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Abstract: The state of a machine is modeled as a controlled continuous-time Markov chain. Moreover,
the machine is being serviced at random times. The aim is to maximize the time until the machine
must be repaired, while taking the maintenance costs into account. The dynamic programming equa-
tion satisfied by the value function is derived, enabling optimal decision-making regarding inspection
rates, and special problems are solved explicitly. This approach minimizes direct maintenance costs
along with potential failure expenses, establishing a robust methodology for determining inspection
frequencies in reliability-centered maintenance. The results contribute to the advancement of mainte-
nance strategies and provide explicit solutions for particular cases, offering ideas for application in
reliability engineering.

Keywords: continuous-time Markov chain; first-passage time; homing problem; dynamic
programming; inspection and preventive maintenance

1. Introduction

The preventive maintenance framework is an essential element in ensuring the reliabil-
ity and efficiency of operating systems in the context of reliability engineering, maintenance,
and availability optimization. Maintenance planning takes into account scheduled tasks
to ensure the continuity of operations and prevent breakdowns by proactively managing
potential failures before they occur. Optimizing these strategies may prove more difficult
if degradations are considered stochastic processes, and if the inherent randomness of
system operation is taken into account. A mathematical model commonly used to represent
these processes is the continuous-time Markov chain, which effectively represents the
probabilistic state transitions of the machine over the planned period.

A key element of maintenance optimization is the adjustment of costs associated with
maintenance activities and potential system failures. An effective maintenance policy must
take into account both the direct costs of performing maintenance tasks and the indirect
costs associated with system downtime, lost production, and repairs due to failures. This
optimal adjustment is vital in areas where high demands are placed on system reliability
and availability for operational safety and process costs.

Optimal control of the frequency of inspections, a fundamental element of preventive
maintenance, is essential to achieving this objective. Inspection frequency dictates how
often a system’s condition is checked, which in turn affects the scheduling and need for
maintenance interventions. More frequent inspections can lead to excessive maintenance
costs, while less frequent inspections can increase the risk of failure and the resulting
downtime. Determining the optimal inspection rate is therefore essential to minimize
maintenance costs and improve system reliability.

Our research has focused on developing an optimal inspection and maintenance plan
for a system by modeling the state of degradation as a continuous-time Markov chain. The
basic concept is to dynamically regulate the inspection rate u, which specifies the frequency
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or intensity of preventive maintenance tasks. This inspection rate u serves as a control
parameter that balances the trade-off between maintenance actions and the risk of system
failure. A higher u inspection rate results in more inspection tasks, which may reduce
failure rates but simultaneously increases direct inspection–maintenance costs. Conversely,
a low u rate reduces immediate maintenance expenditure but may result in higher long-
term costs due to increased failures and downtime. The problem is to identify the optimal
rate u∗ that balances the conflicting factors mentioned. The authors’ objective is to apply
dynamic programming to determine the optimal value of u, which minimizes the long-term
costs associated with both inspection operations and potential system downtime caused
by failures.

Dynamic programming is perfectly aligned with this problem, as it allows for the
systematic evaluation of different maintenance policies under uncertainty. The dynamic
nature of the problem, where the state of the system and the optimal maintenance plan
selection are influenced by past states and actions, necessitates a model which can handle
sequential decision-making under randomness. By employing dynamic programming
in a continuous-time Markov chain framework, this study tends to propose an approach
that defines the optimal inspection–maintenance rate and yields valuable insights into
the optimal timing of inspection–maintenance activities, based on the state of the system.
Such insights can assist in modeling robust inspection–maintenance planning adaptable to
real-time alterations in system conditions and operational requirements.

This methodology develops a new type of homing problem applied in reliability theory,
characterized by decision-making under randomness. Deriving the dynamic programming
equation and applying it involves notable theoretical challenges, which this research seeks
to tackle. These complexities include precisely modeling the degradation phenomena,
properly incorporating the inspection–maintenance and downtime costs, and ensuring
the computational tractability when addressing the dynamic programming equations
for sophisticated systems. Resolving these challenges will facilitate the formulation of
more advanced inspection–maintenance strategies that are not only cost effective but also
adaptable to diverse operational settings and varying risk preferences.

Literature Review

A thorough review of recent developments in the optimal control of continuous-time
Markov chains, particularly in the context of reliability theory, reveals that the subject
has been widely studied in this field, especially in the context of inspection–maintenance
planning. Previous works cover a wide range of models and strategies for establishing
optimal testing, maintenance strategies to improve machine reliability, availability, and
safety while reducing costs. These explorations point to ongoing efforts to improve optimal
control methods in this field.

We now present a chronological list of important articles related to our paper.

1. G. Parmigiani [1], ‘Optimal scheduling of fallible inspections’. The article provides
an optimal control model for a manufacturing system, applying a continuous-time
Markov chain for the optimal control of maintenance frequencies, in order to improve
system reliability.

2. E. K. Boukas and Z. K. Liu [2], ‘Production and maintenance control for manufacturing
systems’. This article deals with maintenance control using a continuous-time Markov
process. The model focuses on the optimal control of preventive and corrective
maintenance rates to improve system reliability.

3. C.-H. Wang and S. H. Sheu [3], ‘Determining the optimal production-maintenance
policy with inspection errors: using a Markov chain’. The paper develops an optimal
policy for inspection intervals and maintenance for a deteriorating production system
using a continuous-time Markov chain model to minimize total cost, taking into
account system reliability.

4. H. Suryadi and L. G. Papageorgiou [4], ‘Optimal maintenance planning and crew allo-
cation for multipurpose batch plants’. This article proposes a mathematical program-
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ming method for optimizing maintenance planning in plants, using continuous-time
Markov chains to model maintenance in order to improve system reliability.

5. W. Liying, F. Youtong, S. Liying and L. Baoyou [5], ‘On fault diagnosis and inspection
policy for deteriorating system’. It identifies failure diagnosis and inspection policy,
and optimizes the inspection cycle to maximize revenue, enabling imperfect repairs
before component replacement. A Markov vector process and a numerical example
are used for validation.

6. H. R. Golmakani and F. Fattahipour [6], ‘Optimal replacement policy and inspection
interval for condition-based maintenance’. This work uses a Markov process to pro-
vide an optimal replacement strategy and inspection frequency for condition-based
maintenance. The model tends to optimize maintenance costs, with inspection inter-
vals balancing out the costs of preventive and failure replacements, thus improving
system reliability.

7. F. Naderkhani and V. Makis [7], ‘Optimal condition-based maintenance policy for
a partially observable system with two sampling intervals’. The study develops an
optimal conditional maintenance strategy using a continuous-time hidden Markov
process. It tunes inspection intervals according to aging states, in order to minimize
maintenance costs and improve reliability.

8. K. He [8], ‘Optimal Maintenance Planning in Novel Settings’. This thesis develops the
method of optimal maintenance planning in healthcare systems, focusing on events
with imperfect inspection intervals and unpunctual preventive maintenance with the
use of stochastic processes.

9. Q. Sun, Z.-S. Ye and N. Chen [9], ‘Optimal inspection and replacement policies for
multi-unit systems subject to degradation’. It proposes optimal inspection and re-
placement strategies for aging systems, using the Markov decision process framework.
It uses the Wiener process to model component degradation and finds inspection in-
tervals and replacement choices to minimize total operational cost while maintaining
system reliability.

10. P. Cao, K. Yang and K. Liu [10], ‘Optimal selection and release problem in software
testing process: A continuous-time stochastic control approach’. It proposes optimal
selection for software testing using continuous-time stochastic control. It takes into
account the trade-off between testing costs and availability time to minimize total
costs. The proposed model uses dynamic programming to determine when to test,
release, or reject software, taking into account software reliability.

11. Q. Sun, Z.-S. Ye and X. Zhu [11], ‘Managing component degradation in series systems
for balancing degradation through reallocation and maintenance’. The control of
component aging in serial systems is examined through the optimization of preven-
tive replacement and reallocation policy by deploying stochastic optimization and
Markov chain.

12. C. P. Andriotis, K. G. Papakonstantinou and E. N. Chatzi [12], ‘Value of structural
health monitoring quantification in partially observable stochastic environments’.
This paper focuses on the optimal life cycle control of aging systems in an uncertain
environment. It uses partially observable Markov decision processes to find optimal
intervention and monitoring strategies.

13. S. Gan, N. Yousefi and D. W. Coit [13], ‘Optimal control-limit maintenance policy for
a production system with multiple process states’. It develops a maintenance strategy
for a production system with several processing states, incorporating machine age and
spare parts control to optimize maintenance tasks. The method uses a discrete-time
Markov decision process to identify optimal maintenance activities, with the aim of
minimizing overall long-term costs.

14. P. Vrignat, F. Kratz and M. Avila [14], ‘Sustainable manufacturing, maintenance
policies, prognostics and health management: A literature review’. This work contains
a review of sustainable manufacturing focusing on maintenance policies, prognostics,
and health management systems (HMS). It discusses the incorporation of Industry
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4.0 and e-maintenance to evolve proactive maintenance strategies that are consistent
with sustainability goals.

15. P. G. Morato, K. G. Papakonstantinou, C. P. Andriotis, J. S. Nielsen and P. Rigo [15],
‘Optimal inspection and maintenance planning for deteriorating structural compo-
nents through dynamic Bayesian networks and Markov decision processes’. The paper
introduces a scheme integrating dynamic Bayesian networks and partially observable
Markov decision processes to explore optimal planning of structural deterioration
inspection and maintenance. It highlights the limitations of the heuristic method for
optimizing structural reliability and minimizing costs through stochastic optimization.

16. M. Roux, Y.-P. Fang and A. Barros [16], ‘Maintenance planning under imperfect
monitoring: an efficient POMDP model using interpolated value function’. The field
is improved by introducing an efficient partially observable Markov decision process
model for maintenance planning in the case of imprecise observations.

17. M. Lefebvre and P. Pazhoheshfar [17], ‘An optimal control problem for the mainte-
nance of a machine’. The study develops an optimal control problem for machine
maintenance using a discrete-time stochastic process model. The methodology con-
sists of solving a dynamic programming equation to determine whether maintenance
activities should be performed at each unit of time, given that the final time will be a
random variable.

18. Y. Wang and Y. Li [18], ‘Replacement policy for a single-component machine with
limited spares in a finite time horizon’. This study develops a maintenance scheduling
scheme with a Markov decision process to explore the optimal control of a system
with limited spare parts over a finite period of time.

19. S. Nasersarraf, S. Asadzadeh and Y. Samimi [19], ‘Determining the optimal policy in
condition-based maintenance for electrical panels’. It develops a state-based optimal
maintenance policy for electrical panels in parallel systems, using a proportional haz-
ards model to account for failure dependency between components. The model aims
to minimize expected total costs while maintaining system reliability by determining
optimal inspection intervals and preventive replacement strategies.

20. W. Wang and X. Chen [20], ‘Piecewise deterministic Markov process for condition-
based imperfect maintenance models’. This work proposes a condition-based mainte-
nance model using a piecewise deterministic Markov process. It integrates corrective
and imperfect maintenance. The paper implements optimal control theory to explore
the optimal maintenance policy, with the aim of minimizing total system cost.

21. G. Wang and Z. Zhu [21], ‘Optimal control of sampled-data systems based on an
optimized stochastic sampling’. This work covers the optimal control of a system
with sampled data and stochastic sampling. The paper presents several cost functions,
including one for sampling frequency, and implements dynamic programming to
obtain optimal controllers in finite and infinite time.

Now, continuous-time Markov chains and dynamic programming are increasingly
applied beyond classical industrial contexts, supporting advanced strategies in reliabil-
ity and optimization as shown by recent studies (see, for example, Liu et al. [22] and
Mancuso et al. [23]) in the context of prognostics and health management (PHM).

Despite remarkable developments in the optimal control of continuous-time Markov
chains applied in the field of maintenance optimization, there are still a number of gaps in
this literature. Many existing models are tailored to certain applications, such as production
systems or healthcare, with incomplete evaluation of the optimal inspection rate in a more
generalized setting. In addition, the use of dynamic programming to extract continuous
decision variables, such as testing intervals, has not yet been studied, particularly in the
context of reliability theory homing problems.

This research aims to fill existing gaps by proposing an extended framework for defin-
ing the optimal preventive maintenance and inspection rate of a system using continuous-
time Markov chains and dynamic programming. The presented model will provide a robust
approach to the homing problem in reliability theory optimization, which incorporates ad-
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vanced stochastic control practices to formulate optimal maintenance planning. In addition,
by synthesizing the latest advances in inspection–maintenance planning optimization and
dynamic programming, this study contributes to the broader goal of advancing reliability
theory and the cost-effectiveness of engineering systems, proposing practical policies for
industries, where component reliability is of great importance.

This research addresses the question of optimal inspection times for maintenance in a
generalized framework by improving the applicability of continuous-time Markov chains
in a more global context. Section 3 of the paper deals with inspection rates obtained by
dynamic programming, allowing us to propose a versatile methodology for determining the
optimal inspection rate in a system, without limiting its relevance to specialized domains.
This methodology is supported by Equation (18), where the generalized formulation of the
optimal inspection rate calculation is described, enhancing the flexibility of the model for
various maintenance application contexts.

The gap is further bridged by the inclusion of dynamic programming to determine
continuous decision variables, such as the inspection rate, in the maintenance and reli-
ability domain and in the context of the homing problem. The results, particularly in
Sections 4 and 5, illustrate how the determination of the optimal inspection is supported
by dynamic programming, especially when random final times are taken into account in
the cost function—a novel implementation of the homing problem in the discussed field
of application. By focusing on continuous decision variables, the model provided fills
this gap by proposing a robust approach to calculating inspection frequencies that would
balance the cost and reliability resulting from the system’s maintenance–operating states as
highlighted by our results.

2. Mathematical Formulation of the Problem

Let X(t) denote the state of a machine at time t. We assume that the stochastic process
{X(t), t ≥ t0} is a continuous-time Markov chain having the following states:

0 : The machine is working;
1 : The machine is undergoing routine maintenance;
2 : The machine is undergoing prolonged maintenance;
3 : The machine is being repaired.

The transition diagram of the Markov chain is shown in Figure 1. This figure provides
a visual illustration of state transitions during the machine’s operational life cycle, which
is modeled as a continuous-time Markov chain. The arrows indicate possible transitions
between defined states, each with specified transition probabilities. The machine can take
different paths throughout its operation in the “Working” state. It can enter the “Routine
Maintenance” state (with transition probability p0,1), or the “Prolonged Maintenance” state
(with transition probability p0,2), or the “Repair” state (with transition probability p0,3).
Each of these transitions is triggered by particular maintenance requirements or failure
events. At the end of “Routine Maintenance” or “Prolonged Maintenance”, the machine
switches to the “Working” state as indicated by the transitions p1,0 = 1 and p2,0 = 1,
respectively. This indicates that once maintenance is complete, the machine is once again
operating at full capacity (as good as new). Similarly, the transition p3,0 = 1 indicates that
after “Repair”, the machine returns to the “Working” state, thus regaining full functionality
(as if it were new).

Figure 1. Transition diagram of the Markov chain.
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The time spent by the Markov chain in state i is an exponential random variable Ti
with parameter νi, for i = 0, 1, 2, 3. Moreover, inspection is carried out at random times. We
assume that the time elapsed between two inspection operations is an exponential random
variable with parameter u > 0. When the machine is serviced, there is a probability equal
to p that no serious problem will be discovered (and to 1 − p that at least one important
problem will be detected).

Let pi,j be the probability that the Markov chain will move to state j when it leaves
state i for i ̸= j ∈ {0, 1, 2, 3}. We can write (see, for instance, Lefebvre [24]) that pj,0 = 1 for
j = 1, 2, 3 and

p0,1 =
pu

u + ν0
, p0,2 =

(1 − p)u
u + ν0

and p0,3 =
ν0

u + ν0
. (1)

Next, we define the first-passage time

τ(i) = inf{t ≥ t0 : X(t) = 3 or t = t1 (> t0) | X(t0) = i} (2)

for i = 0, 1, 2 (with τ(3) = t0).
We suppose that the optimizer can choose any value of the constant u ∈ U at any time

instant so that u = u(t) is the control variable and pi,j becomes pi,j(t). We look for the value
u∗(t) ≥ 0 of u(t) that minimizes the expected value of the cost criterion

J(i) =
∫ τ(i)

t0

{ f [u(t)]− λ}dt + K IF, (3)

where f (0) = 0, f [u(t)] > 0 for u(t) > 0, λ > 0, K > 0, and IF is the indicator function
of the event F: the optimizer chooses u(t) ≡ 0. Therefore, the aim is to maximize the
expected time until the machine needs to be repaired, while taking into account the control
costs f [u(t)].

Remarks.

(i) The final cost K is imposed if the optimizer decides not to perform any maintenance,
to reflect the fact that when the machine needs to be repaired (state 3), repair costs
should be higher.

(ii) The above problem is a particular homing problem, in which the optimizer controls
a stochastic process until a certain event occurs; see Whittle [25,26]. The authors
have recently considered homing problems for queuing systems; see Lefebvre and
Yaghoubi [27,28].

(iii) To the best of our knowledge, this is the first time that a homing problem will be
treated for a continuous-time Markov chain that is not a queuing model. Numerous
papers have been published in the field of reliability, in which continuous-time Markov
chains have been used as models. Moreover, as we have seen in the literature review,
optimal control problems for these models have also been the subject of numerous
publications. In our problem, rather than controlling a stochastic process until a final
time that is either fixed or infinite, we stop controlling the process at the instant when
the machine needs to be repaired (or a given amount of time has elapsed). In reality,
this instant is indeed a random variable.

(iv) To validate the formulated model, we apply a series of actions designed to assess its
robustness and reliability. As a first step, a sensitivity analysis is carried out to examine
the effect of varying key parameters on the model’s results. This analysis enables
us to verify that the model remains reliable and produces consistent results under
a particular range of hypothetical scenarios. In addition, we analyze the model’s
response to several initial conditions and parameters in order to simulate different
system behaviors. These verification steps demonstrate the usefulness of the model
for maintenance decision-making.
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Now, the value function is defined by

F(i, t0) = inf
u(t)

t ∈ [t0, τ(i))

E[J(i)] (4)

for i = 0, 1, 2, 3. We can write that F(3, t0) = 0. Moreover, when the Markov chain is in
state 1 or 2, we have u(t) = 0. It follows that

F(i, t0) = −λ E[Ti] + F(0, t0) = − λ

νi
+ F(0, t0) for i = 1, 2. (5)

Remark. Let us denote by F0(0, t0) the expected value of J(0) if the optimizer uses no control
at all so that u(t) ≡ 0. Since f (0) = 0, we can write that

F0(0, t0) = −λ E[T0] + K = − λ

ν0
+ K. (6)

Thus, the value function F(0, t0) must necessarily be smaller than or equal to − λ
ν0
+ K.

In the next section, the dynamic programming equation satisfied by the function
F(0, t0) will be derived. Then, in Section 3, a particular case of the above problem will be
solved explicitly. In Section 4, the case when the constant t1 in the definition of τ(i) tends
to infinity will be treated. We will conclude this paper with a few remarks in Section 5.

3. Dynamic Programming Equation

Assume that the machine is working at time t0 so that X(t0) = 0. We have

P[T0 < ∆t] = 1 − e−ν0∆t = ν0 ∆t + o(∆t). (7)

It follows that we can write that

X(t0 + ∆t) =


1 with probability ν0 ∆t p0,1(t0) [+o(∆t)],
2 with probability ν0 ∆t p0,2(t0),
3 with probability ν0 ∆t p0,3(t0),
0 with probability 1 − ν0 ∆t.

(8)

Remark. The fact that the various probabilities in the above equation are all proportional to
∆t is essential in order to use dynamic programming.

Let
g[u(t)] := f [u(t)]− λ. (9)

We have

F(0, t0) = inf
u(t)

t ∈ [t0, τ(0))

E
[∫ t0+∆t

t0

g[u(t)]dt +
∫ τ(0)

t0+∆t
g[u(t)]dt

]
(10)

= inf
u(t)

t ∈ [t0, τ(0))

E
{

g[u(t0)]∆t +
∫ τ(0)

t0+∆t
g[u(t)]dt + o(∆t)

}
.

Moreover,

E
[∫ τ(0)

t0+∆t
g[u(t)]dt

]
= E

[
E
[∫ τ(0)

t0+∆t
g[u(t)]dt

∣∣∣∣ X(t0 + ∆t)
]]

. (11)

Hence, using Bellman’s principle of optimality, we can write that
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inf
u(t)

t ∈ [t0 + ∆t, τ(0))

E
[∫ τ(0)

t0+∆t
g[u(t)]dt

]
= E

[
F[X(t0 + ∆t), t0 + ∆t]

]
. (12)

Furthermore, we deduce from Equation (8) that [since X(t0) = 0]

E
[
F[X(t0 + ∆t), t0 + ∆t]

]
=

2

∑
j=1

F(j, t0 + ∆t)ν0∆t p0,j(t0) (13)

+ F(0, t0 + ∆t) (1 − ν0 ∆t).

Next, assuming that the function F(0, t0) is differentiable with respect to t0, we deduce
from Taylor’s theorem that

F(·, t0 + ∆t) = F(·, t0) + ∆t F′(·, t0) + o(∆t). (14)

It follows that

F(·, t0 + ∆t) (1 − ν0 ∆t) = (1 − ν0 ∆t)F(·, t0) + ∆t F′(·, t0) + o(∆t). (15)

Making use of the above results, we find that

0 = inf
u(t0)

{
g[u(t0)]∆t + ν0 ∆t

2

∑
j=1

p0,j(t0)F(j, t0) (16)

− ν0 ∆t F(0, t0) + ∆tF′(0, t0) + o(∆t)
}

.

Furthermore, we deduce from Equation (5) that

0 = inf
u(t0)

{
g[u(t0)]∆t + ν0 ∆t

2

∑
j=1

p0,j(t0)

{
− λ

νj
+ F(0, t0)

}
(17)

− ν0 ∆t F(0, t0) + ∆tF′(0, t0) + o(∆t)
}

.

Finally, dividing each side of the preceding equation by ∆t and taking the limit as ∆t
decreases to zero, we can state the following proposition.

Proposition 1. The value function F(0, t0) satisfies the dynamic programming equation (DPE)

0= inf
u(t0)

{
g[u(t0)] + ν0

2

∑
j=1

p0,j(t0)

[
− λ

νj
+ F(0, t0)

]
− ν0 F(0, t0) + F′(0, t0)

}
. (18)

Moreover, we have the boundary condition F(0, t1) = 0 if u(t0) > 0.

Let u0 := u(t0). We have

p0,1(t0) =
pu0

u0 + ν0
and p0,2(t0) =

(1 − p)u0

u0 + ν0
. (19)

Furthermore, the function f (·) is often chosen of the form

f [u(t)] =
1
2

q0 u2(t), (20)
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where q0 is a positive constant. Then, if u(t) is a continuous function of t, we can obtain
the optimal control u∗

0 in terms of F(0, t0, t1) by differentiating the expression between the
curly brackets in Equation (18) with respect to u0 and solving the resulting equation for u0.

If we are able to find an explicit expression for u∗
0 , we replace it into Equation (18)

and we try to solve the resulting differential equation, subject to the boundary condition
F(0, t1) = 0.

In the next section, we will consider the simplest possible case, namely, the one when
u(t) ≡ k1 or k2.

4. Particular Case

Suppose that the set U contains only two values, denoted by k1 and k2. We deduce
from Equation (18) that we must consider the following equation:

0 = g(ki) + ν0

(
pki

ki + ν0

)(
− λ

ν1
+ F(0, t0)

)
(21)

+ ν0

(
(1 − p)ki

ki + ν0

)(
− λ

ν2
+ F(0, t0)

)
− ν0 F(0, t0) + F′(0, t0)

for i = 1, 2.
Let us choose the function f [u(t)] defined in Equation (20) with q0 = 2. Furthermore,

we take λ = νi = 1 for i = 0, 1, 2, 3, p = 1/2, k1 = 1 and k2 = 0.9. With these values, we
find that we must solve the first-order linear differential equations (denoting the function
F(0, t0) by Fi(t0) if u0 = ki, for i = 1, 2)

1 = −F1(t0) + 2 F′
1(t0) (22)

and
0 = 639 + 1000 F2(t0) + 1900 F′

2(t0). (23)

The solutions to the above equations that satisfy the boundary condition Fi(t1) = 0 for
i = 1, 2 are

F1(t0) = −1 + e(t0−t1)/2 (24)

and
F2(t0) =

639
1000

{
1 − e10(t1−t0)/19

}
. (25)

The two functions are presented in Figure 2 in the case when t1 = 2. We see that the
optimal solution in this example is to choose

u0 =

{
0.9 if 0 ≤ t0 ≤ t∗,
1 if t∗ ≤ t0 ≤ 2,

(26)

where t∗ ≃ 1.2285.

Remark. The value of u0 given in Equation (26) is actually the optimal solution if we assume
that the optimizer must choose u(t) equal to k1 = 1 or k2 = 0.9 for any t ∈ [t0, t1). However,
if we admit the possibility that we can choose u(t) ≡ 0, then this result is correct at time t0 if
and only if the corresponding value function is less than or equal to K − 1 [see Equation (6)].
When K = 0, we find that the optimizer should use no control at all for t0 ∈ [0.21, 2)
(approximately).

In the next section, we will consider the case when t1 tends to infinity.
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Figure 2. Functions F1(t0) (solid line) and F2(t0) defined respectively in Equation (24) and
Equation (25) for t ∈ [0, 2], when t1 = 2.

5. The Time-Invariant Case

Once we have computed the value function in the preceding section, we can take the
limit as t1 tends to infinity. Actually, as can be seen in the example that we presented, the
value function will then become a constant. This is true because when t1 → ∞, the problem
becomes time-invariant so that F′(0, t0) = 0. It follows that the DPE given in Equation (18)
reduces to

0 = inf
u(t0)

{
g[u(t0)] + ν0

2

∑
j=1

p0,j(t0)

[
− λ

νj
+ F(0, t0)

]
− ν0 F(0, t0)

}
. (27)

We will now present a problem that can be solved explicitly. Assume that the function
f (·) in the cost function J(i) defined in Equation (3) is such that

f (u0) =
cu2

0
(u0 + ν0)2 , (28)

where c is a positive constant. Notice that f (0) = 0 and f (u0) > 0 if u0 > 0, as required.
Moreover, we find that f ′(u0) > 0, so that the maintenance costs increase with u0, which
is logical.

Next, assume that ν1 = ν2. Then, differentiating Equation (27) with respect to u0, we
obtain, after simplification, that

0 =
2cu0

u0 + ν0
− ν0

ν1
+ ν0 F(0, t0). (29)

It follows that the optimal control is given by

u∗
0 =

ν2
0 [1 − ν1 F(0, t0)]

2cν1 − ν0 [1 − ν1 F(0, t0)]
, (30)

which must be non-negative.
Let us take ν0 = ν1 = 1. Then, u∗

0 becomes

u∗
0 =

1 − F(0, t0)

2c − 1 + F(0, t0)
. (31)
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Substituting this expression into Equation (27), we obtain, if p = 1/2, that the value
function F(0, t0) satisfies the algebraic equation

0 =
[1 − F(0, t0)]

2

4c
− λ − λ

[1 − F(0, t0)]

2c
− [2c − 1 − F(0, t0)]

2c
F(0, t0). (32)

We find that

3 F(0, t0) = 2c − λ −
√

4c2 + 8cλ + λ2 + 6λ − 3, (33)

from which we deduce that the optimal control is given by

u∗
0 =

−3 + 2c − λ −
√

λ2 + (8c + 6)λ + 4c2 − 3
3 − 8c + λ +

√
λ2 + (8c + 6)λ + 4c2 − 3

. (34)

Now, it is clear that the optimal control should be u∗
0 = 0 if K = 0 and λ ≤ 1. Let us

choose λ = 10. Then, we find that the constant c must be such that

c >
1
5

(
12 +

√
139

)
≃ 4.76. (35)

For instance, if we take c = 5, then F(0, t0) = −
√

657/3 ≃ −8.544 and

u∗
0 =

−1 −
√

73
1 −

√
73

≃ 20.93. (36)

The optimal control is shown in Figure 3 for c ∈ [5, 10].

Figure 3. Optimal control u∗
0 given in Equation (34) when λ = 10 and c ∈ [5, 10].

Remark. If u(t) ≡ 0, we have F0(0, t0) = K − 10. Therefore, the optimal control is indeed
equal to (approximately) 20.93 when λ = 10 and c = 5 if and only if K > 1.456.

6. Conclusions

In this paper, an optimal control problem known as a homing problem for a continuous-
time Markov chain used as a model for the state of a machine has been considered. The aim
was to find the optimal maintenance rate in order to maximize the time until the machine
needs to be repaired, while taking the maintenance costs into account.

The model could be generalized by defining other states. For instance, there could
be a state that corresponds to the case when the machine is broken down and cannot be
repaired. If the optimizer uses no control at all (that is, if the machine is never serviced),
there could be a high probability that the chain will move from the state when the machine
is working to that state.
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We were able to obtain explicit and exact solutions to two particular problems. In
general, numerical methods or simulations could be used to obtain the value function and
the optimal control.

Author Contributions: Conceptualization, M.L.; Methodology, M.L. and R.Y.; Writing original draft,
M.L.; Writing review and editing, R.Y.; Funding acquisition, M.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by Natural Sciences and Engineering Research Council of Canada.

Data Availability Statement: Data is contained within the article.

Acknowledgments: This research was supported by the Natural Sciences and Engineering Research
Council of Canada. The authors also wish to thank the anonymous reviewers of this paper for their
constructive comments.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Parmigiani, G. Optimal scheduling of fallible inspections. Oper. Res. 1993, 44, 360–367. [CrossRef]
2. Boukas, E.K.; Liu, Z.K. Production and maintenance control for manufacturing systems. IEEE Trans. Autom. Control 2001, 46,

1455–1460. [CrossRef]
3. Wang, C.-H.; Sheu, S.H. Determining the optimal production-maintenance policy with inspection errors: Using a Markov chain.

Comput. Oper. Res. 2003, 30, 1–17. [CrossRef]
4. Suryadi, H.; Papageorgiou, L.G. Optimal maintenance planning and crew allocation for multipurpose batch plants. Int. J. Prod.

Res. 2004, 42, 355–377. [CrossRef]
5. Liying, W.; Youtong, F.; Liying, S.; Baoyou, L. On fault diagnosis and inspection policy for deteriorating system. In Proceedings of

the 26th Chinese Control Conference, Shenyang, China, 25–27 July 2007; pp. 477–481. [CrossRef]
6. Golmakani, H.R.; Fattahipour, F. Optimal replacement policy and inspection interval for condition-based maintenance. Int. J.

Prod. Res. 2011, 49, 5153–5167. [CrossRef]
7. Naderkhani, F.; Makis, V. Optimal condition-based maintenance policy for a partially observable system with two sampling

intervals. Int. J. Adv. Manuf. Tech. 2014, 78, 795–805. [CrossRef]
8. He, K. Optimal Maintenance Planning in Novel Settings. Ph.D. Dissertation, University of Pittsburgh, Pittsburgh, PA, USA, 2017.
9. Sun, Q.; Ye, Z.-S.; Chen, N. Optimal Inspection and Replacement Policies for Multi-Unit Systems Subject to Degradation. IEEE

Trans. Reliab. 2018, 67, 404–413. [CrossRef]
10. Cao, P.; Yang, K.; Liu, K. Optimal selection and release problem in software testing process: A continuous-time stochastic control

approach. Eur. J. Oper. Res. 2020, 285, 211–222. [CrossRef]
11. Sun, Q.; Ye, Z.-S.; Zhu, X. Managing component degradation in series systems for balancing degradation through reallocation

and maintenance. IISE Trans. 2020, 52, 797–810. [CrossRef]
12. Andriotis, C.P.; Papakonstantinou, K.G.; Chatzi, E.N. Value of structural health monitoring quantification in partially observable

stochastic environments. Struct. Saf. 2021, 93, 102072. [CrossRef]
13. Gan, S.; Yousefi, N.; Coit, D.W. Optimal control-limit maintenance policy for a production system with multiple process states.

Comput. Ind. Eng. 2021, 158, 107454. [CrossRef]
14. Vrignat, P.; Kratz, F.; Avila, M. Sustainable manufacturing, maintenance policies, prognostics and health management: A literature

review. Reliab. Eng. Syst. Saf. 2022, 218, 108140. [CrossRef]
15. Morato, P.G.; Papakonstantinou, K.G.; Andriotis, C.P.; Nielsen, J.S.; Rigo, P. Optimal inspection and maintenance planning for

deteriorating structural components through dynamic Bayesian networks and Markov decision processes. Struct. Saf. 2022,
94, 102140. [CrossRef]

16. Roux, M.; Fang, Y.-P.; Barros, A. Maintenance planning under imperfect monitoring: An efficient POMDP model using interpolated
value function. IFAC-PapersOnLine 2022, 55, 128–135. [CrossRef]

17. Lefebvre, M.; Pazhoheshfar, P. An optimal control problem for the maintenance of a machine. Int. J. Syst. Sci. 2022, 53, 3364–3373.
[CrossRef]

18. Wang, Y.; Li, Y. Replacement policy for a single-component machine with limited spares in a finite time horizon. IET Conf. Proc.
2022, 21, 1503–1510. [CrossRef]

19. Nasersarraf, S.; Asadzadeh, S.; Samimi, Y. Determining the optimal policy in condition-based maintenance for electrical panels.
Iran. Electr. Ind. J. Qual. Product. 2023, 12, 37–45.

20. Wang, W.; Chen, X. Piecewise deterministic Markov process for condition-based imperfect maintenance models. Reliab. Eng. Syst.
Saf. 2023, 236, 109271. [CrossRef]

21. Wang, G.; Zhu, Z. Optimal control of sampled-data systems based on an optimized stochastic sampling. Int. J. Robust Nonlinear
Control 2023, 33, 4304–4325. [CrossRef]

http://doi.org/10.1287/opre.44.2.360
http://dx.doi.org/10.1109/9.948477
http://dx.doi.org/10.1016/S0305-0548(01)00073-9
http://dx.doi.org/10.1080/00207540310001602955
http://dx.doi.org/10.1109/CHICC.2006.4347106
http://dx.doi.org/10.1080/00207543.2010.505935
http://dx.doi.org/10.1007/s00170-014-6651-4
http://dx.doi.org/10.1109/TR.2017.2778283
http://dx.doi.org/10.1016/j.ejor.2019.01.075
http://dx.doi.org/10.1080/24725854.2019.1672908
http://dx.doi.org/10.1016/j.strusafe.2020.102072
http://dx.doi.org/10.1016/j.cie.2021.107454
http://dx.doi.org/10.1016/j.ress.2021.108140
http://dx.doi.org/10.1016/j.strusafe.2021.102140
http://dx.doi.org/10.1016/j.ifacol.2022.09.012
http://dx.doi.org/10.1080/00207721.2022.2083258
http://dx.doi.org/10.1049/icp.2022.3075
http://dx.doi.org/10.1016/j.ress.2023.109271
http://dx.doi.org/10.1002/rnc.6609


Machines 2024, 12, 795 13 of 13

22. Liu, B.; Lin, J.; Zhang, L.; Xie, M. A dynamic maintenance strategy for prognostics and health management of degrading systems:
Application in locomotive wheel-sets. In Proceedings of the 2018 IEEE International Conference on Prognostics and Health
Management (ICPHM), Seattle, WA, USA, 4–7 June 2018; pp. 1–5. [CrossRef]

23. Mancuso, A.; Compare, M.; Salo, A.; Zio, E. Optimal Prognostics and Health Management-driven inspection and maintenance
strategies for industrial systems. Reliab. Eng. Syst. Saf. 2021, 210, 107536. [CrossRef]

24. Lefebvre, M. Applied Stochastic Processes; Springer: New York, NY, USA, 2007.
25. Whittle, P. Optimization over Time; Wiley: Chichester, UK, 1982; Volume I.
26. Whittle, P. Risk-Sensitive Optimal Control; Wiley: Chichester, UK, 1990.
27. Lefebvre, M.; Yaghoubi, R. Optimal service time distribution for an M/G/1 queue. Axioms 2024, 9, 594. [CrossRef]
28. Lefebvre, M.; Yaghoubi, R. Optimal control of a queueing system. Optimization 2024, 1–14. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICPHM.2018.8448740
http://dx.doi.org/10.1016/j.ress.2021.107536
http://dx.doi.org/10.3390/axioms13090594
http://dx.doi.org/10.1080/02331934.2024.2422040

	Introduction
	Mathematical Formulation of the Problem
	Dynamic Programming Equation
	Particular Case
	The Time-Invariant Case
	Conclusions
	References

