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Abstract: Optical mirrors have high requirements for surface precision, requiring ultra-precision
processing. The revolving movement of a computer-controlled optical surfacing (CCOS) grinding
system will induce vibrations in a five-degrees-of-freedom hybrid processing robot (5-DOF-HPR) and
a flexible support system (FSS) in a large optical mirror processing system (LOMPS). As a result, the
mirror surface will vibrate, which will ultimately affect the surface accuracy of the final optical mirror.
Therefore, the differential equation representing the vibration of the 5-DOF-HPR is established based
on the spatial beam unit, which transforms the generalized coordinates into modal coordinates,
thereby removing the coupling terms of the vibration differential under generalized coordinates. At
the same time, a dynamic analysis of the CCOS grinding system is performed, and the magnitude and
direction of the centrifugal force and reaction force are calculated. Then, the natural frequencies of
the 5-DOF-HPR and the FSS are measured experimentally and compared with the simulation results;
thus, the accuracy and effectiveness of the model are verified. Finally, the vibration characteristics
of the processed optical mirrors under different influencing factors are obtained. A theoretical and
experimental basis for parameter optimization and path planning of the LOMPS is provided to
improve the surface accuracy of the processed optical mirror.

Keywords: optical mirror processing; elastic dynamics; vibration characteristics; measurement

1. Introduction

With the help of evolving technology, modern optical mirrors are being developed
with larger apertures and higher precision, among which free-form optical mirrors are
widely used. Therefore, a large optical mirror processing system (LOMPS) that is suitable
for large sizes, aspherical, high-efficiency, and precise delivery is an urgent technological
need. To address this, a LOMPS was designed, which consisted of three heterogeneous
robots: a five-degrees-of-freedom hybrid processing robot (5-DOF-HPR), a flexible support
system (FSS), and a computer-controlled optical surfacing (CCOS) grinding system. The
5-DOF-HPR can drive the CCOS grinding system to the processing position; the FSS
grinding system can adjust the position and posture of the supported optical mirror, and
as the support stiffness is adjustable, the CCOS grinding system can perform real-time
adjustment of speed and polishing pressure [1]. The four processing steps of the mirror
surface—rough grinding, milling, fine grinding, and polishing—can be completed by the
LOMPS [2,3]. As the three robots collaborate, the task allocation, path planning, spatial
orientation, multiple disturbance mechanisms, and instantaneous dynamic characteristics
of each robot vary [4,5]. In particular, in terms of vibration characteristics, because the
CCOS grinding system uses a double planetary rotation structure, the revolution of the
object generates periodic loads on the parallel robot and optical mirror, and resonance may
occur, thereby affecting the surface accuracy of the optical mirror surface [6]. Therefore,
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it is necessary to analyze the dynamic characteristics of the LOMPS, predict the vibration
and deformation trends of the processing system, and avoid resonance. This approach
mitigates errors induced by the processing system vibrations, thereby enhancing processing
efficiency, surface quality, and geometric precision of the optical mirror [7].

In recent years, many scholars have conducted analyses and research on the dynamic
characteristics of different types of robots. To improve the productivity rate without any
loss of positioning accuracy, Ariano et al. studied the vibration behavior of industrial
manipulator Racer-7-1.4 to reduce its residual vibration and execution time [8]. Hwang
et al. established a precise dynamic model of a cable-driven parallel robot under constrained
conditions and obtained the natural frequency relative to the position of the end effector,
which provided a favorable understanding for the establishment of a vibration suppression
scheme [9]. Zhang et al. studied the problem of residual vibration caused by the joint
flexibility of a 6-DOF industrial robot and proposed an adaptive input shaping method
to suppress the residual vibration [10]. To study the natural frequency and vibration
characteristics of the manipulator under the impact of collision, Min et al. proposed
a method for estimating the vibration mode of the manipulator structure based on the
peak frequency [11]. Yoon et al. proposed a method to reduce the residual vibration of
a manipulated object by optimizing the acceleration/deceleration time using the object’s
natural frequency [12]. Based on the Stewart platform, Wu et al. discussed the effects
of strut masses and payload on the natural frequency and dynamic isotropy index, and
optimized vibration isolation [13]. Yang et al. formulated a fourth-order periodic time-
varying nonlinear dynamic equation for a spin spherical capsule robot subjected to complex
external torque utilizing Euler dynamics principles. The dynamic characteristics of the
robot were subsequently validated through experimental investigations [14].

Many scholars have tested different research methods when analyzing the dynamic
characteristics of robots with different configurations. Tang et al. conducted an analysis of
the influence of robot posture on the dynamic flexibility of the end effector based on the
robot’s end effector relative dynamic compliance index. This research provides theoretical
guidance for enhancing the vibration resistance and dynamic performance of traditional
cleaning robots [15]. Hoevenaars et al. presented a novel natural frequency analysis method
for parallel manipulators that focused on the lowest natural frequencies and expressed the
corresponding eigenmodes in an end effector Cartesian reference frame [16]. Ma et al. used
operator algebra to derive the equation of motion required to study the dynamics of a space
manipulator [17]. Wu et al. used a variety of techniques to modify the finite element model,
and the results showed that the improved model could predict the vibration characteristics
of an experimental crane with satisfactory accuracy [18]. Nguyen et al. presented a Gaussian
process, regression-based approach to model the dynamic properties of a 6-DOF industrial
robot within its workspace in order to determine the discrete sampling modal parameters
of the robot structure through an experimental modal analysis and accurately predict
its modal parameters at different points in the workspace [19]. Ganesh et al. used the
stiffness matrix and dynamic mass matrix to obtain the natural frequency and global natural
frequency index of a parallel machine tool [20]. Dong et al. proposed a semi-analytical
method for robot elastic dynamics based on the screw theory to calculate low-order natural
frequencies and vibration shapes and achieved good results [21].

A support cylinder was used as the support element in the FSS. Owing to the different
working principles of mechanical–electric industrial robots, the above dynamic charac-
teristics research methods were not suitable. Therefore, many scholars have conducted
extensive research on the dynamic characteristics of hydraulic systems. Yang et al. cal-
culated the natural frequency of the robot legs throughout the entire motion cycle of the
robot. With the goal of increasing the natural frequency, the leg structure of the robot
was optimized [22]. Li et al. analyzed the natural frequency and vibration mode of a
hydraulic demolition robot using the finite element method. The optimized design of
the prototype provided a theoretical basis and reference for our experimental mode [23].
Guan et al. analyzed the dynamic response characteristics and natural frequencies of a
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column hydraulic cylinder and balance hydraulic cylinder and improved the structural
parameters to increase their natural frequency [24]. Lin et al. conducted an analysis of the
impact of structural parameters on the high- and low-frequency dynamic characteristics of
a novel bell plate hydraulic suspension system. They compared the influence of varying
numbers of bell plates on the dynamic performance of hydraulic supports across different
frequency ranges [25]. To investigate the dynamic operational characteristics of hydraulic
support lifting, Xie et al. established a rigid flexible coupling dynamic simulation model of
the hydraulic support system. They subsequently collected and analyzed the operational
characteristic parameters of the hydraulic support [26]. Xu et al. proposed a less modi-
fied measurement scheme to accurately obtain the dynamic characteristics of the cylinder
block and analyzed its dynamic characteristics under different working pressures [27]. Tao
et al. conducted an independent impedance analysis of various structures within magneto-
strictive electro-hydraulic actuators, the natural frequencies and dynamic characteristics
of manifolds, hydraulic cylinders, and accumulators. Their findings provide theoretical
guidance for optimizing the structure and performance of these actuators [28].

The above scholars analyzed the natural frequency, vibration suppression, and modal
information of parallel machine tools, hydraulic systems, and industrial robots through
different methods and achieved significant results. However, their research focused on
a single robot: there was no in-depth research on a system composed of multiple hetero-
geneous robots. In addition, the external excitations provided during most of the modal
test analyses were only artificial vibration excitations in the laboratory environment, and
the respective dynamic characteristics of the robots during the working process were not
used as influencing factors for the disturbance analysis of multirobot systems. In practical
applications, there has been no analysis or research on the vibration characteristics of the
workpiece to be processed. However, optical mirrors require high surface accuracy, and the
mirror material is brittle. These factors may affect the surface accuracy of the optical mirror
and even cause the mirror surface to be scrapped because of excessive vibration during
processing. Therefore, modal analyses and experiments on the LOMPS will significantly
advance large optical mirror processing.

In this study, the dynamic characteristics of the LOMPS, which is composed of three
heterogeneous robots, namely a 5-DOF-HPR, FSS, and CCOS grinding system, were studied
and analyzed. First, the vibration differential equation of the 5-DOF-HPR was established
based on the spatial beam unit. Then, combined with the finite element method, the vi-
bration model of the FSS was established. At the same time, a dynamic analysis of the
revolution of the CCOS grinding system was performed, and the magnitude and direction
of the centrifugal force and reaction force under the generalized coordinates were calculated.
Then, the natural frequencies of the 5-DOF-HPR and FSS were measured experimentally
and compared with the simulation results, and the accuracy and effectiveness of the model
were verified. Finally, the amplitudes of the processed optical mirrors at different operating
speeds of the 5-DOF-HPR, different support heights of the FSS, and different revolution
speeds of the CCOS grinding system were measured, and the vibration characteristics
of the processed optical mirrors under different influencing factors were obtained. The
proposed method provided a theoretical basis for analyzing the vibration characteristics of
the LOMPS and improving the surface accuracy of the processed mirror. It also provided
an experimental basis for research on the dynamic characteristics of a machining system
composed of multiple heterogeneous robots, such as machine–electro-hydraulic collabora-
tive work. At the same time, it also provided a research basis for the feasibility of precision
machining of multiconfiguration robots in complex disturbance environments.

2. Composition of the LOMPS

The 5-DOF-HPR drives the CCOS grinding system to the processing position. The
support stiffness of the FSS is adjustable, and the CCOS grinding system can adjust the
grinding speed, eccentricity, and polishing pressure. The topology of the LOMPS is shown
in Figure 1. The effective operational envelope of the engineered machining robot is a
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truncated cylinder with a base radius of 815 mm, a minimum height of 200 mm on the
Z-axis, and a maximum height of 1250 mm on the Z-axis. The flexible hydraulic support
system can accommodate optical mirrors with a maximum diameter of 1250 mm, and the
support height can be adjusted within a range of −1 mm to 1 mm.
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2.1. 5-DOF-HPR

During processing, the grinding head must be capable of reaching any position with
any attitude. As a result the robot required at least 5 DOF. The 5-DOF robot is composed of
a 3-DOF parallel manipulator and a 2-DOF series manipulator.

Establish a fixed coordinate system O1-x1y1z1 and a moving coordinate system
O2-x2y2z2 on the center points of the fixed platform and the moving platform respec-
tively. O1 and O2 are the origin; y1 points to O1A3; z1 points to O1 O2; and z1 and y2 follow
the right-hand rule.

The conjoined coordinate systems of the two rotating heads are established, and
the conjoined coordinate system of the first rotating head is O3-U1V1W1, where O3 is at
intersection point P1 of the first and second rotating heads. The direction of the W1-axis
points to O2O3; the U1-axis is collinear with the axis of the secondary rotating shaft; and
the V1-axis follows the right-hand rule. The fixed coordinate system O4-u1v1w1 of the
secondary rotating head is established at the connection point between the secondary
rotating head and the CCOS grinding system, where the w1-axis and O3O4 are collinear, v1
is collinear with the rotation axis of the secondary rotating shaft, and the u1-axis follows
the right-hand rule.

2.2. FSS

The support point of the FSS was supported by a diaphragm cylinder, which is
simplified as a support spring in Figure 1. The structure and distribution of the diaphragm
cylinder are shown in Figure 2. The large and small diaphragms make the support cylinder
form two chambers, and the beryllium bronze reed restricts the swing of the support shaft.
As shown in Figure 3, the 36 cylinders were divided into three sectors. The support height
and rigidity of the support cylinder could be controlled; thus, the posture of the optical
mirror could be adjusted.
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2.3. CCOS Grinding System

The CCOS grinding system consisted of two motors: a revolution motor and a rotation
motor. The rotation motor was eccentrically arranged relative to the revolution motor,
and the distance between the axis of the two motors could be adjusted using an eccentric
adjustment device. The rotation motor was connected to the grinding disc through a
pneumatic pressure device, and the air pressure can be adjusted. Through the Preston
equation, the relationship between the speed and pressure and the removal amount is:

dz
dt

= KVP (1)

where K is a proportional constant, V is the polishing speed, P is the positive pressure.
And the removal amount ∆z of the surface material of a processing element, as shown in
Equation (2).

∆z(x, y) = K
∫

V(x, y, t)P(x, y)dt (2)

3. Dynamic Characteristic Analysis of LOMPS

During the operation of the LOMPS, the robots affected each other. As these three
robots had different configurations, their dynamic characteristics were also completely
different. Therefore, it was also necessary to analyze the three robots separately during the
dynamic analysis process.

3.1. Dynamic Characteristic Analysis of the 5-DOF-HPR
3.1.1. Element Division and Establishment of Element Dynamics

When a beam in space is deformed, the component elements of the beam are forced to
undergo deformation. Here, the j-th unit model on the i-th branch was selected for analysis.
A model of the spatial beam element is shown in Figure 4.
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The element coordinate system Oij-xijyijzij on the element node was established,
and the element coordinate system coincided with the branch chain coordinate system.
δ = [δ1, δ2, · · · , δ18]

T was used as the generalized coordinate vector for the beam element.
Among them, δ1–δ3 and δ10–δ12 represented the elastic displacements of the element nodes
along the xij-, yij-, and zij-axes; δ4–δ6 and δ13–δ15 represented the elastic rotation angles of
the element nodes along the xij-, yij-, and zij-axes, and δ7–δ9 and δ16–δ18 represented the
curvature of the element nodes.

The unit kinetic energy T and the unit variable performance V are respectively,

T =
1
2
(
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T
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.
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.
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V =
1
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where
.
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.
δ18], Me is the element mass matrix, Ke is the element stiffness matrix,
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.
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.
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.
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.
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.
yBij, and

.
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at the cell node Bij, respectively; and
.
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along the x-, y-, and z-axes at the cell node Aij, respectively.
From the Lagrange equation,
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)
− ∂T
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= F (5)

The dynamic equation of the element is obtained.

Me
..
δ + Ce

.
δ + Keδ = Fe + Pe + Qe (6)

where Ce is the element damping matrix, Fe is the element generalized external force
(including force and moment), Pe is the force between beam elements, and Qe is the rigid
body inertial force array of the system element.

The transformation matrix
¯
Rij from the element coordinate system to the fixed coor-

dinate system is introduced, and the elastic dynamic equation of the element in the fixed
coordinate system is obtained.

¯
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3.1.2. Elastic Dynamic Analysis of UPS Branch Chain

As shown in Figure 5, the UPS branch chain can be regarded as composed of a swing
rod, telescopic rod, and composite ball hinge. The swing rod is divided into 1⃝ and 2⃝ parts;
the telescopic rod is divided into 3⃝ and 4⃝ parts, and 2⃝ in the swing rod coincides with
3⃝ in the telescopic rod. As there were degrees of freedom in the mechanism, the stiffness

matrix was singular. The BiCi of the moving pair could be regarded as a rigid connection
to eliminate the rigid degrees of freedom; hence, the moving mechanism could be regarded
as an “instantaneous structure” in a short period of time. Ai was a Hooke joint connecting
the UPS and the fixed platform. As the Hooke hinge connection can be regarded as a
composite of two rotation pairs whose axes are perpendicular to one another, the curvature
of the two equivalent rotation pairs at the Ai node was zero. Ai was connected to a fixed
platform; therefore, the elastic displacement at point Ai and the elastic rotation angle in the
two rotation directions were also zero. In other words, there were only two generalized
coordinates for the elastic rotation angle and curvature around the ZAi-axis at point Ai.
The coupling technology of finite element node degrees of freedom was used to model the
relationship between the telescopic rod and the swing rod. Point Bi on the swing rod and Bi
on the telescopic rod were 3-DOF couplings, and their elastic displacements were the same.
There was a 6-DOF coupling between Ci on the swing rod and Ci on the telescopic rod,
and its elastic displacement and elastic rotation angle were the same. There was a fixed
connection between Di on the swing rod and Di on the composite ball hinge, and there was
a DOF around the ZAi direction, so its elastic displacement and elastic rotation angle were
the same. And the rotation angle and curvature in the ZAi direction were zero. Point ai
was a composite spherical hinge, and only the rotation angle and curvature around the
ZAi-axis were non-zero elastic deformations: the rest were zero. As shown in Figure 6, the
deformation of the branched chain can be represented by ui1–ui48.
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rod, telescopic rod, and composite ball hinge. The swing rod is divided into ① and ② 
parts; the telescopic rod is divided into ③ and ④ parts, and ② in the swing rod coincides 
with ③ in the telescopic rod. As there were degrees of freedom in the mechanism, the 
stiffness matrix was singular. The BiCi of the moving pair could be regarded as a rigid 
connection to eliminate the rigid degrees of freedom; hence, the moving mechanism could 
be regarded as an “instantaneous structure” in a short period of time. Ai was a Hooke joint 
connecting the UPS and the fixed platform. As the Hooke hinge connection can be re-
garded as a composite of two rotation pairs whose axes are perpendicular to one another, 
the curvature of the two equivalent rotation pairs at the Ai node was zero. Ai was con-
nected to a fixed platform; therefore, the elastic displacement at point Ai and the elastic 
rotation angle in the two rotation directions were also zero. In other words, there were 
only two generalized coordinates for the elastic rotation angle and curvature around the 
ZAi-axis at point Ai. The coupling technology of finite element node degrees of freedom 
was used to model the relationship between the telescopic rod and the swing rod. Point 
Bi on the swing rod and Bi on the telescopic rod were 3-DOF couplings, and their elastic 
displacements were the same. There was a 6-DOF coupling between Ci on the swing rod 
and Ci on the telescopic rod, and its elastic displacement and elastic rotation angle were 
the same. There was a fixed connection between Di on the swing rod and Di on the com-
posite ball hinge, and there was a DOF around the ZAi direction, so its elastic displacement 
and elastic rotation angle were the same. And the rotation angle and curvature in the ZAi 
direction were zero. Point ai was a composite spherical hinge, and only the rotation angle 
and curvature around the ZAi-axis were non-zero elastic deformations: the rest were zero. 
As shown in Figure 6, the deformation of the branched chain can be represented by ui1–
ui48. 
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As the attitude transformation matrix was an orthogonal matrix, the attitude trans-
formation matrices from the reference coordinates O1-x1y1z1 to the Ai, Bi, Ci, and Di coordi-
nate systems were as follows: 
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The element coordinate system Ai-xAiyAizAi was established at Ai of the AiBi element,
and the posture of the coordinate system was the same as that of the fixed coordinate
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system Ai-uiviwi (i = 1, 2, 3) of the UPS branch chain. Similarly, the element coordinate
system was also established at nodes Bi, Ci, Di, and ai. Then, the posture transformation
matrix from the element coordinate system Ai-xAiyAizAi to the reference coordinate system
O1-x1y1z1 could be expressed as

Ri1 =

 cϕi 0 −sϕi
sφisϕ cφi sφicϕi
cφisϕi −sφi cφicϕ

 (8)

As the attitude transformation matrix was an orthogonal matrix, the attitude transfor-
mation matrices from the reference coordinates O1-x1y1z1 to the Ai, Bi, Ci, and Di coordinate
systems were as follows:

Rik = Rik
−1 = Rik

T =

 cϕik sφiksϕik cφiksϕik
0 cφik −sφik

−sϕik sφikcϕik cφikcϕik

(i = 1, 2, 3; k = 1, 2, 3, 4, 5) (9)

Then, the transformation relationship between the element generalized coordinate
system and the system generalized coordinate system of element components 1⃝, 2⃝, 3⃝, 4⃝,
and 5⃝ is as follows:

δAiBi = diag
(
Ri1 Ri1 Ri1 Ri1 Ri1 Ri1

)
uAiBi

δ2BiCi = diag
(
Ri2 Ri2 Ri2 Ri2 Ri2 Ri2

)
u2BiCi

δ3BiCi = diag
(
Ri2 Ri2 Ri2 Ri2 Ri2 Ri2

)
u3BiCi

δCiDi = diag
(
Ri3 Ri3 Ri3 Ri3 Ri3 Ri3

)
uCiDi

δDiai = diag
(
Ri4 Ri4 Ri4 Ri4 Ri4 Ri4

)
uDiai

where δ is the element generalized coordinate and u is the system generalized coordinate.
The dynamic equation of elements 1⃝, 2⃝, 3⃝, 4⃝, and 5⃝ is as follows:

Mk
e

..
δ

k
+ Ck

e
.
δ

k
+ Kk

e δk = Fk
e + Pk

e + Qk
e (10)

where Mk
e is the mass matrix of the component, Ck

e is the damping matrix of the component,
Kk

e is the stiffness matrix of the component, δk is the generalized coordinates of the element
at the k-th component, Fk

e is the external load, Pk
e is the force exerted by other components

of the system, and Qk
e is the inertia force of the rigid body.

The dynamic equation of the branched chain Aiai in the system coordinates can be
obtained by assembling the unit components 1⃝, 2⃝, 3⃝, 4⃝, and 5⃝.

Mi
e

..
ui + Ci

e
.
ui + Ki

eui = Fi
e + Pi

e + Qi
e (11)

where Mi
e is the mass matrix of branch chain i, Ci

e is the damping matrix of branch chain i,
Ki

e is the stiffness matrix of branch chain i, ui is the node system coordinate of branch chain
i, Fi

e is the applied load of branch chain i, Pi
e is the force exerted on the branch chain i by

other components of the system, and Qi
e is the rigid body inertia force of branch chain i.

3.1.3. Elastic Dynamic Analysis of UP Branch Chain

The restrained branch UP was connected to a moving pair and static platform at the
center point O1 of the static platform through the hook hinge; thus, UP branch O1O2 could
be regarded as a beam element. The generalized coordinates of O1 were the same as those
of Ai. Thus, UP branch O1O2 had 11 nonzero generalized coordinates. The generalized
coordinates of UP restrained chain in element coordinate system and reference coordinate
system are shown in Figures 7 and 8.
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The element coordinate system O1-u4v4w4 was established at the O1 point of the UP-
constraint branch. Then, the posture transformation matrix from the element coordinate
system to the reference coordinate system O1-x4y4z4 could be expressed as

R4 =

 cϕ4 sφ4sϕ4 cφ4sϕ4
0 cφ4 −sφ4

−sϕ4 sφ4cϕ4 cφ4cϕ

 (12)

The transformation relationship between the generalized coordinate system of the
element and the generalized coordinate system of the UP branch chain is as follows:

δO1O2 = diag
(
R4 R4 R4 R4 R4 R4

)
uO1O2 (13)

Then, the dynamic equation of the constrained branch chain in the system coordinates
is given as:

M4
e

..
u4 + C4

e
.
u4 + K4

e u4 = F4
e + P4

e + Q4
e (14)

where M4
e is the mass matrix of the constrained branch chain, C4

e is the damping matrix of
the constrained branch chain, K4

e is the stiffness matrix of the constrained branch chain, u4
is the node system coordinate of the constrained branch chain, F4

e is the applied load of
the constrained branch chain, P4

e is the force exerted on the constrained branch chain by
other components of the system, and Q4

e is the rigid body inertia force of the constrained
branch chain.

3.1.4. Constraints for the 5-DOF-HPR

The stiffness of the moving platform was much greater than that of the branch chain
component. Therefore, the elastic deformation of the moving platform could be ignored.
The rigid body in space had six independent DOFs, so the displacement of the moving
platform and each branch chain connection node was not independent. It was a function of
six independent parameters of the moving platform and satisfied the following conditions.
(1) Kinematic constraints: the displacement of the connection point between the branch
chain and moving platform must be consistent with the displacement of the connection
point between the moving platform and branch chain; (2) Dynamic constraints: the sum
of the forces of each branch chain on the moving platform should be balanced with the
external force and inertial force acting on the moving platform. The constraint relationship
between the moving platform and the branch chain is shown in Figure 9.
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Figure 9. Constraint relationship between moving platform and branch chain (The light blue part of
the figure is the displacement caused by elastic deformation of the component).

Suppose the transformation rotation matrix of the dynamic coordinate system O2-
x2y2z2 relative to the fixed coordinate system O1-x1y1z1 is O1

O2
R. Assuming that the actual

posture of the moving platform is at O2, the actual posture of the moving platform changes
slightly (δα, δβ, δγ, δx2, δy2, and δz2) owing to the elastic deformation of the system branch
chain, making the O2 point move to O2

′; the transformation matrix from coordinate system
O2-x2y2z2 to coordinate system O2

′-x2
′y2

′z2
′ is ∆R.

∆R =


c(δα)c(δβ) c(δα)s(δβ)s(δγ)− s(δα)c(δγ) c(δα)s(δβ)c(δγ) + s(δα)s(δγ) δxO2

s(δα)c(δβ) s(δα)s(δβ)s(δγ) + c(δα)c(δγ) s(δα)s(δβ)c(δγ)− c(δα)s(δγ) δyO2

−s(δβ) c(δβ)s(δγ) c(δβ)c(δγ) δzO2

0 0 0 1

 (15)

Given the minimal deformation of the parallel module, the alternations in the orienta-
tion and position parameters of the moving platform resulting from the elastic deformation
of the branch chain approached negligibility. Applying Taylor’s formula and McLaughlin’s
expansion, it can be concluded that:{

c(δα) ≈ 1
s(δα) ≈ δα

{
c(δβ) ≈ 1
s(δβ) ≈ δβ

{
c(δγ) ≈ 1
s(δγ) ≈ δγ

The coordinate transformation matrix can be rewritten as:

∆R ≈


1 −δα δβ δxO2

δα 1 δγ δyO2

−δβ δγ 1 δzO2

0 0 0 1

 (16)

Therefore, the coordinate transformation matrix from the coordinate system O2
′-

x2
′y2

′z2
′ after elastic deformation to the reference coordinate system O1-x1y1z1 can be

expressed as
O1
O2

′R = ∆RO1
O2

R (17)

Then, the expression of the coordinate system O2
′-x2

′y2
′z2

′ in the reference coordinate
system O1-x1y1z1 is 

x′ai
y′ai
z′ai
1


O1

= ∆RO1
O′

2
R


xai
yai
zai
1


O′

2

= ∆R


xai
yai
zai
1


O1

(18)
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Further 
∆xai
∆yai
∆zai

0


O1

=


x′ai
y′ai
z′ai
1


O1

−


xai
yai
zai
1


O1

= (∆R − E)


xai
yai
zai
1


O1

(19)

where E denotes the identity matrix. In the fixed coordinate system O1-x1y1z1, the above
equation can be expressed as:

∆xai
∆yai
∆zai

 =

1 zai −yai
1 −zai xai

1 yai −xai


O1



δxO2

δyO2

δzO2

δγ
δβ
δα

 (20)

The equation of motion is abbreviated as:

qai = Jaiq0 (21)

where qai is the elastic displacement of point ai and q0 denotes the three displacements and
three rotation variables of the moving platform. Jai is a kinematic constraint matrix.

Considering the Z-Y-X Euler angles (α, β, γ) to represent the attitude of the moving
platform a1a2a3, the coordinate system O2-x2y2z2 fixed to the moving platform can be
obtained from the fixed coordinate system O1-x1y1z1 by rotating angle α around the Z-axis,
angle β around the Y-axis, and angle γ around the X-axis. Then, the posture transformation
matrix from the system coordinate U0 to element coordinate δ0 for the displacement
change of movable platform a1a2a3 caused by the elastic deformation of each branch chain
component is as follows:

R0 =

 cαcβ sαcβ −sβ
cαsβsγ − sαcγ sαsβsγ + cαcγ cβsγ
cαsβcγ + sαsγ sαsβcγ − cαsγ cβcγ

 (22)

Then,
δ0 = B0 U0 (23)

where B0 =

[
R0

R0

]
, δ0 = [δ01 δ02 δ03 δ04 δ05 δ06]T, δ0 is the displacement change of the

movable platform caused by the elastic deformation of each branch chain component in
the local coordinate system O2

′-x2
′y2

′z2
′, and U0 = [u1 u2 u3 u4 u5 u6]T, where U0 is the

displacement of the movable platform caused by the deformation of each branch chain
component in the fixed coordinate system O1-x1y1z1.

The coupling effect between the nominal motion and the micro motion of the moving
platform caused by the elastic deformation of the branched-chain components is not
considered. From the foregoing analysis, in the reference coordinate system O1-x1y1z1, the
speed and acceleration of the moving platform can be expressed as

.
uO1 =



.
xO1 +

.
u1.

yO1
+

.
u2

.
zO1 +

.
u3.

γ +
.
u4.

β +
.
u5.

α +
.
u6


,

..
uO1 =



..
xO1 +

..
u1..

yO1
+

..
u2

..
zO1 +

..
u3..

γ +
..
u4..

β +
..
u5..

α +
..
u6


(24)
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The dynamic equation of the moving platform of the system can be obtained as

m0
m0

m0
Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz





..
xO1 +

..
u1..

yO1
+

..
u2

..
zO1 +

..
u3..

γ +
..
u4..

β +
..
u5..

α +
..
u6


=



∑ Fix
∑ Fiy
∑ Fiz

∑ Mix
∑ Miy
∑ Miz

+



∑ FO1x
∑ FO1y
∑ FO1z

∑ MO1x
∑ MO1y
∑ MO1z

 (25)

where ∑FO1x, ∑FO1y, and ∑FO1z are the components of the external force acting on the
moving platform in the X-, Y-, and Z-axis directions; ∑MO1x, ∑MO1y, and ∑MO1z are the
components of the external torque acting on the moving platform around the X-, Y-, and
Z-axes; ∑Fix, ∑Fiy, and ∑Fiz are the components of the resultant force of each branch chain
acting on the moving platform in the X-, Y-, and Z-axis directions; ∑Mix, ∑Miy, and ∑Miz
are the components of the torque of each branch chain acting on the moving platform
around the X-, Y-, and Z-axes; Ixx, . . ., Izz are the moments of inertia and product of inertia
of the moving platform; and m0 is the mass of the moving platform.

This equation can be abbreviated (under dynamic constraint conditions) as:

M0
..
U0 = f0 + F0 − M0

..
U0r (26)

where M0 is the generalized mass matrix of the moving platform, f 0 is the resultant force
matrix of the branched chain acting on the moving platform; F0 is the resultant force matrix
of the external force acting on the moving platform, and

..
U0r is the nominal acceleration

array of the moving platform.

3.1.5. System Dynamics Equation

Using the system dynamics constraint equations and combining the dynamic equations
of each branch chain, the dynamic equation of the system can be expressed as

M
..
U + C

.
U + KU = F − M

..
Ur (27)

where M is the total mass matrix, C is the total damping matrix, K is the total stiffness
matrix, F is the generalized force matrix,

..
Ur is the rigid body acceleration matrix, U is the

generalized coordinate array, and
..
U is the elastic acceleration array.

The natural frequency of the 5-DOF-HPR was analyzed according to the established
model. The natural frequency of the testing machine was related to its position and posture
in the workspace. In the simulation, the parameters of the robot in the workspace were
α = −30◦–30◦, β = −30◦–30◦, Z = 1400 mm, α1 = 0◦, and α2 = 4◦. α, β, and Z were the pose
parameters of the robot in its fixed coordinate system; α1 was the angle of the first rotating
head; and α2 was the angle of the secondary rotating head.

According to the simulation results shown in Figure 10, the first four natural fre-
quencies of the 5-DOF-HPR all presented a convex shape in the middle and a concave
shape around the periphery, and the higher the order of the natural frequency, the larger
the frequency span became. The first natural frequency ranged from 23 to 47 Hz; the
second natural frequency ranged from 58 to 83 Hz; the third natural frequency ranged
from 75 to 117 Hz; and the fourth natural frequency ranged from 110 to 158 Hz. As the
first four natural frequencies varied from α = −30◦ to 30◦ and β = −30◦ to 30◦, the natural
frequency exhibited a wide range of sudden changes, and the second- and third-order
natural frequencies were the most obvious.
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3.2. Dynamic Characteristics Analysis of the FSS

The support cylinder must maintain a constant pressure during the working process,
so it was assumed that the hydraulic oil in the FSS did not flow, allowing the fluid char-
acteristics to be ignored during the analysis. The chamber filled with hydraulic oil was
analyzed as a flexible component, so the entire cylinder could be simplified as a series of
multiple springs and dampers.

The 36 support cylinders were simplified into 36 sets of springs and dampers, and the
stiffness of each support cylinder was Kn (n = 1, 2, . . ., 36).

As shown in Figure 11, M is the weight of the piston; F is the load applied by the
optical mirror; ∆F is the local force applied by the polishing disc; K1 is the stiffness of the
beryllium bronze reed in the upper chamber; K2 is the stiffness of the small diaphragm
in the upper chamber; K3 is the stiffness of the hydraulic oil in the upper chamber; K4 is
the stiffness of the large diaphragm; K5 is the stiffness of the hydraulic oil in the lower
chamber; K6 is the stiffness of the small diaphragm in the lower chamber; and K7 is the
stiffness of the beryllium bronze reed in the lower chamber. C1–C7 denote the damping of
each component.
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During the working process, the displacement of the support cylinder can be expressed as:

∆L =
Vu − Vd

2S
(28)

where ∆L is the displacement of the support cylinder; ∆Vu is the volume change of the
upper chamber; ∆Vd is the volume change of the lower chamber; and S is the cross-sectional
area of the support piston.

When the support shaft of the support cylinder changes ∆L, the volume of the upper
and lower chambers can be expressed as:

Vu = f
(
W, L, ∆L, ∆L1, ∆L3, ∆L4, ∆L6, Rp

)
(29)

Vd = f
(
W, L, ∆L, ∆L2, ∆L3, ∆L5, ∆L6, Rp

)
(30)

where W =

W1
. . .

Wm

 and L =

L1
. . .

Ln

 are the structural parameters of the

support cylinder; m and n indicate the number of radial and axial structural parameters
of the support cylinder; ∆L1 is the extension quantity of the small rolling diaphragm in
the upper chamber; ∆L2 is the extension quantity of the small rolling diaphragm in the
lower chamber; ∆L3 is the extension quantity of the large rolling diaphragm; ∆L4 is the
compression quantity of the small rolling diaphragm in the upper chamber; ∆L5 is the
compression quantity of the small rolling diaphragm in the lower chamber; ∆L6 is the
compression quantity of the large rolling diaphragm; and Rp is the chamfer radius of
the chamber.

Then, the hydraulic stiffnesses of the upper and lower chambers, respectively, are:

K3 =
βeS2

Vu
(31)

K5 =
βeS2

Vd
(32)

where βe is the effective bulk modulus of elasticity of hydraulic oil.
According to the equation of the volume elastic coefficient, the effective volume elastic

modulus of hydraulic oil can be expressed as:

βe = − 1
∆p

· ∆V
V

(33)

The force required for the deformation of the beryllium bronze reed and rolling
diaphragm in the positive and negative directions was analyzed using a finite element
model to calculate the stiffnesses K1, K2, and K4.

When operating in the autonomous constant-pressure support mode, the FSS exhibits
stiffness curves for both large and small diaphragms at varying deformations (Figure 12).
The red curve is the stiffness curve of the large rolling diaphragm, and the blue curve is the
deformation curve of the small rolling diaphragm. It can be seen from the change in the
curve that, although the rolling diaphragm is a nonlinear structure perpendicular to the
deformation direction, its stiffness is approximately the same when the deformation in the
positive and negative directions is the same.
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Figure 12. Stiffnesses of large and small rolling diaphragms.

The change in the stiffness of the beryllium–bronze spring from −1 mm to 1 mm
deformation was analyzed using ANSYS 2022.R1, as shown in Figure 13. It can be seen from
the curve that the stiffness of beryllium–bronze reed fluctuated within 0.6940–0.6965 N/mm,
regardless of the movement in the positive or negative direction, and its fluctuation range
was only 0.0025 N/mm. Within the allowable error range, the stiffness of beryllium bronze
reed in the stroke range can be considered a constant value.
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Then, the natural frequency of the hydraulic system is:

ω0 =
√

K0/m0 (34)

where K0 is the stiffness matrix of the support cylinder and m0 is the mass matrix of the
support cylinder.

According to the established model, the natural frequency of the support cylinder was
analyzed. The first four natural frequencies of the support cylinder at different support
heights and working pressures are shown in Figure 14. The first-order natural frequency
ranged from 8.0 to 8.3 Hz; the second-order natural frequency ranged from 12 to 16.5 Hz;
the third-order natural frequency ranged from 16 to 25.5 Hz; and the fourth-order natural
frequency ranged from 25.5 to 35 Hz. The changing trends of the first four natural frequen-
cies are symmetrical structures in the positive and negative directions of motion. Therefore,
in the follow-up research work, it is only necessary to analyze the motion of the FSS in one
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direction. The first and second frequencies changed relatively smoothly. The third and
fourth natural frequencies had a greater curvature in the direction of the support height
displacement. When the support pressure was changed, the natural frequency changes
were not obvious.
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3.3. Dynamic Characteristics Analysis of the CCOS Grinding System

As the revolution motor rotates, the planetary polishing tool system generates force
and torque on the 5-DOF-HPR. The force analysis of the CCOS grinding system is shown
in Figure 15.
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Figure 15. Force analysis of CCOS grinding system.

In the revolution module, the speed of the revolution motor is ω1; the total mass of
the module is m1; and the mass center is located on the axis of the revolution motor. The
mass center coordinate m1 is O4 m1 = (0, d1, 0) in the coordinate system O4-u1v1w1. In the
rotation module, the total mass of the module is m2; the center of mass is located on the
eccentric rod; its distance from the axis of the revolution motor is d2, and the center of mass
coordinate m2 is O4 m2 = [cos(ω1t)d2, d3,− sin(ω1t)d2] in the coordinate system O4-u1v1w1.
When the revolution motor rotates, it produces a centrifugal force Fml. At the same time, the
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tool system bears the reaction force Fif from the mirror and its own gravity. The equations
of centrifugal force, reaction force, and gravity are as follows:

Fml = m2ω1d2
Fi f = PmSm
GC = (m1 + m2)g

(35)

where Sm is the contact area between the grinding disc and the mirror and Pm is the cylinder
pressure.

During processing, assuming that the angle between the eccentric rod and the original
position is ω1t and the direction of the force is in the coordinate system O4-u1v1w1, the
centrifugal force Fml and the reaction force Fif are expressed as:

O4 Fml = Fmleml = [Fml cos(ω1t), 0,−Fml sin(ω1t)d2]
T

O4 Fi f = Fi f eif =
[
0, Fi f , 0

]T (36)

where eml is the direction vector of the centrifugal force and eif is the direction vector of the
reaction force.

4. Dynamic Characteristic Measurement Experiment
4.1. Natural Frequency Measurement Experiment of the LOMPS

In the context of optical mirror processing, robotic systems may experience resonance
due to natural frequencies at various orientations, resulting in additional forces being
exerted on the end effector during grinding operations. These unintended forces can signif-
icantly impact the quality of large-scale optical mirror processing systems. Consequently,
it is imperative to conduct comprehensive dynamic characteristic analyses to establish
a solid foundation for subsequent trajectory planning and optimization. The modal test
was carried out by pulse excitation, and the hammering mode was used as the excitation
input. An LC-2 force hammer (Donghua Test, Taizhou, China) was used as the exciting
hammer, and its sensor was a YDL-4X piezoelectric quartz force sensor (Donghua Test,
China). The collected force signal was transformed, processed, and amplified through
a DHF-7 charge amplifier (Donghua Test, China), and the signal was transmitted to the
tester. The acceleration sensors were a 608A11 ICP single-axis acceleration (Donghua Test,
China) sensor and 605B31 ICP three-axis acceleration (Donghua Test, China) sensor from
the PCB Company. The DH5923N tester (Donghua Test, China) and DHDAS analysis
software (DHDAS V1.3) were used for the test and analysis system. The collected signal
was recorded and processed by a tester, and it was further processed, converted, and calcu-
lated using analytical software. The natural frequency, vibration mode, and other modal
parameters of the testing machine system were obtained. The experimental prototype is
illustrated in Figure 16.
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4.1.1. Modal Experiment of the 5-DOF-HPR

During the experiment, the excitation point was located at the end of the secondary
rotating head, and the vibration pickup points were arranged at the secondary rotating
head, first rotating head, moving platform, compound spherical hinge, telescopic rod,
telescopic sleeve, Hooke hinge, and drive motor. Each measuring point measured the
acceleration response in the X, Y, and Z directions. The layout of the measuring points of
the experimental prototype is shown in Figure 17. To avoid the randomness of the collected
data, five hammering experiments were carried out at each vibration measuring point. The
modal information of four different postures was collected, and the average value was
taken as the final experimental result.
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was different when fast Fourier transform was performed using DHDAS, resulting in in-
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quency that appeared more frequently was regarded as the natural frequency value of this 
order. A comparison between the first four natural frequencies and the simulation values 
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Figure 17. Distribution of vibration measuring points.

DHDAS software was used to calculate and analyze the measured data. The first four
natural frequencies of the testing machine in four typical postures were measured. Posture
1: α = 0◦, β = −15◦, Z = 1200 mm, α1 = 0◦, α2 = 12◦; Posture 2: α = 35◦, β = 0◦, Z = 1400 mm,
α1 = −4◦, α2 = −9◦; Posture 3: α = 0◦, β = 20◦, Z = 1250 mm, α1 = 0◦, α2 = 24◦; and Posture 4:
α = 0◦, β = 0◦, Z = 1600 mm, α1 = 0◦, α2 = 0◦. The experimental results are shown in Figure 18.
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As shown in Figure 18, although the collected experimental data of the first four
natural frequencies of the four different postures fluctuated, they were all stable at a
certain value. Through the analysis, it can be concluded that this was because the selected
time was different when fast Fourier transform was performed using DHDAS, resulting
in inconsistent natural frequencies or loss of certain natural frequencies. Therefore, the
frequency that appeared more frequently was regarded as the natural frequency value of
this order. A comparison between the first four natural frequencies and the simulation
values of the 5-DOF-HPR is shown in Table 1.

Table 1. Natural frequencies of typical poses of the 5-DOF-HPR.

Natural Frequency 1st Order 2nd Order 3rd Order 4th Order

Posture 1
Simulation calculation value (Hz) 34.453 59.199 79.452 127.587

Experimental test value (Hz) 39.063 68.359 87.891 146.484
Relative error 11.8% 13.4% 9.6% 12.9%

Posture 2
Simulation calculation value (Hz) 44.238 70.554 103.594 147.908

Experimental test value (Hz) 48.828 78.568 117.188 161.826
Relative error 9.4% 10.2% 11.6% 8.6%

Posture 3
Simulation calculation value (Hz) 35.085 60.079 80.301 133.242

Experimental test value (Hz) 38.726 67.656 89.422 147.719
Relative error 9.4% 11.2% 10.2% 9.8%

Posture 4
Simulation calculation value (Hz) 25.957 56.876 74.212 111.084

Experimental test value (Hz) 29.297 62.846 82.642 126.953
Relative error 11.4% 9.5% 10.2% 12.5%

The data presented in Table 1 demonstrate that the error of the first four natural fre-
quencies measured by the experiments were within 13.4%. These errors were due to the
simplifying assumptions when establishing the elastodynamic model, and there were some
errors between the actual pose of the robot and the model parameters. In summary, the error
was within an acceptable range, and the natural frequency of the system calculated by the
simulation reflected the actual natural frequency of the testing machine system to a certain
extent, which verified the accuracy of the elastodynamic model of the 5-DOF-HPR. Further
analysis of the first four natural frequencies of the 5-DOF-HPR at four different positions
showed that, when the 5-DOF-HPR was in different positions, there was a large difference
between the natural frequencies, especially when the range ratio of the first natural frequency
reached 151%. The resonance phenomenon in the workspace should be avoided when path
planning and parameter setting of the 5-DOF hybrid robot are carried out.

4.1.2. Modal Experiment of the FSS

The locations of the excitation point and vibration measurement points of the modal
experiment of the FSS are shown in Figure 19. The excitation point was selected as the center
of the support base plate, and the vibration measurement points were the support cylinders.
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According to the simulation results summarized in Section 3.2, the natural frequency
of the support cylinder was mainly affected by the support height, and the change in the
support pressure did not affect it. Therefore, during the experiment, the support pressure
of the FSS was maintained at 0.5 MPa, and the support height was varied. The experimental
process was the same as that described in Section 4.1.1. Each vibration measurement point
was subjected to five hammering experiments. The modal information of four different
postures was collected, and the average value was taken as the final experimental result.
The experimental results are presented in Figure 20. The analysis method was the same
as that in Section 4.1.1, and the comparison between the first four natural frequencies and
simulation values of the FSS is shown in Table 2.
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Table 2. Natural frequencies of typical postures of FSS.

Natural Frequency 1st Order 2nd Order 3rd Order 4th Order

Posture 1
Simulation calculation value (Hz) 8.136 12.065 16.09 25.434

Experimental test value (Hz) 8.970 13.773 18.181 29.747
Relative error 9.3% 12.4% 11.5% 14.5%

Posture 2
Simulation calculation value (Hz) 8.124 12.104 18.582 31.771

Experimental test value (Hz) 9.274 13.993 21.139 36.062
Relative error 12.4% 13.5% 12.1% 11.9%
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Table 2. Cont.

Natural Frequency 1st Order 2nd Order 3rd Order 4th Order

Posture 3
Simulation calculation value (Hz) 8.180 14.845 23.251 34.390

Experimental test value (Hz) 9.069 16.999 24.902 36.428
Relative error 9.8% 12.67% 7.9% 5.6%

Posture 4
Simulation calculation value (Hz) 8.187 16.124 25.234 34.395

Experimental test value (Hz) 9.476 18.490 29.934 38.997
Relative error 13.6% 12.8% 15.7% 11.8%

It can be seen from Table 2 that the errors of the first four natural frequencies measured
by the experiments were within 16% compared with the simulation data. This was due
to the simplification of some parts in the vibration differential equation modeling of the
FSS. In addition, the beryllium bronze reed and rolling diaphragms were non-linear elastic
deformation components. When analyzing them, the finite-element method was used to
analyze their stiffness, and there were some errors. In addition, the working pressure of the
FSS was relatively low and was easily affected by environmental temperature, vibration, and
other factors, potentially contributing significantly to the error. In summary, the error was
within an acceptable range. The natural frequency calculated by simulation reflected the
actual natural frequency of the FSS to a certain extent, which verified the accuracy of the
elastodynamic model of the FSS.

Further analysis of the first four natural frequencies of the FSS in four different positions
showed that, when the support displacement of the FSS increased, all the natural frequencies
increased, except for the first natural frequency, which was basically unchanged. This was
caused by the nonlinear elastic deformation of the beryllium bronze spring and the rolling
diaphragm. The greater the deformation was, the greater the stiffness that was overcome,
and the natural frequency also increased. During the working process of the FSS, the support
height should be appropriately increased in the positive direction or decreased in the negative
direction, when the support conditions permit, to increase the natural frequency of the FSS.

4.1.3. Modal Experiment of the FSS and “Mirror”

In the experiment, an aluminum plate was installed on the FSS instead of a mirror. The
positions of the excitation point and the vibration measurement points on the aluminum
plate coincided with the vertical projection of the excitation point and the vibration mea-
surement points of the bottom support in Figure 19. Similarly, five hammering experiments
were carried out at each vibration measuring point. The modal information at four different
positions was collected, and the average value was taken as the final experimental result.
The experimental results are presented in Figure 21.

As shown in Table 3, it can be seen that the first four natural frequencies increased
compared with the FSS alone. This was because the installation of the mirror constrained
each support point of the FSS, resulting in a constraint relationship between the vibration
of each support cylinder. In addition, the natural frequency of the FSS and “mirror” was
related to the quality, density, and size of the mirror. Therefore, in the process of optical
mirror processing, to understand the natural frequency of the FSS and “mirror”, it is
necessary to analyze the system according to the specific mirror surface to be processed to
ensure the accuracy of the processing system.

Table 3. Natural frequencies of typical postures of FSS and “mirror”.

Natural Frequency 1st Order 2nd Order 3rd Order 4th Order

Posture 1
Experimental

test value
(Hz)

9.471 17.646 26.929 36.617
Posture 2 10.317 18.355 29.502 42.909
Posture 3 10.686 23.806 31.947 47.457
Posture 4 10.3878 24.620 36.3855 51.538
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Figure 21. First four natural frequencies of FSS and “mirror”. (a) Displacement of the FSS of 0 mm.
(b) Displacement of the FSS of 0.35 mm. (c) Displacement of the FSS of 0.70 mm. (d) Displacement of
the FSS of 1.00 mm.

4.2. Amplitude Experiment

The validity and accuracy of the mathematical model were further verified by col-
lecting the vibration state of the mirror of the LOMPS under different working conditions.
During the experiment, a 3-DOF acceleration sensor was installed on the mirror, and the
vibration information of the mirror in the X-, Y-, and Z-directions was collected.

4.2.1. Amplitude of the 5-DOF-HPR at Different Running Speeds

During optical mirror processing, the dwell time at each point was determined by the
running speed of the 5-DOF-HPR. The length of the robot’s dwell time directly impacted
the amount of mirror removal. To determine the optimal running speed of 5-DOF-HPR,
avoid the resonance of the LOMPS, and improve the accuracy of the mirror to be processed,
it is necessary to carry out further experimental acquisition of the amplitude of the mirror
at different speeds. Through the control, the support height of the FSS was maintained
at 0.8 mm, a grinding force of 20 N was applied to the CCOS grinding system, and the
rotation speed was 30 Hz. The optical mirror machining robot was made to walk in a circle
with a diameter of 400 mm on the mirror, and the amplitude of the mirror to be machined
was measured by changing the running time of the 5-DOF-HPR. In the world coordinate
system, the trajectory curve is as follows:

X = 200 cos(2πt)
Y = 200 sin(2πt)
Z = 0

(37)
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The vibration information collected by the 5-DOF-HPR walking through the trajectory
given by Equation (33) at 40–180 s is shown in Figure 22. When the running time changed,
although the collected vibration amplitude fluctuated and the robot moved faster, the ampli-
tude of the machined mirror in the X-, Y-, and Z-directions increased. During the working
process, the operating speed of the 5-DOF-HPR should be reduced as much as possible on the
premise of satisfying the processing technology and residence time requirements.
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4.2.2. Amplitude Under Different Support Heights

In the experimental process with different support heights, the 5-DOF-HPR completed
the circular trajectory in 140 s, and the speed of the CCOS grinding system was 30 Hz. The
amplitudes of different support heights were measured by changing the support height of
the FSS. The experimental results are presented in Figure 23.
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According to the experimental results collected in Figure 23, when the support height
of the FSS was 0.3 mm, the amplitude of the machined mirror increased significantly. This
was because the rotation speed of the CCOS grinding system was set to 30 Hz, and the FSS
exhibited a resonance phenomenon, which further verified the accuracy and validity of the
established mathematical model. In the working process of the LOMPS, on the premise of
meeting the requirements of the processing technology and support height, the revolution
frequency of the CCOS grinding system should avoid the natural frequency of FSS and
“mirror”, so as to avoid resonance and reduce the processing accuracy of the optical mirror.
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4.2.3. Amplitude of the CCOS Grinding System at Different Speeds

During the experiment, the 5-DOF-HPR completed a circular trajectory in 140 s. The
support height of the FSS was 1 mm. The vibration information of the processed mirror
was measured by changing the revolution frequency of the CCOS grinding system.

From the test results in Figure 24, it can be seen that, when the revolution frequency
of the CCOS grinding system was 15, 25, and 50 Hz, the amplitude of the processed
mirror significantly increased. This was related to the resonance of the first-order natural
frequencies of the 5-DOF-HPR and the first-order natural frequencies of the FSS. In order
to avoid the resonance of the machined mirror, the common speed of the CCOS grinding
system should be adjusted according to the natural frequency of the FSS and the natural
frequency of the 5-DOF-HPR to avoid the resonance of the machined mirror.
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5. Conclusions

To improve the processing accuracy of the LOMPS, the perturbation relationship of
the natural frequency of the robots to the processed, the mirror surface, and the vibration
coupling between the robots were studied. The vibration differential equations of each
robot were established and simulated. Then, it was verified through experiments that the
error between the experimental natural frequency of the 5-DOF-HPR and the simulation
result was within 12.5%, and the error between the experimental natural frequency and
the simulation result of the FSS was less than 16%. Compared with the first four natural
frequencies of the bottom support and mirror, the natural frequency of the bottom support
increased. Thus, the validity and accuracy of the established mathematical model were
verified, providing a basis for follow-up research on path planning and control systems
of the LOMPS. Finally, the amplitude of the machined mirror under different speeds
of the 5-DOF-HPR, different support heights of the FSS, and different rotational speeds
of the CCOS grinding system were measured, and the vibration characteristics of the
machined mirror under different influencing factors were analyzed. The experimental
results showed that, when the revolution frequency of the CCOS grinding system was
close to the natural frequency of the 5-DOF-HPR and the natural frequency of the FSS, the
resonance phenomenon occurred, resulting in an increase in amplitude.

The proposed method provides a theoretical basis for analyzing the vibration charac-
teristics of the LOMPS and improving the surface accuracy of the processed mirror. It also
provides an experimental basis for research on the dynamic characteristics of a machining
system composed of multiple heterogeneous robots, such as this machine–electro-hydraulic
collaborative work. At the same time, it also demonstrates the feasibility of precision
machining of multiconfiguration robots in complex disturbance environments.
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