Equipment

Two cylindrical bars of 60CrMoV18-5 cold-work tool steel were used for performing
the experiments. The working material was in the form of rounded bars and it was pre-
machined to a predetermined reference diameter of Ø60 mm. Based on the material’s
initial diameter, spindle speed was also computed for CNC programming. To facilitate
chip removal among the experimental regions and observe the machining outcome during
experimental execution, the available material length was distinguished to 10 regions by
formulating grooved cuts among the pre-specified lengths of each rounded bar (Figure 1).
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Figure 1. Ø30 × 300 mm 60CrMoV18-5 cold-work tool steel bar prepared with the 10 discrete
experimental zones for dry CNC turning experiments.

The cubic boron nitride (CBN) CBN-200 of SECO with code TNGA332S-00820-L1-C
and its corresponding cutting insert holder PTJNR 2525M16 were selected for conducting
the CNC dry cutting experiments (Figure 2).
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Dry CNC turning experiments were conducted by employing a HAAS® TL-1 CNC
turning center (Figure 3a). A Kistler® three-component cutting force dynamometer along
with its corresponding data acquisition analog system were used for taking online mea-
surements during turning (Figure 3b).
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Figure 3. (a) CNC machining set-up for dry CNC turning experiments; (b) Cutting force acquisi-
tion/signal processing software environment.

To collect the results regarding surface roughness, the TESA® Rugosurf® 10G portable
roughness tester. The set-up for conducting roughness measurements is illustrated in
Figure 4. The specific portable roughness tester supports 3 probe measuring positions
whilst the measuring span is 400 µm (6300 µin) on Z axis and 16 mm (0.63 in) on X axis,
with a probing speed of 1mm/sec. Its display span is 0–100 µm for Ra and 0.05 to 400 µm
for Rt whilst its measuring force is 0.75 mN. The graphics supported are Bearing area
curve, Profile-R, and Profile-P. A diamond-point 90◦ stylus is attached to the roughness
tester with R = 5 µm. The number of cut-off length is 1 to 10 for a cut-off of 0.25 mm and
0.8 mm, whereas the cut-off length may be determined to be equal to 0.25 mm, 0.80 mm,
and 2.50 mm (0.01 in-0.03 in-0.10 in). In this work, cut-off length was set to 0.8 mm,
whilst measurements were conducted three times for each cutting zone out of three equally
positioned generatrixes at 120◦. As a representative result for roughness, the average value
was considered.
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3. Non-Dominated Sorting Genetic Algorithm, NSGA-III

Intelligent algorithms available in the broader literature exhibit different operational
behavior depending on their development attributes and the problem in question. Each
algorithm simulates the major physical aspects of living species that are considered search
agents. The primary objective of Non-dominated Sorting Genetic Algorithm III (NSGA−III)
is to solve optimization cases where many conflicting criteria are to be satisfied. The al-
gorithm suggests enhancements in the preservation of solutions, diversity, and efficiency.
This facilitates the consistent approximation of a Pareto front representing the set of non-
dominated optimal solutions. NSGA−III adheres to the major aspects of evolutionary
optimization. Consequently, NSGA−III employs the standard genetic operators: selection
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crossover and mutation with a set of additional functions, namely non-dominated sort-
ing, crowding distance, and environmental selection. Non-dominated sorting classifies
individuals (candidate solutions) into different Pareto fronts according to their dominance
relationship. Candidates who are not dominated by others formulate the first front in
an optimization problem. Candidates that are dominated by those existing on the first
front formulate the second front, etc. As a result, non-dominated sorting preserves diver-
sity in a population of candidate solutions. The function responsible for measuring the
density of obtained Pareto solutions is crowding distance. Crowding distance maintains
well−distributed solutions in a front by controlling the individuals’ locations in denser
regions referring to the solution domain. The quality and diversity of obtained solutions
are controlled by the environmental selection operator in the NSGA−III algorithm. This
operator selects candidate solutions from the different fronts regarding their rank and
crowding distance, thus allowing a balanced solution representation across the entire front.
This procedure sustains diversity and convergence of non-dominated solutions. Other
features of the NSGA−III algorithm include reference points, decomposition, and adaptive
operator selection. Regardless of the efficiency and operational behavior of the several
metaheuristics, algorithm-specific parameters and operators should be fine-tuned and
properly determined to maintain a profitable balance between exploration and exploitation
of the search domain. The recommended settings for the algorithms examined on the
problem under study were adopted by the original attributes provided in [37,38].

4. Results and Discussion
4.1. Experimental Results and Analysis of Observations

The results obtained from conducting the series of experiments as indicated in Table 1
were further processed to avoid the oscillations exhibited owing to arbitrary low and high
frequency levels during CNC hard-turning cuts. Original results were processed such that
the average values for main cutting force per each cutting region will represent the final
output. The experimental results referring to the two objectives of main cutting force, Fz
(N), and surface roughness, Ra (µm), according to the design of experiments presented in
Table 1, are summarized in Table 2.

Table 2. Experimental results for main cutting force Fz, (N) and surface roughness Ra, (µm).

No. Vc (m/min) f (mm/rev) a (mm) Fz (N) Ra (µm)

1 141.3 0.050 0.50 128.5 1.11
2 188.4 0.050 0.50 104.2 0.98
3 141.3 0.200 0.50 208.9 4.00
4 188.4 0.200 0.50 179.4 3.80
5 141.3 0.050 1.50 181.1 1.47
6 188.4 0.050 1.50 157.7 1.04
7 141.3 0.200 1.50 381.4 4.10
8 188.4 0.200 1.50 370.0 3.76
9 164.8 0.125 1.00 241.5 2.07
10 164.8 0.125 1.00 236.6 1.97
11 164.8 0.125 1.00 346.4 1.69
12 164.8 0.125 1.00 327.7 1.33
13 126.4 0.125 1.00 331.0 1.57
14 203.3 0.125 1.00 285.8 1.30
15 164.8 0.025 1.00 83.80 0.98
16 164.8 0.250 1.00 404.3 8.95
17 164.8 0.125 0.18 22.10 1.72
18 164.8 0.125 1.82 266.2 1.90
19 164.8 0.125 1.00 236.3 1.87
20 164.8 0.125 1.00 241.1 1.76

It is indicated that the largest magnitude for main cutting force Fz (404.30 N) is
observed in the 16th experimental run, where average surface roughness Ra is equal to
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8.95 µm. For this experiment, cutting speed Vc is 164.8 m/min (spindle speed, n = 1750 rpm),
feed rate f is 0.25 mm/rev, and depth of cut α is equal to 1.0 mm. The lowest result for
main cutting force Fz is reported in the 17th experiment at 22.10 N. The experiment is
accompanied with a resulting surface roughness average Ra equal to 1.72 µm. Figure 5
illustrates the main effects of cutting conditions on main cutting force Fz (N).
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Figure 5. Main effects plot for main cutting force, Fz (N).

According to the observations referring to the main effects of cutting conditions on
main cutting force Fz, an increase in cutting speed Vc seems to decrease Fz at least up to a
range of moderate settings, i.e., 160–180 m/min. This observation is owing to the machined
material’s plastic behavior (softening) under the influence of cutting temperature increase.
Feed rate f seems to increase main cutting force Fz, but with a small impression of gradual
reduction when set to its higher level (i.e., f = 0.2 mm/rev) owing to cutting temperature
effect and plastic softening. As depth of cut α increases, an increase in main cutting force is
also observed, however; high values for depth of cut settings do not necessarily maintain
high levels for main cutting force, i.e., α = 2 mm. However, the settings of cutting speed
and feed rate should be properly determined to maintain machining quality while avoiding
excessive tool wear and tool tip breakage. Figure 6 depicts the chip morphology owing
to the material’s plastic softening behavior during cutting, whereas Figure 7 illustrates
the observations referring to tool tip wear. These indications were observed in the 16th
experimental run and a new tool tip was used to continue with the rest of the experiments.
Finally, Figure 8 depicts indicative microscopic textures of machined surfaces. Emphasis
has been given to machined textures with noticeable observations.
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Figure 8. Indicative microscopic textures of machined surfaces during dry hard-turning of
60CrMoV18-5 cold-work tool steel.

As regards surface roughness, its lowest result (Ra = 0.98 µm) is reported in the 2nd and
15th experimental runs. These two experiments have different cutting conditions, i.e., the
2nd experiment ran with Vc = 188.4 m/min (spindle speed n = 2000 rpm), f = 0.05 mm/rev,
and α = 0.5 mm. The 15th experiment ran with cutting speed Vc = 164.8 m/min, feed
rate f = 0.025 mm/rev, and depth of cut α = 1 mm. The result of the main cutting force
is 83.80 N, which is the lowest from the entire set of experiments. Figure 9 depicts the
main effects of cutting parameters on the response of surface roughness. It is clear that
feed rate is the dominant parameter in terms of its main effect on surface roughness, with
cutting speed to follow. Depth of cut is shown to be less influential, with an insignificant
contribution to the response of surface roughness, Ra.
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4.2. Analysis of Variance (ANOVA) and Response Surface Regression

To further assess the effect of cutting conditions on machinability indicators of main
cutting force Fz (N) and surface roughness Ra (µm), interaction graphs and contour plots
were generated. These instances were produced by selecting a regression analysis with
full quadratic (second order) models that correlate the independent variables (cutting
conditions) with main cutting force Fz and surface roughness Ra. Figure 10 groups the
resulting plots concerning the effect of cutting conditions on main cutting force, Fz (N).
Figure 10a depicts the interaction effect among the pairs of cutting parameters. It is
observed that a strong interaction exists between feed rate f and depth of cut α. Figure 10b
corresponds to the effect of cutting speed Vc and feed rate f. It is observed that main
cutting force tends to be reduced when operating with low feeds (i.e., 0.05 mm/rev to
0.1 mm/rev) and several cutting speed levels, with emphasis on a range between 160 and
170 m/min for the working material and the cutting tool used. Figure 10c corresponds to
the synergistic effect of cutting speed Vc and depth of cut α. Based on the indicative regions
of the graph, it can be seen that main cutting force Fz is maintained to low magnitudes for
the entire operational range of cutting speed Vc, with a noticeable benefit when setting
from 150 m/min to approximately 175 m/min. This assumption imposes the usage of low
depth of cut, i.e., from 0.2 mm to approximately 0.5 mm. Figure 10d depicts the synergistic
effect between feed rate f (mm/rev) and depth of cut α (mm). The general outcome is
that reduced magnitudes of main cutting force Fz are obtained for relatively low feeds and
depths, with emphasis to moderate feeds in a range from 0.1 mm/rev to 0.16 mm/rev.

Similarly to the objective of main cutting force Fz, surface roughness Ra was also exam-
ined in terms of the effect of cutting conditions and the beneficial response surface regions
indicated by the analogous plots. Figure 11 illustrates this group of results. Figure 11a
depicts the interaction effect among the pairs of cutting parameters. It is observed that no-
ticeable interactions are found between cutting speed Vc and depth of cut, α as well as feed
rate f and depth of cut, α. Figure 11b shows the effect of cutting speed Vc and feed rate f.
The contour plot indicates that beneficial results for low surface roughness may be obtained
by setting a low feed rate (i.e., 0.05 mm/rev to 0.15 mm/rev) while selecting any value for
cutting speed, referring to the experimental range between 130 and 200 m/min. Figure 11c
shows that the entire domain referring to the synergistic effect of cutting speed and depth
of cut is advantageous for surface roughness, with emphasis on moderate settings for both
cutting parameters, i.e., cutting speed Vc = 155 m/min to 180 m/min and depth of cut
α = 0.6 mm to 1.4 mm. Finally, Figure 11d illustrates the contour referring to the synergistic
effect between feed rate f and depth of cut α. This contour implies that surface roughness
Ra may be maintained to low values concerning feed rate settings, i.e., 0.05 to 0.15 mm/rev,
but with obvious fluctuations that tend to increase surface roughness when operating with
a depth of cut α from 0.4 to 0.8 mm and from 1.2 to, approximately, 1.75 mm.
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Analysis of variance (ANOVA) was conducted on the experimental results so as to
estimate the related error and assess the importance of cutting conditions with quantified
results. The full quadratic models referring to the machinability objectives of main cutting
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force Fz and surface roughness Ra are given in Equation (1) and Equation (2), respectively,
as follows:

Fz(N) =
612 − 8.29 × Vc + 933 × f + 378 × α + 0.0228 × Vc

2 − 2899 × f 2 − 194.1 × α2 + 0.48 × Vc × f + 0.20 × Vc × α + 857 × f × α
(1)

Ra(µm) =
−8.82 + 0.1292 × Vc − 31.1 × f + 1.64 × α − 0.000393 × Vc

2 + 218.9 × f 2 − 0.303 × α2 + 0.001 × Vc × f − 0.0047 × Vc × α − 1.20 × f × α
(2)

Tables 3 and 4 tabulate the analysis of variance (ANOVA) results. A p-value lower
than 0.05 suggests a term’s significance. p-value for lack-of-fit has to be way beyond
from 0.05 to present insignificance. Insignificant lack-of-fit is preferred to support the
idea that the model’s error contribution is insignificant and therefore negligible. Both
ANOVA tables (Tables 3 and 4) report insignificant lack-of-fit; 0.793 and 0.220, respectively,
concerning p-value significance. An adequate correlation coefficient (R2) for both models is
also observed.

Table 3. ANOVA table for response surface regression: Fz (N) vs. Vc, f, a.

Source DF Seq.SS Contribution % Adj.SS Adj.MS F-Val. p-Val.

Model 9 192.360 90.99 192.360 21.373 11.22 <0.005
Linear 3 146.571 69.33 143.425 47.808 25.09 <0.005
Vc (m/min) 1 1977 0.94 1845.0 1844.9 0.97 0.348
f (mm/rev) 1 88.083 41.66 78.308 78.308 41.10 <0.005
a (mm) 1 56.511 26.73 63.268 63.268 33.21 <0.005
Square 3 37.482 17.73 37.482 12.494 6.56 0.010
Vc2 1 3580 1.69 2114 2114.2 1.11 0.317
f 2 1 2215 1.07 2830 2829.8 1.49 0.251
a2 1 31.647 14.94 31.647 31.647 16.61 0.002
2-way int. 3 8307 3.93 8307 2769 1.45 0.285
Vc × f 1 6 0.00 6 5.8 0.00 0.957
Vc × a 1 45 0.02 45 45.1 0.02 0.881
f × a 1 8256 3.91 8256 8256.1 4.33 0.064
Error 10 19.051 9.01 19.051 1905.1
Lack-of-fit 5 6002 2.84 6002 1200.3 0.46 0.793
Pure error 5 13.050 6.17 13.050 2609.9
Total 19 211.412 100

R2 90.99%

Table 4. ANOVA table for response surface regression: Ra (µm) vs. Vc, f, a.

Source DF Seq.SS Contribution % Adj.SS Adj.MS F-Val. p-Val.

Model 9 62.7894 95.43 62.7894 6.9766 23.19 <0.005
Linear 3 45.6637 69.40 54.0243 18.0081 59.85 <0.005
Vc (m/min) 1 0.1783 0.27 0.1693 0.1693 0.56 0.470
f (mm/rev) 1 45.4405 69.06 53.8218 53.8218 178.88 <0.005
a (mm) 1 0.0449 0.07 0.0325 0.0325 0.11 0.749
Square 3 17.0853 25.97 17.0853 5.6951 18.93 <0.005
Vc2 1 0.7883 1.20 0.6288 0.6288 2.09 0.179
f 2 1 16.2201 24.65 16.1315 16.1315 53.61 <0.005
a2 1 0.0768 0.12 0.0768 0.0768 0.26 0.624
2-way int. 3 0.0404 0.06 0.0404 0.0135 0.04 0.987
Vc × f 1 0.0000 0.00 0.0000 0.0000 0.00 0.990
Vc × a 1 0.0242 0.04 0.0242 0.0242 0.08 0.783
f × a 1 0.0162 0.02 0.0162 0.0162 0.05 0.821
Error 10 3.0088 4.57 3.0088 0.3009
Lack-of-fit 5 2.6696 4.06 2.6696 0.5339 7.87 0.220
Pure error 5 0.3393 0.52 0.3393 0.0679
Total 19 65.7983 100

R2 95.43%
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An additional statistical analysis to examine the validity of regression models in terms
of their correlation capability is the “Anderson–Darling” normality test for residuals. This
further validates the strength of the models. In this statistical test, the residuals should
follow a normal distribution and exhibit an insignificant contribution to the statistical test
by obtaining a p-value result beyond the pre-set confidence interval (C.I.), which is 0.05 or
95%. Both predictive models have been shown to be reliable based on their R2 coefficients
and the p-values for their residuals. Figure 12 illustrates the normal distribution of the
residuals of both models: main cutting force Fz (Figure 12a) and surface roughness Ra
(Figure 12b). The resulting p-values are 0.224 and 0.235 beyond the confidence interval of
0.05 (95%).
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4.3. Optimization Problem Definition and Solving Using the NSGA-III
The optimization problem was established according to Equations (1) and (2), with

reference to the design of experiments and the regression analysis conducted on the ex-
perimental and statistical results presented. The design of the experiments, as well as
the analysis of results including statistics, was conducted using Minitab® 17 statistical
computing environment. The regression models play the role of objective functions of the
two-objective optimization problem, whereas the experimental ranges of cutting conditions
constitute the constrained search domain for the NSGA-III algorithm’s operators towards
the identification of non-dominated optimal solutions. Equations (3) and (4) represent
the objective functions, one per machinability criterion for main cutting force Fz (N) and
surface roughness Ra (µm), expressed as follows:

minFz(N) =
612 − 8.29 × Vc + 933 × f + 378 × α + 0.0228 × Vc

2 − 2899 × f 2 − 194.1 × α2 + 0.48 × Vc × f + 0.20 × Vc × α + 857 × f × α
(3)

minRa(µm) =
−8.82 + 0.1292 × Vc − 31.1 × f + 1.64 × α − 0.000393 × Vc

2 + 218.9 × f 2 − 0.303 × α2 + 0.001 × Vc × f − 0.0047 × Vc × α − 1.20 × f × α
(4)

These two relations between cutting conditions and machinability criteria (indepen-
dent variables-inputs and dependent targets-outputs) are subjected to the following constraints:

Vc (m/min): 141.3 ≤ Vc ≤ 188.4
f (mm/rev): 0.05 ≤ f ≤ 0.2

α (mm): 0.5 ≤ α ≤ 1.5

The NSGA-III operational parameters were set with reference to the recommended
values, whereas the number of individuals (or search agents) was set to 20 [37,38]. The
number of iterations for the NSGA-III algorithm was set equal to 1000. The number of
non-dominated solutions in the storage archive was set to 50 to simultaneously ensure
the quality of solutions by this relatively large solutions number, but with the smallest
negative impact as regards the update speed of solutions during the evaluated generations
by the algorithm. Algorithmic evaluation experiments were conducted in Mathworks®

MATLAB R2013a using a DELL® computer equipped with an Intel® core™ i3−4160 CPU,
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3.60 GHz, 64−bit operating system with 12 GB RAM. Figure 13 depicts the Pareto front of
non-dominated solutions obtained by NSGA−III algorithm.
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Figure 13. Non-dominated solutions obtained by NSGA−III algorithm.

By observing the Pareto front of non-dominated solutions obtained by NSGA-III, a
uniform distribution among the solution points is indicated. This implies that different
requirements in terms of main cutting force Fz and surface roughness Ra may be met,
provided that the solution range will be constrained to the experimental limits set for
this study. In a multi-objective optimization problem, the solutions are characterized as
non-dominated when improvement for a criterion is achieved at the expense of at least one
other optimization criterion. This implies that no solution may fully optimize all objectives
simultaneously. Most advantageous solutions may be found close to the Pareto front’s
axes origin for criteria minimization requirements. In addition, coverage and spacing are
two essential observations that characterize the quality of solutions existing in the multi-
objective space and depicted through the Pareto front. Coverage expresses the adequacy of
covering all regions of the objective domain with solutions, whereas spread indicates the
distance between these solutions.

A quite uniform spread of solutions is observed, satisfying both objectives. Several of
the obtained solutions cover the center of the Pareto front, sitting closer to the origin for
both axes, thus minimizing simultaneously main cutting force Fz and surface roughness Ra
to the best possible extent. The lowest result for main cutting force Fz is reported in the
34th solution, where main cutting force is equal to 82.13 N with cutting parameter values
Vc = 178.8 m/min, f = 0.05 mm/rev, and depth of cut α = 0.5 mm. At the same time, the
resulting surface roughness Ra is equal to 1.01 µm. Seeking the lowest result for surface
roughness, the 26th solution reports 0.74 µm with main cutting force Fz to be equal to
104.3 N. This solution comes with cutting speed Vc = 188.4 m/min, feed rate f = 0.07, and
depth of cut α = 0.5 mm.

4.4. Confirmatory CNC Dry Hard-Turning Experiment

To confirm the results obtained by the NSGA-III algorithm, the 26th non-dominated
solution’s results for cutting parameters in terms of surface roughness were applied to
compare the outputs. The position of the cutting insert was such that a new tool tip was
used for executing the confirmation experiment. The confirmatory cut along with its
corresponding roughness measurement was performed to a cylindrical region close to the
work-holding fixture (lathe chuck) to avoid imminent vibrations that could jeopardize the
results. The cutting conditions for performing the experiment were Vc = 188.4 m/min,
f = 0.07 mm/rev, and depth of cut α = 0.5 mm. The resulting surface roughness Ra was
found equal to 0.529 µm. Figure 14 illustrates the roughness measurement environment for
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the confirmatory experiment by applying the recommended values for cutting conditions
obtained by NSGA-III.
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As regards cutting force magnitude during hard turning, no extreme indications
related to cutting tool wear and breakage were observed, except from the 16th experimental
run, where flank wear, abrasion, and small tool breakage-grooving were experienced.
Therefore, to avoid time-consuming set-ups for establishing the cutting force measuring
system along with its peripherals, the confirmatory experiment assessed only surface finish.

To compare the experimental results with those obtained by NSGA-III for surface
roughness, an interval plot was generated by considering the two independent samples of
surface roughness results and their standard deviations. According to Figure 15, the means
of the two sets are different since no overlapping is indicated. It can be observed that the
values related to surface roughness are significantly lower than those obtained in actual
cutting experiments. In addition, the width of the plot related to the algorithm’s obtained
results for surface roughness Ra is lower than that corresponding to the experimental results.
This observation indicates lower variation in predicted values compared to experiments
for surface roughness, whilst no overlapping is found, meaning that the two groups are
significantly different at the confidence level.
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5. Conclusions

This study examined the machinability of 60CrMoV18-5 cold-work tool steel by con-
ducting a central composite experimental design (CCD) with 20 runs. Machining was
conducted using a CNC machine tool for hard dry-turning cuts and a CBN cutting insert
(the SECO®, TNGA332S-00820-L1-C). ANOVA and full quadratic regression analysis were
applied for the statistical analysis of the experimental results, referring to main cutting force
Fz and surface roughness Ra. Machinability observations were reported and the effect of
cutting conditions was presented using contour plots by questioning a pair of two indepen-
dent variables on a performance machinability criterion. By generating two full quadratic
regression relations adhering to response surface methodology, the non-dominated sorting
genetic algorithm NSGA-III was applied for solving the trade-off between minimum main
cutting force Fz and minimum surface roughness Ra. The validity of using the regression
models as objective functions for algorithmic evaluations was tested through the corre-
lation coefficient (R2) and normal probability plots of the residuals corresponding to the
two machinability indicators selected: main cutting force Fz and surface roughness Ra. The
findings of this study are summarized as follows:

• The interaction between cutting tool and work piece should be carefully examined ow-
ing to phenomena related to material softening. Cutting conditions with emphasis on
dry hard turning should be carefully selected to sustain low cutting force magnitudes
and fine surface finish.

• All cutting force components, -with emphasis on main cutting force, Fz, increase by
increasing feed rate and depth of cut. Cutting temperature and resultant material soft-
ening may gradually reduce cutting force with noticeable reduction in surface finish.

• Surface roughness is primarily affected by feed rate followed by cutting speed, whereas
depth of cut does not yield a strong effect. This result is quite encouraging, since
high material removal rates and minimized machining times by applying relatively
high cutting depths may be obtained. However, this should be further examined to
guarantee the maximum advantageous limit for machining time reduction and high
surface finish.

• The NSGA-III algorithm obtained advantageous non-dominated solutions for process
planners to select from, given the production needs and constraints. Both machinability
criteria, main cutting force Fz and surface roughness Ra, exhibited a quite complex
experimental search domain. This observation can justify the implementation of
intelligent algorithms to solve multi-criteria machining optimization problems.

• The results obtained agree with notable research findings available in the broader
literature concerning the machinability of special engineering alloys, whilst the sta-
tistical analysis confirmed initially established research assumptions and expecta-
tions referring to main cutting force Fz and surface roughness Ra attributes as key
machinability criteria.

• The major objectives of interest are surface integrity and surface finish. Therefore,
based on the results obtained, the lowest experimental output for surface roughness
Ra is equal to 0.98 µm while the non-dominated solution obtained by NSGA-III
algorithm and applied for confirmation experiment was found equal to 0.74 µm.
The gain between these two results is 24.49%, whilst by implementing the NSGA-III
recommended values for cutting conditions the resultant surface roughness Ra was
found equal to 0.53 µm. By comparing the actual confirmatory run to the lowest
experimental run from the design of experiments established, a gain is observed equal
to 45.92% in terms of surface finish.

In our future perspectives, the authors plan to conduct additional machining exper-
iments to other engineering metals and alloys and different cutting tools. We also plan
to implement different intelligent and machine learning modules for optimizing and im-
proving conventional/non-conventional material removal processes. Of major interest for
future work is the establishment of optimization problems related to industrial production
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and manufacturing systems for boosting productivity, reducing idle times, and increasing
surface quality.
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