Prediction of Delamination Defects in Drilling of Carbon Fiber Reinforced Polymers Using a Regression-Based Approach
Abstract
:1. Introduction
2. Test Methodology and Specimen Preparation
3. Taguchi Method
4. Partial Least Squares (PLS) Regression for Multivariate Performance Analysis
5. PLS Implementation
6. Results and Discussion
6.1. Experimental Results
6.2. PLS Regression Model Results
6.3. Effect of Process Variables on CFRP Delamination
7. Conclusions
- The geometry of the tool and the cooling conditions, particularly friction, play a more significant role in influencing drilling outcomes than spindle speed and feed rate. These factors have been found to have the greatest impact on overall performance and quality during the drilling of the carbon fiber composite plates.
- The delamination defects observed in holes drilled using Tool (a) with an internal cooling system were reduced by 36.80% compared to the average results from the other tools tested. The internal cooling system effectively dissipates heat at the cutting zone, prolonging tool life. Additionally, it allows for the use of higher feed rates and spindle speeds, enhancing overall machining efficiency.
- The statistical model (PLS) achieved a Mean Squared Error (MSE) of 0.0045, indicating a very low prediction error and an accuracy of approximately 99.6%, which is essential for ensuring reliable predictions of delamination in the machining of the composite materials.
- The optimal drilling parameters to minimize delamination, as determined by Taguchi’s method, include a spindle speed of 1000 rpm, a feed rate of 0.02 mm/rev, and the use of Tool (a), a solid carbide drill with internal cooling channels.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Li, C.; Mi, S.; An, Q.; Chen, M. Study of drilling-induced defects for CFRP composites using new criteria. Compos. Struct. 2018, 201, 1076–1087. [Google Scholar] [CrossRef]
- Rao, G.V.G.; Mahajan, P.; Bhatnagar, N. Micro-mechanical modeling of machining of FRP composites—Cutting force analysis. Compos. Sci. Technol. 2007, 67, 579–593. [Google Scholar] [CrossRef]
- Xu, J.; Geier, N.; Shen, J.; Krishnaraj, V.; Samsudeensadham, S. A review on CFRP drilling: Fundamental mechanisms, damage issues, and approaches toward high-quality drilling. J. Mater. Res. Technol. 2023, 24, 9677–9707. [Google Scholar] [CrossRef]
- Tsao, C.H.; Hocheng, H. Parametric study on thrust force of core drill. J. Mater. Process. Technol. 2007, 192–193, 37–40. [Google Scholar] [CrossRef]
- Binali, R.; Da Silva, L.R.R.; Pimenov, D.Y.; Kuntoğlu, M.; Machado, A.R.; Linul, E. A Review on Progress Trends of Machining of Carbon Fiber reinforced Plastics. J. Mater. Res. Technol. 2024, 33, 4332–4359. [Google Scholar] [CrossRef]
- Chen, R.; Li, S.; Zhou, Y.; Qiu, X.; Li, P.; Zhang, H.; Wang, Z. Damage formation and evolution mechanisms in drilling CFRP with prefabricated delamination defects: Simulation and experimentation. J. Mater. Res. Technol. 2023, 26, 6994–7011. [Google Scholar] [CrossRef]
- Bhatnagar, N.; Nayak, D.; Singh, I.; Chouhan, H.; Mahajan, P. Determination of Machining-Induced Damage Characteristics of Fiber Reinforced Plastic Composite Laminates. Mater. Manuf. Process. 2004, 19, 1009–1023. [Google Scholar] [CrossRef]
- Davim, J.P.; Reis, P.M. Drilling carbon fiber reinforced plastics manufactured by autoclave—Experimental and statistical study. Mater. Eng. 2003, 24, 315–324. [Google Scholar] [CrossRef]
- Tsao, C.; Hocheng, H. A Review of Backup Mechanism for Reducing Delamination when Drilling Composite Laminates. J. Res. Updates Polym. Sci. 2016, 5, 97–107. [Google Scholar] [CrossRef]
- Siddiquee, A.N.; Khan, Z.A.; Goel, P.; Kumar, M.; Agarwal, G.; Khan, N.Z. Optimization of Deep Drilling Process Parameters of AISI 321 Steel Using Taguchi Method. Procedia Mater. Sci. 2014, 6, 1217–1225. [Google Scholar] [CrossRef]
- Fard, M.G.; Baseri, H.; Zolfaghari, A. Experimental investigation of the effective parameters and performance of different types of structural tools in drilling CFRP/AL alloy stacks. J. Compos. Mater. 2022, 56, 4461–4471. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Predicting the delamination factor in carbon fibre reinforced plastic composites during drilling through the Gaussian process regression. J. Compos. Mater. 2021, 55, 2061–2068. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Machine learning the magnetocaloric effect in manganites from compositions and structural parameters. AIP Adv. 2020, 10, 035220. [Google Scholar] [CrossRef]
- Jong, W.R.; Huang, Y.M.; Lin, Y.Z.; Chen, S.C.; Chen, Y.W. Integrating Taguchi method and artificial neural network to explore machine learning of computer aided engineering. J. Chin. Inst. Eng. 2020, 43, 346–356. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Machine learning cutting force, surface roughness, and tool life in high-speed turning processes. Manuf. Letters. 2021, 29, 84–89. [Google Scholar] [CrossRef]
- Zuperl, U.; Čuš, F. Tool cutting force modeling in ball-end milling using multilevel perceptron. J. Mater. Process. Technol. 2004, 153–154, 268–275. [Google Scholar] [CrossRef]
- Aykut, Ş.; Gölcü, M.; Semiz, S.; Ergür, H.S. Modeling of cutting forces as function of cutting parameters for face milling of satellite 6 using an artificial neural network. J. Mater. Process. Technol. 2007, 190, 199–203. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zhang, J.; Pan, J.; Zhang, L.; Tan, F.; Wei, H.; Zhang, W. High-Temperature effect on the tensile mechanical properties of unidirectional carbon Fiber-Reinforced polymer plates. Materials 2021, 14, 7214. [Google Scholar] [CrossRef]
- Geng, D.; Liu, Y.; Shao, Z.; Lu, Z.; Cai, J.; Li, X.; Jiang, X.; Zhang, D. Delamination formation, evaluation and suppression during drilling of composite laminates: A review. Compos. Struct. 2019, 216, 168–186. [Google Scholar] [CrossRef]
- Sorrentino, L.; Turchetta, S.; Bellini, C. A new method to reduce delaminations during drilling of FRP laminates by feed rate control. Compos. Struct. 2018, 186, 154–164. [Google Scholar] [CrossRef]
- Seif, A.; Fathy, A.; Megahed, A.A. Effect of drilling process parameters on bearing strength of glass fiber/aluminum mesh reinforced epoxy composites. Sci. Rep. 2023, 13, 12143. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Q.; Qi, Z.; Chen, W. Scale-span modelling of dynamic progressive failure in drilling CFRPs using a tapered drill-reamer. Compos. Struct. 2021, 278, 114710. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.; Qi, Z.; Chen, W. Defect suppression mechanism and experimental study on longitudinal torsional coupled rotary ultrasonic assisted drilling of CFRPs. J. Manuf. Process. 2021, 70, 177–192. [Google Scholar] [CrossRef]
- Hocheng, H.; Tsao, C.C. Comprehensive analysis of delamination in drilling of composite materials with various drill bits. J. Mater. Process. Technol. 2003, 140, 335–339. [Google Scholar] [CrossRef]
- Geier, N.; Xu, J.; Pereszlai, C.; Poór, D.I.; Davim, J.P. Drilling of carbon fibre reinforced polymer (CFRP) composites: Difficulties, challenges and expectations. Procedia Manuf. 2021, 54, 284–289. [Google Scholar] [CrossRef]
- Tsao, C.; Hocheng, H. Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. J. Mater. Process. Technol. 2007, 203, 342–348. [Google Scholar] [CrossRef]
Parameters | Units |
---|---|
Tensile strength (GPa) | 3800 |
Young modulus (GPa) | 62 |
Shear strength (MPa) | 75 |
Glass transition (°C) | 170 |
Level | Spindle Speed (RPM) | Feed Rate (mm/rev) | Tool |
---|---|---|---|
1 | 1000 | 0.02 | (a) |
2 | 2000 | 0.05 | (b) |
3 | 3000 | 0.79 | (c) |
Test No. | Factors | Condition | Delamination (Fd) | PLS Prediction | S/N Ratio | ||
---|---|---|---|---|---|---|---|
A | B | C | |||||
1 | 1000 | 0.02 | 1 | A1B1C1 | 1.014 | 1.018 | −0.12076 |
2 | 1000 | 0.05 | 1 | A1B2C1 | 1.043 | 1.018 | −0.36569 |
3 | 1000 | 0.79 | 1 | A1B3C1 | 1.031 | 1.026 | −0.26517 |
4 | 2000 | 0.02 | 1 | A2B1C1 | 1.035 | 1.055 | −0.29881 |
5 | 2000 | 0.05 | 1 | A2B2C1 | 1.032 | 1.056 | −0.27359 |
6 | 2000 | 0.79 | 1 | A2B3C1 | 1.025 | 1.063 | −0.21448 |
7 | 3000 | 0.02 | 1 | A3B1C1 | 1.024 | 1.093 | −0.206 |
8 | 3000 | 0.05 | 1 | A3B2C1 | 1.028 | 1.094 | −0.23986 |
9 | 3000 | 0.79 | 1 | A3B3C1 | 1.027 | 1.101 | −0.23141 |
10 | 1000 | 0.02 | 2 | A1B1C2 | 1.061 | 1.061 | −0.51431 |
11 | 1000 | 0.05 | 2 | A1B2C2 | 1.063 | 1.061 | −0.53067 |
12 | 1000 | 0.79 | 2 | A1B3C2 | 1.098 | 1.069 | −0.81205 |
13 | 2000 | 0.02 | 2 | A2B1C2 | 1.1 | 1.098 | −0.82785 |
14 | 2000 | 0.05 | 2 | A2B2C2 | 1.287 | 1.099 | −2.19157 |
15 | 2000 | 0.79 | 2 | A2B3C2 | 1.217 | 1.107 | −1.70581 |
16 | 3000 | 0.02 | 2 | A3B1C2 | 1.102 | 1.136 | −0.84363 |
17 | 3000 | 0.05 | 2 | A3B2C2 | 1.271 | 1.137 | −2.08291 |
18 | 3000 | 0.79 | 2 | A3B3C2 | 1.285 | 1.144 | −2.17806 |
19 | 1000 | 0.02 | 3 | A1B1C3 | 1.063 | 1.104 | −0.53067 |
20 | 1000 | 0.05 | 3 | A1B2C3 | 1.065 | 1.104 | −0.54699 |
21 | 1000 | 0.79 | 3 | A1B3C3 | 1.093 | 1.112 | −0.7724 |
22 | 2000 | 0.02 | 3 | A2B1C3 | 1.063 | 1.142 | −0.53067 |
23 | 2000 | 0.05 | 3 | A2B2C3 | 1.109 | 1.142 | −0.89863 |
24 | 2000 | 0.79 | 3 | A2B3C3 | 1.137 | 1.150 | −1.11521 |
25 | 3000 | 0.02 | 3 | A3B1C3 | 1.113 | 1.179 | −0.9299 |
26 | 3000 | 0.05 | 3 | A3B2C3 | 1.162 | 1.180 | −1.30412 |
27 | 3000 | 0.79 | 3 | A3B3C3 | 1.2 | 1.187 | −1.58362 |
1 | 2 | |
---|---|---|
1 | 0.0343 | 0.9370 |
2 | 0.2400 | 0.0105 |
3 | 0.3928 × 10−4 | 3.7833 × 10−5 |
4 | 0.9884 | 0.0431 |
Feed Rate | Spindle Speed | Tool (a) (S/N Ratio) | Tool (b) (S/N Ratio) | Tool (c) (S/N Ratio) |
---|---|---|---|---|
0.02 | 1000 | −0.121 | −0.514 | −0.531 |
0.02 | 2000 | −0.299 | −0.828 | −0.531 |
0.02 | 3000 | −0.206 | −0.844 | −0.930 |
0.05 | 1000 | −0.366 | −0.531 | −0.547 |
0.05 | 2000 | −0.274 | −2.192 | −0.899 |
0.05 | 3000 | −0.240 | −2.083 | −1.304 |
0.79 | 1000 | −0.265 | −0.812 | −0.772 |
0.79 | 2000 | −0.214 | −1.706 | −1.115 |
0.79 | 3000 | −0.231 | −2.178 | −1.584 |
Source | DF | Seq SS | Adj SS | Adj MS | Contribution |
---|---|---|---|---|---|
Feed rate | 2 | 1.111 | 1.111 | 0.5555 | 9.1% |
Spindle speed | 2 | 1.546 | 1.546 | 0.7732 | 9.4% |
Tool no | 2 | 5.101 | 5.101 | 2.5506 | 20.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fard, M.G.; Baseri, H.; Azami, A.; Zolfaghari, A. Prediction of Delamination Defects in Drilling of Carbon Fiber Reinforced Polymers Using a Regression-Based Approach. Machines 2024, 12, 783. https://doi.org/10.3390/machines12110783
Fard MG, Baseri H, Azami A, Zolfaghari A. Prediction of Delamination Defects in Drilling of Carbon Fiber Reinforced Polymers Using a Regression-Based Approach. Machines. 2024; 12(11):783. https://doi.org/10.3390/machines12110783
Chicago/Turabian StyleFard, Mohammad Ghasemian, Hamid Baseri, Aref Azami, and Abbas Zolfaghari. 2024. "Prediction of Delamination Defects in Drilling of Carbon Fiber Reinforced Polymers Using a Regression-Based Approach" Machines 12, no. 11: 783. https://doi.org/10.3390/machines12110783
APA StyleFard, M. G., Baseri, H., Azami, A., & Zolfaghari, A. (2024). Prediction of Delamination Defects in Drilling of Carbon Fiber Reinforced Polymers Using a Regression-Based Approach. Machines, 12(11), 783. https://doi.org/10.3390/machines12110783