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Abstract: Magnetic flux leakage (MFL) technology is widely used in steel wire rope (SWR) inspection
for non-destructive testing. However, accurate defect characterization requires advanced signal
processing techniques to handle complex noise conditions and varying defect types. This paper
presents a novel adaptive multi-scale Bayesian framework for MFL signal analysis in SWR inspection.
Our approach integrates discrete wavelet transform with adaptive thresholding and multi-scale
feature fusion, enabling simultaneous detection of minute defects and large-area corrosion. To
validate our method, we implemented a four-channel MFL detection system and conducted extensive
experiments on both simulated and real-world datasets. Compared with state-of-the-art methods,
including long short-term memory (LSTM), attention mechanisms, and isolation forests, our approach
demonstrated significant improvements in precision, recall, and F1 score across various tolerance
levels. The proposed method showed superior detection performance, with an average precision of
91%, recall of 89%, and an F1 score of 0.90 in high-noise conditions, surpassing existing techniques.
Notably, our method showed superior performance in high-noise environments, reducing false
positive rates while maintaining high detection sensitivity. While computational complexity in
real-time processing remains a challenge, this study provides a robust solution for non-destructive
testing of SWR, potentially improving inspection efficiency and defect localization accuracy. Future
work will focus on optimizing algorithmic efficiency and exploring transfer learning techniques for
enhanced adaptability across different non-destructive testing (NDT) domains. This research not
only advances signal processing and anomaly detection technology but also contributes to enhancing
safety and maintenance efficiency in critical infrastructure.

Keywords: magnetic flux leakage (MFL); steel wire rope (SWR) inspection; multi-scale analysis;
Bayesian adaptive detection; wavelet transform

1. Introduction

Steel wire ropes (SWRs) are critical load-bearing elements in numerous industrial
applications, including elevators, cranes, and mine hoisting systems [1–3]. The integrity of
these ropes directly impacts operational safety and efficiency [4]. As industrial technology
advances, the demand for precise and reliable non-destructive testing (NDT) methods
for SWRs has significantly increased [5]. Among various NDT techniques, magnetic flux
leakage (MFL) technology has garnered considerable attention due to its high sensitivity,
non-contact nature, and ability to detect internal defects [6].

Traditional NDT methods for SWRs, such as visual inspection, ultrasonic testing,
radiographic testing, and eddy current testing, each have specific applications and limita-
tions. Visual inspection, while simple to operate, struggles to detect internal and minute
defects [7–10]. Ultrasonic testing can probe internal flaws but suffers significant signal
attenuation in complex structures [11]. Radiographic testing provides high-resolution
images but poses radiation risks and efficiency issues. Eddy current testing is suitable
for surface and near-surface defects but has limited depth detection capability [12]. In
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comparison, MFL technology demonstrates clear advantages in comprehensiveness and
applicability, though its signal processing presents unique challenges [13].

Recent advancements in MFL signal processing have primarily focused on time-
domain analysis, frequency-domain analysis, time–frequency analysis, and machine learning-
based approaches [14–17]. Time-domain analysis methods, such as peak detection and
thresholding, are intuitive but weak in noise resistance. Frequency-domain analysis
techniques, including Fourier Transform, effectively remove certain types of noise but
struggle to capture local features [16]. Time–frequency analysis methods, like short-time
Fourier Transform, improve analysis of non-stationary signals but are constrained by time–
frequency resolution trade-offs [13]. Machine learning-based methods excel in feature
recognition but require large amounts of labeled data and often lack model interpretabil-
ity [17,18].

Despite these advancements, significant challenges remain in processing complex
MFL signals:

• Achieving high resolution in both time and frequency domains simultaneously.
• Uneven detection capability for defects of different scales (e.g., minute cracks vs.

large-area corrosion).
• Accurately identifying weak defect signals in strong background noise.
• Lack of adaptability to varying working conditions.

These challenges call for a more sophisticated approach that can handle the multi-scale
nature of MFL signals while adapting to complex and changing industrial environments.

Multi-scale wavelet analysis [19] offers a promising solution to these problems. It
enables high-resolution analysis in both time and frequency domains, capturing features of
both large-scale and small-scale defects through decomposition at different scales. However,
wavelet analysis alone still faces issues such as basis function selection, decomposition
level determination, and threshold setting when processing complex MFL signals.

To address these limitations, we propose a novel multi-scale Bayesian adaptive
anomaly detection method for MFL signals in SWR inspection. Our approach integrates dis-
crete wavelet transform, adaptive thresholding, and multi-scale feature fusion techniques.
The key innovations of this method include the following:

• A multi-scale Bayesian adaptive anomaly detection framework that effectively ad-
dresses the simultaneous detection of minute defects and large-area corrosion under
complex background noise.

• An adaptive thresholding strategy that maintains high detection rates and low false
alarm rates under various working conditions.

• A novel channel fusion technique that exploits the complementary information from
multiple MFL sensors.

To validate the algorithm’s practical performance, we designed and implemented an
innovative four-channel MFL detection system. This system consists of high-sensitivity
magnetic sensors precisely arranged to capture omnidirectional magnetic field informa-
tion around the SWR, along with customized signal conditioning circuits, a high-speed
data acquisition module, and a real-time data analysis software interface utilizing the
TMS320F28335 digital signal processor (DSP) for efficient data handling and analysis.

Our research contributes to both the theoretical understanding of multi-scale signal
processing and the practical application of MFL technology in industrial settings. By bridg-
ing signal processing, machine learning, and materials science, we provide a comprehensive
solution to the challenges in SWR inspection.

The primary objective of this study is to develop an innovative adaptive multi-scale
Bayesian framework for MFL signal analysis in steel wire rope inspection. To achieve this
goal, we must address several key tasks: (1) integrate wavelet transform with adaptive
thresholding to enhance defect detection under complex noise conditions; (2) implement
a multi-scale feature fusion technique to improve the accuracy of defect characterization;
and (3) conduct extensive experiments to validate the performance of our approach against
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state-of-the-art methods. By accomplishing these tasks, we aim to provide a robust solution
for the non-destructive testing of steel wire ropes, which has the potential to enhance safety
and maintenance efficiency in critical infrastructure.

We evaluate our method through extensive experiments on both simulated and real-
world datasets, comparing its performance against state-of-the-art techniques such as long
short-term memory (LSTM) [20], attention mechanisms [21], isolation forests (if) [22], kernel
density estimation (KDE) [23], and local outlier factor (LOF) methods [24]. The results
demonstrate significant improvements in precision, recall, and F1 score across different tol-
erance levels, particularly in detecting small defects and large-area corrosion simultaneously.

In the subsequent sections of this paper, we present a comprehensive study of the pro-
posed adaptive multi-scale Bayesian framework for MFL signal analysis in SWR inspection.
The following sections delineate the theoretical underpinnings of our method, the imple-
mentation details of the four-channel MFL detection system, and a thorough experimental
evaluation. We begin with Section 2, which provides an overview of the MFL detector
hardware configuration, highlighting the integration of high-sensitivity magnetic sensors
and the DSP-based control system. Section 3 delves into the proposed method, detailing
the multi-scale analysis using wavelet transform, the Bayesian adaptive anomaly detection
framework, and the adaptive thresholding strategy. We then proceed to Section 4, where
we conduct extensive experiments on both simulated and real-world datasets, comparing
our method against state-of-the-art techniques and demonstrating its superior performance
in various scenarios. Finally, Section 5 concludes this paper by summarizing our findings,
discussing the limitations of the current work, and suggesting avenues for future research
that builds upon the contributions of this study.

2. MFL Detector Hardware Configuration

As shown in Figure 1, symbol A: iron core—the core component of the excitation de-
vice, designed to concentrate and direct the magnetic field; symbol B: NdFeB (Neodymium–
Iron–Boron)—high-strength permanent magnets used for generating a stable magnetic
field; symbol C: MFL sensor—sensors that capture magnetic field variations indicative of
defects in the steel wire rope; and symbol D: DSP 28335—TMS320F28335 DSP—responsible
for real-time signal processing and analysis. The device is a four-channel design, each
channel is equipped with three directional sensors to capture the full range of magnetic
field variations in the rope. Each channel of the excitation device consists of an iron core
and permanent magnets to ensure stable magnetic field excitation. The core control board
of the device adopts TMS320F28335 DSP, which has powerful signal processing capability.
The overall mechanical structure is manufactured through three-dimensional (3D) printing
technology to achieve lightweight and customized design.

A

B

C

D

Figure 1. Magnetic flux leakage detection hardware equipment: A: iron core, B: NdFeB, C: MFL
Sensor, D: DSP 28335.

This design can realize all-round, high-precision detection of steel rope. The arrange-
ment of four channels can monitor different parts of the rope at the same time to improve
the detection efficiency. The arrangement of sensors in three directions in each channel
ensures comprehensive detection of surface and internal defects on the rope. The combi-
nation of permanent magnets and iron core excitation not only ensures the magnetic field
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strength, but also reduces energy consumption, and the use of DSP control boards provides
powerful computing power for complex signal processing and real-time data analysis.
Three-dimensional-printed mechanical structure not only reduces the production cost, but
also improves the adaptability of the equipment, and can be adjusted quickly according to
the different needs of the inspection design. The system’s resilience is further augmented
by the selection of hardware components, such as magnetic sensors and the DSP control
board, which exhibit inherent resistance to extreme temperatures and humidity, thereby
ensuring stable operation in diverse environmental conditions. The housing material is
selected to shield the internal components from moisture and temperature fluctuations.
While the initial experiments were conducted under controlled laboratory settings, future
evaluations will encompass the assessment of system performance across a broader spec-
trum of environmental conditions, thereby substantiating its practical applicability and
adaptability in real-world scenarios.

The MFL detector hardware configuration utilizes a synergistic combination of per-
manent magnets and an iron core to ensure stable magnetic field excitation. The iron
core, with its high magnetic permeability, is designed to concentrate and direct the mag-
netic field generated by the permanent magnets. This configuration not only enhances
the magnetic field strength around the SWR but also provides a stable and consistent
magnetic field for effective inspection. The technical specifications of our system include
the use of Neodymium–Iron–Boron (NdFeB) permanent magnets, known for their strong
magnetic properties, and a laminated iron core to minimize eddy current losses. The
excitation device consists of an iron core with a specific magnetic circuit design that accom-
modates three directional sensors per channel, allowing for a comprehensive capture of
the magnetic field variations along the rope. The control board of the device is based on
the TMS320F28335 DSP, which offers high computational capabilities for real-time signal
processing and analysis.

The steel rope specimen used in our experiments has a diameter of 8 mm and is
composed of 8 strands, each with a diameter of 2.5 mm. The individual wires within the
strands have a diameter of 0.05 mm. The steel wire material has an ultimate tensile strength
of 1500 MPa, indicating its capacity to withstand high stress before failure.

The Rope Magnetic Leakage Detector also incorporates an advanced data acquisition
and analysis system. Each detection channel is equipped with a high-precision Hall sensor,
capable of accurately capturing minute changes in the magnetic field. The signals are
digitized by a high-speed analog-to-digital (A/D) converter after preamplification and
filtering and then transmitted to the DSP control board for real-time analysis.

The equipment adopts a modular design, which is convenient for maintenance and
upgrading. Each detection channel can work independently or cooperatively, which
improves the flexibility and reliability of the system. The built-in self-test and calibration
functions ensure the accuracy and consistency of the test results.

To enable communication with a personal computer (PC), the device is equipped with
the recommended standard 232 (RS-232) serial interface that supports data transfer rates
up to 115,200 bits per second (bps). Through the customized communication protocol,
the device is able to transmit real-time detection data to the PC, including magnetic field
strength, position information, and time stamp. Meanwhile, the PC can remotely control
the device functions through the serial port, such as starting and stopping the detection
and adjusting parameters.

This comprehensive design not only improves the efficiency and accuracy of rope
inspection but also greatly enhances the practicality and adaptability of the equipment,
enabling it to meet the needs of rope safety inspection in various industrial environments.

3. Proposed Method

Figure 2 illustrates the four-channel MFL signals obtained from our experimental
setup, clearly showing three distinct defects. We employ a combination of discrete wavelet
transform (DWT) and Savitzky-Golay filtering for multi-scale analysis. DWT effectively
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handles non-stationary signals and provides a decomposition that captures signal variations
at various scales:

{aJ,k, dj,k}J,2j−1
j=1,k = DWT(x[n])N−1

n=0

x̂[n] = ∑
k

aJ,kϕJ,k[n] +
J

∑
j=1

∑
k

dj,kψj,k[n]
(1)

where ϕj,k[n] and ψj,k[n] denote the scale function and wavelet function, respectively, and J
is the maximum number of decomposition layers. In Equation (1), the DWT is utilized to
decompose the signal x[n] into approximation coefficients aJ,k and detail coefficients dj,k at
various scales, where J represents the maximum number of decomposition layers and N is
the total number of samples in the signal.
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Figure 2. Four channel experiment MFL signals with the three defects: (a) the offset display of the
four-channel measurement signal (the red dot (detected anomaly) and the black cross (actual position)
are the detection results, corresponding to the red box in the figure below); (b) the actual detected
SWR (the red box corresponds to the anomaly detection).

Multi-scale Bayesian adaptive anomaly detection:
We propose an innovative multi-scale Bayesian framework that can adaptively handle

anomalies at different scales, effectively solving the problem of defect detection under
complex background noise. The core idea of this framework is to apply Bayesian inference
at each decomposition scale to achieve accurate recognition of defects of different sizes
and types.

P(Aj|Dj) =
P(Dj|Aj)P(Aj)∫

P(Dj|Aj)P(Aj)dAj
(2)

where P is the posterior probability of an anomalous event; Aj denotes an anomalous event
on scale j; and Dj denotes an observation on that scale. By applying Bayesian inference at
each scale, we are able to more accurately identify defects of different sizes and types. The
advantage of this approach is that it is able to adaptively learn and update the anomaly
model at each scale, thus adapting to the non-stationary nature of the signal and the
dynamics of the environment. We employ a Markov Chain Monte Carlo (MCMC) method
to estimate the posterior probability distribution, which allows us to deal with complex
non-Gaussian distributions and non-linear dependencies. In addition, we introduce a
hierarchical Bayesian model to capture the correlation between different scales, which
further improves the accuracy and robustness of the detection.

Equation (2) embodies the core of our Bayesian adaptive anomaly detection framework.
It represents the computation of the posterior probability P(Aj|Dj), which is the likelihood
that an anomaly Aj is present given the observed data Dj at scale j. This is achieved by
applying Bayes’ theorem, which relates the posterior probability to the likelihood P(Dj|Aj)
of observing the data given an anomaly, as well as the prior probability P(Aj) of an

Figure 2. Four channel experiment MFL signals with the three defects: (a) the offset display of the
four-channel measurement signal (the red dot (detected anomaly) and the black cross (actual position)
are the detection results, corresponding to the red box in the figure below); (b) the actual detected
SWR (the red box corresponds to the anomaly detection).

Multi-scale Bayesian adaptive anomaly detection:
We propose an innovative multi-scale Bayesian framework that can adaptively handle

anomalies at different scales, effectively solving the problem of defect detection under
complex background noise. The core idea of this framework is to apply Bayesian inference
at each decomposition scale to achieve accurate recognition of defects of different sizes
and types.

P(Aj|Dj) =
P(Dj|Aj)P(Aj)∫

P(Dj|Aj)P(Aj)dAj
(2)

where P is the posterior probability of an anomalous event; Aj denotes an anomalous event
on scale j; and Dj denotes an observation on that scale. By applying Bayesian inference at
each scale, we are able to more accurately identify defects of different sizes and types. The
advantage of this approach is that it is able to adaptively learn and update the anomaly
model at each scale, thus adapting to the non-stationary nature of the signal and the
dynamics of the environment. We employ a Markov Chain Monte Carlo (MCMC) method
to estimate the posterior probability distribution, which allows us to deal with complex
non-Gaussian distributions and non-linear dependencies. In addition, we introduce a
hierarchical Bayesian model to capture the correlation between different scales, which
further improves the accuracy and robustness of the detection.

Equation (2) embodies the core of our Bayesian adaptive anomaly detection framework.
It represents the computation of the posterior probability P(Aj|Dj), which is the likelihood
that an anomaly Aj is present given the observed data Dj at scale j. This is achieved by
applying Bayes’ theorem, which relates the posterior probability to the likelihood P(Dj|Aj)
of observing the data given an anomaly, as well as the prior probability P(Aj) of an
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anomaly occurring, normalized by the evidence
∫

P(Dj|Aj)P(Aj)dAj. The evidence term
ensures that the posterior probability is properly normalized, making it a valid probability
distribution. This equation is applied at each decomposition scale to adaptively detect
anomalies of varying sizes and types, leveraging the multi-scale nature of the wavelet
transform to capture both local and global features of the MFL signals. The Bayesian
approach allows our method to update the anomaly model dynamically at each scale,
thus adapting to the non-stationary characteristics of the signal and the complexity of the
industrial environment. This formulation is crucial for accurately identifying defects in
SWRs under complex background noise conditions.

This multi-scale Bayesian adaptive anomaly detection method performs well in han-
dling various defect types in wire ropes, especially in detecting tiny defects, large-area
corrosion, and broken wires at the same time. For tiny defects, such as small cracks or
surface defects, the method uses abnormal patterns of high-frequency detail coefficients
for identification and captures these localized small-scale anomalies through Bayesian
inference at lower decomposition levels. Large-area corrosion is mainly reflected in the
coefficients of lower frequencies. Our method detects this large-scale material degradation
by analyzing the approximate coefficients at higher decomposition levels and the detail
coefficients at medium levels. For broken wires, since they usually appear as mutations in
the signal, our algorithm is able to capture this mutation at multiple scales simultaneously,
thereby improving the reliability of detection.

By modeling the characteristics of different types of defects at various scales, our
method can adaptively adjust the detection strategy. For example, for tiny defects, the
algorithm will rely more on the abnormal probability of high-frequency detail coefficients,
while for large-area corrosion, it will give higher weight to low-frequency approximation
coefficients. This adaptability enables our method to maintain high sensitivity to defects of
different types and sizes in complex practical environments.

In addition, our approach also considers potential correlations between defect types.
For example, large areas of corrosion may increase the probability of microcracks and wire
breakage. By introducing a hierarchical Bayesian model, we are able to capture these cross-
scale and cross-type correlations, thereby providing a more comprehensive and accurate
defect assessment. This not only improves the accuracy of detection but also provides
valuable insights into the comprehensive health status assessment of the wire rope.

Adaptive thresholding strategy:
A dynamic thresholding algorithm has been developed to cope with the variation of

MFL signals under different operating conditions. This algorithm is able to adaptively
adjust the detection threshold according to the local signal characteristics, thus maintaining
stable performance under various noise environments and defect types.

Tj[n] = µj[n] + αj[n] · σj[n] · β j[n] · exp(λ · Ij[n]) (3)

where T is the adaptive threshold.
Local mean µj[n]:

µj[n] =
1

2w + 1

n+w

∑
k=n−w

dj,k (4)

where w is the half-width of the local window, and dj,k is the wavelet coefficient at scale j.
Local standard deviation σj[n]:

σj[n] =

√√√√ 1
2w + 1

n+w

∑
k=n−w

(dj,k − µj[n])2 (5)
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Bayesian adaptive factor αj[n]:

αj[n] =

∫
αP(α|Dj[n])dα∫
P(α|Dj[n])dα

(6)

where P(α|Dj[n]) is the posterior distribution of α given the local data Dj[n], which can be
approximated by the variational Bayes method:

P(α|Dj[n]) ≈ q(α) = N (µα, σ2
α) (7)

µα and σ2
α are iteratively updated by minimizing the Kullback–Leibler divergence (KL

divergence). The signal-to-noise ratio (SNR) adjustment factor β j[n] is as follows:

β j[n] = 1 + log(1 + SNRj[n]) (8)

where SNRj[n] is the local SNR estimate:

SNRj[n] =
signal power
noise power

=
∑n+w

k=n−w d2
j,k

∑n+w
k=n−w(dj,k − µj[n])2

(9)

Information entropy-based anomaly index Ij[n]:

Ij[n] = −
n+w

∑
k=n−w

pk log pk − Href (10)

where pk is the local probability distribution estimate:

pk =
|dj,k|

∑n+w
m=n−w |dj,m|

(11)

Href is the reference entropy, which can be the average entropy or theoretical entropy
of a normal signal. Sensitivity parameter λ: λ is an adjustable parameter, usually between
0.5 and 2, which can be optimized according to the specific application. We use a sliding
window technique to compute the local statistics, and the window size is dynamically
adjusted according to different scales. In addition, we introduce a new noise estimation
technique that combines the statistical properties of the wavelet coefficients and the physical
model of the signal to more accurately distinguish between noise and effective signal
components. This adaptive thresholding strategy significantly improves the adaptability
and robustness of the algorithm under different operating conditions.

This strategy is particularly suitable for handling the detection challenges of unknown
types of defects. This method combines the local statistical characteristics of the signal,
Bayesian inference, signal-to-noise ratio evaluation, and information entropy analysis to
provide a comprehensive and flexible detection framework for complex magnetic flux
leakage signals.

The local mean µj[n] and standard deviation σj[n] capture the non-stationary charac-
teristics of the magnetic flux leakage signal at different scales and locations, which is crucial
for identifying local magnetic field disturbances caused by various unknown defects. The
Bayesian adaptive factor αj[n] enables the threshold to dynamically adapt to the changing
characteristics of the signal through continuous learning and updating, without relying
on the predefined defect type. The signal-to-noise ratio adjustment factor β j[n] takes into
account the noise interference in complex industrial environments, such as the vibration
of the wire rope and the external magnetic field fluctuation, and optimizes the robustness
of detection by increasing the threshold in high-noise areas and reducing the threshold in
clear signal areas. The newly introduced information entropy-based anomaly index Ij[n]
is a key innovation of this strategy, which quantifies the degree of deviation of the signal
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from its normal mode without relying on prior knowledge of specific defect types. This
allows our method to remain highly sensitive to a variety of potential anomalies, whether
they originate from known or unknown types of defects.

The exponential function exp(λ · Ij[n]) further enhances the threshold response to
anomalies, where the λ parameter allows us to adjust the sensitivity of detection according
to specific application scenarios. This design allows the threshold to be quickly increased
when highly abnormal signals are detected, while maintaining a moderate tolerance for
slight fluctuations.

Applying this adaptive threshold strategy to the wavelet decomposition results at
multiple scales allows our algorithm to simultaneously capture microscopic details and
macroscopic trends in the leakage magnetic flux signal, effectively detecting defects of
different scales and characteristics without knowing their specific types or morphologies in
advance. This multi-scale analysis approach is particularly suitable for wire rope leakage
magnetic flux detection, because different types of defects (such as microcracks, localized
corrosion, or broken wires) may show significant characteristics at different decomposition
scales. Through this complex and comprehensive adaptive threshold method, our magnetic
flux leakage detection system can more accurately and reliably identify various potential
defects in wire ropes. It can not only adapt to the dynamic changes in signals and environ-
mental noise but also flexibly adjust the detection sensitivity without relying on specific
defect type prior knowledge. This method significantly improves the applicability and reli-
ability of magnetic flux leakage detection in complex and changing industrial environments
and provides strong technical support for the safety monitoring and preventive mainte-
nance of wire ropes. Ultimately, this innovation helps to improve industrial safety levels,
optimize equipment maintenance strategies, and improve overall operational efficiency.

Multi-scale defect detection:
Based on the adaptive thresholds described above, we perform defect detection at

each scale. This multi-scale detection method allows us to simultaneously capture defects
of different sizes, from tiny cracks to large areas of corrosion, greatly improving the
comprehensiveness and accuracy of the detection.

Dj[n] =

{
1, if |dj,n| > Tj[n]
0, otherwise

(12)

This detection process is performed independently at each scale, but with a subsequent
multiscale fusion step, we are able to synthesize the detection results at each scale. We
also introduced a new confidence assessment mechanism that considers not only the
binary detection results but also the distance of the detection value from the threshold.
This mechanism allows us to distinguish different levels of anomalies in more detail and
assign them different weights in the subsequent analysis. In addition, we developed a
post-processing technique based on morphological operations for eliminating isolated false
detection points and connecting similar detection regions to further improve the coherence
and reliability of the detection results.

Multi-scale Feature Fusion: In order to synthesize the information from each scale, we
propose a new multi-scale feature fusion algorithm. This algorithm not only considers the
correlation of the detection results at different scales but also introduces a weight allocation
mechanism based on the physical properties of the signals, thus realizing more intelligent
and effective information integration.

F[n] = f (D1[n], D2[n], . . . , DJ [n], θ) (13)

where f is a non-linear fusion function that takes into account the correlation and impor-
tance of the detection results at different scales. This fusion strategy significantly improves
the accuracy and robustness of the detection. Specifically, we employ a deep learning-based
fusion network that automatically learns the optimal combination of features at different
scales. The design of the network draws on the ideas of residual learning and attention
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mechanisms, enabling the model to adaptively focus on the most relevant scale informa-
tion. In addition, we introduce a new uncertainty quantification method for assessing
the reliability of the fusion results, which is crucial for decision-making in real applica-
tions. To systematically present our method, Algorithm 1 outlines the key steps of the
proposed multi-scale Bayesian adaptive anomaly detection approach for MFL signal analy-
sis. As shown in Algorithm 1, the process begins with wavelet decomposition, followed by
multi-scale analysis, threshold computation, and comprehensive score generation.

Algorithm 1 Multi-scale Bayesian Adaptive Anomaly Detection for MFL Signals

Require: MFL signal x[n], maximum decomposition level J
Ensure: Comprehensive anomaly score Z[n]

1: Wavelet Decomposition

2: {aJ,k, dj,k}J,2j−1
j=1,k ← DWT(x[n])

3: Multi-scale Analysis and Threshold Computation
4: for j = 1 to J do
5: for each position n do
6: Local Statistics Computation
7: Calculate local statistics µj[n], σj[n]
8: Estimate local SNR SNRj[n]
9: Information Entropy Analysis

10: Compute information entropy-based anomaly index Ij[n]
11: Adaptive Threshold Determination
12: Calculate Bayesian adaptive factor αj[n]
13: Tj[n]← µj[n] + αj[n] · σj[n] · β j[n] · exp(λ · Ij[n])
14: Threshold-based Detection
15: if |dj,n| > Tj[n] then
16: Dj[n]← 1
17: else
18: Dj[n]← 0
19: end if
20: Bayesian Probability Computation
21: Calculate P(Aj|Dj) using Bayesian inference
22: end for
23: end for
24: Signal Feature Extraction
25: Extract feature vector S[n] from MFL signal
26: Comprehensive Score Generation
27: for each position n do
28: Z[n]← ∑J

j=1 wjP(Aj|Dj) f (|dj,n|, Tj[n]) + βh(S[n])
29: end for
30: Post-processing and Classification
31: Apply post-processing techniques (e.g., morphological operations)
32: Perform final defect classification based on Z[n]

Defect feature extraction: To further distinguish and characterize different types of
defects, we designed a comprehensive set of feature extraction methods. These features
include not only traditional statistical and spectral features but also advanced features
based on the physical modeling of signals, allowing us to more accurately distinguish
between small defects and large corrosion areas.

Z[n] =
J

∑
j=1

wjP(Aj|Dj) f (|dj,n|, Tj[n]) + βh(S[n]) (14)

where:

• Z[n] is the comprehensive anomaly score.
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• wj is the weight for scale j.
• P(Aj|Dj) is the posterior probability of anomaly at scale j.
• f (|dj,n|, Tj[n]) is a smooth threshold function, e.g., f (|dj,n|, Tj[n]) = 1

1+e−k(|dj,n |−Tj [n])
.

• h(S[n]) is an anomaly scoring function based on feature vector S[n].
• β is the weight coefficient for feature scoring.
• J is the maximum decomposition level.
• dj,n is the wavelet coefficient at scale j and position n.
• Tj[n] is the adaptive threshold at scale j and position n.
• θ: represents the parameters or hyperparameters in the anomaly scoring function.

We propose an innovative multi-scale Bayesian adaptive anomaly detection method
that integrates wavelet decomposition, Bayesian inference, and feature extraction tech-
niques. By calculating the comprehensive anomaly score Z[n], we fuse anomaly probabil-
ities at multiple scales, smooth threshold functions, and feature-based anomaly scoring.
Instead of relying on a fixed threshold, this method adopts a dynamic classification strat-
egy based on sorting, which can adaptively identify anomalies of different degrees. By
adjusting the weights of each component, our method can flexibly adapt to different types
of defects, such as small defects (broken wires) and large-area defects (corrosion). This com-
prehensive approach not only improves the accuracy and robustness of detection but also
can effectively handle various challenges in complex industrial environments, providing a
powerful tool for the safety monitoring of wire ropes.

4. Experimental Verification and Result Analysis

In magnetic flux leakage detection of steel ropes, we use tolerance to evaluate algo-
rithm accuracy. Tolerance is the maximum allowed distance between predicted and actual
defect positions. We use multiple tolerance values (e.g., 1, 5, 10, 15, 20, 25 sampling points)
to assess algorithm performance. Smaller tolerances indicate higher accuracy requirements,
while larger ones allow more deviation.

This detection is an anomaly detection problem with highly imbalanced data. We use
precision (Precision = TP

TP+FP ), recall (Recall = TP
TP+FN ), F1 score (F1 = 2 · Precision·Recall

Precision+Recall ),
and false positive rate (FPR = FP

FP+TN ) as evaluation metrics.
Where r represents the recall rate. Through the comprehensive analysis of these indi-

cators, we can continuously optimize the algorithm, improve the reliability and efficiency
of steel rope safety detection, and ultimately ensure the integrity of the steel rope structure
and safety in use.

4.1. Simulation Analysis
4.1.1. Simulation Data Generation

In the simulation experiment, we generated simulated MFL signals based on the
method proposed in the paper [25]. The simulation process employs multi-channel signal
fusion, oblique direction resampling filtering, and an anti-shaking algorithm based on
median filtering to handle strong strand noise and shaking noise, thereby achieving accurate
detection and positioning of wire rope defects. We generated 20 channels of simulated MFL
signals, including 5 local defect signals of different intensities, with 1000 sampling points
and a sampling rate of 2/3 samples/mm. A 6-strand wire rope was simulated, and the
strand pitch was set to 150 mm. The amplitudes of the 5 local defect signals were 0.1, 0.2, 0.3,
0.4, and 0.5 (relative to the amplitude of the strand noise), and the length was 20 sampling
points. In order to simulate the actual situation, we also added 40 dB of white noise to
the signal. The simulation data generated in this way not only contains defect signals of
different intensities but also simulates the strand noise and random noise commonly seen
in actual detection, providing a reliable testing basis for subsequent algorithm verification.
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4.1.2. Simulation Signal Processing Results

The simulated MFL signals with five embedded defects are visualized in Figure 3.
Subsequently, we performed a series of processing on the original signal, including oblique
resampling filtering, edge enhancement, and smoothing, to improve the accuracy of defect
detection. In order to intuitively demonstrate the processing effect, we used heat map
visualization technology to display the original MFL image and the processed MFL im-
age respectively. During the visualization process, we specially marked the locations of
5 defects, and by optimizing the image layout and marking method, we ensured the clear
identification of the defect locations in a complex background. This processing and visu-
alization method helps to better understand the MFL signal characteristics and provides
strong support for subsequent defect detection and positioning.
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Figure 3. Twenty channel simulated MFL signals with the five abnormal defects: (a) original MFL
image with anomalies indicated; (b) processed MFL image with no enhanced defect features.

4.1.3. Simulation Performance Analysis

As shown in Figure 4, in the simulation experiment, we conducted a comprehensive
performance evaluation of the proposed multi-scale adaptive anomaly detection method.
A comparison of detection performance between our method and other anomaly detection
techniques is presented in Figure 5. By generating 15 different simulation datasets, various
possible wire rope defect scenarios and noise conditions were simulated. The experimental
results were visualized by precision–recall (PR) curves. From the PR curve plot, it can be
seen that the method performs well under most simulation conditions. The average PR
curve shows that high precision is maintained in most of the recall range, especially in the
low recall region (about 0–0.5), and almost all datasets achieve a precision close to 1. This
shows that the method can effectively identify various types of defects while maintaining
a low false positive rate. It is worth noting that even in the high recall region (0.75–1.0),
the average precision remains above 0.8, which proves that the method can maintain high
accuracy while maintaining a high detection rate. Although the performance of individual
datasets fluctuates slightly, the PR curves of each dataset are generally clustered tightly
and close to the average curve, reflecting that the method has good stability and robustness
under different simulation conditions. These results strongly demonstrate the effectiveness
and potential application value of the proposed method in wire rope defect detection and
lay a solid foundation for its subsequent application in actual industrial environments.

By comparing the PR curves of the proposed method with methods such as LSTM,
attention mechanism (ATT), isolation forest (IF), kernel density estimation (KDE), and
local outlier factor (LOF), we can clearly see that the superior performance of the proposed
method in wire rope defect detection tasks. The PR curve of the proposed method maintains
a high precision rate in most of the recall range, especially in the high recall area, which
shows that the method can effectively control false detection while maintaining a high
detection rate. In contrast, although the LSTM and ATT methods perform well in the
medium recall range, their performance drops rapidly in the high recall area, while the

Figure 3. Twenty channel simulated MFL signals with the five abnormal defects: (a) original MFL
image with anomalies indicated; (b) processed MFL image with no enhanced defect features.

4.1.3. Simulation Performance Analysis

As shown in Figure 4, in the simulation experiment, we conducted a comprehensive
performance evaluation of the proposed multi-scale adaptive anomaly detection method.
A comparison of detection performance between our method and other anomaly detection
techniques is presented in Figure 5. By generating 15 different simulation datasets, various
possible wire rope defect scenarios and noise conditions were simulated. The experimental
results were visualized by precision–recall (PR) curves. From the PR curve plot, it can be
seen that the method performs well under most simulation conditions. The average PR
curve shows that high precision is maintained in most of the recall range, especially in the
low recall region (about 0–0.5), and almost all datasets achieve a precision close to 1. This
shows that the method can effectively identify various types of defects while maintaining
a low false positive rate. It is worth noting that even in the high recall region (0.75–1.0),
the average precision remains above 0.8, which proves that the method can maintain high
accuracy while maintaining a high detection rate. Although the performance of individual
datasets fluctuates slightly, the PR curves of each dataset are generally clustered tightly
and close to the average curve, reflecting that the method has good stability and robustness
under different simulation conditions. These results strongly demonstrate the effectiveness
and potential application value of the proposed method in wire rope defect detection and
lay a solid foundation for its subsequent application in actual industrial environments.

By comparing the PR curves of the proposed method with methods such as LSTM,
attention mechanism (ATT), isolation forest (IF), kernel density estimation (KDE), and
local outlier factor (LOF), we can clearly see that the superior performance of the proposed
method in wire rope defect detection tasks. The PR curve of the proposed method maintains
a high precision rate in most of the recall range, especially in the high recall area, which
shows that the method can effectively control false detection while maintaining a high
detection rate. In contrast, although the LSTM and ATT methods perform well in the
medium recall range, their performance drops rapidly in the high recall area, while the
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overall performance of the IF, KDE, and LOF methods is relatively weak, especially in
the high recall area. In addition, the proposed method shows better stability on different
datasets, and the dispersion of the PR curve is significantly smaller than other methods,
especially IF and LOF. This significant performance advantage may stem from the fact that
the proposed method can more effectively deal with strong strand noise and jitter noise
when processing complex MFL signals, thereby accurately detecting and locating defects
under various simulation conditions. In summary, the proposed method is significantly
better than other comparative methods in terms of the balance of precision, recall, and
stability across datasets, which fully proves its superiority and potential application value
in the field of wire rope defect detection.
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Figure 4. Detection performance of the proposed method under simulated data.
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Figure 5. Detection performance of different anomaly detection methods on simulated data: (a)
detection performance of the proposed method under simulated data; (b) detection performance of
the proposed method on simulated data; (c) detection performance of the attention mechanism on
simulated data; (d) detection performance of the KDE on simulated data; (e) detection performance
of the LSTM on simulated data; (f) detection performance of the LOF on simulated data.
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tection performance of the proposed method under simulated data; (b) detection performance of
the proposed method on simulated data; (c) detection performance of the attention mechanism on
simulated data; (d) detection performance of the KDE on simulated data; (e) detection performance
of the LSTM on simulated data; (f) detection performance of the LOF on simulated data.
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4.2. Experimental Verification
4.2.1. Experimental Signal Processing Results

As shown in Figure 6, the proposed method exhibits robust performance on real
datasets and maintains high accuracy over most of the recall ranges despite the large dis-
persion compared with the simulation results. Figure 7 illustrates a comparative analysis of
various anomaly detection methods, highlighting the method’s successful adaptation from
simulation to real-world scenarios with effective wire rope defect detection. Variability
in real data, attributed to factors like noise levels, defect diversity, and environmental
interference, is evident, yet the method sustains robust performance. Notably, the method
maintains high precision in the high recall region (0.75–1.0), akin to simulation outcomes,
signifying its capability to balance detection rates with false positives in practical appli-
cations. The detailed view of the high recall segment (0.5–1.0) in the figure reinforces the
method’s reliability in demanding real-world conditions. Although some datasets exhibit
minor performance dips, the majority uphold a commendable precision–recall balance.
Collectively, these findings underscore the method’s adaptability and efficacy in actual
wire rope defect detection, offering substantial support for its industrial application.
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Figure 6. Detection performance of the proposed method under experimental data.

The proposed method demonstrated a notably faster execution time compared with
the other techniques. Specifically, the average execution time for the proposed method
was measured to be 0.85 s on a computer with an Intel Core i7-10700K processor, 16 GB of
RAM, and running Ubuntu 20.04 LTS. In contrast, the average execution times for ATT [21],
KDE [23], IF [22], LSTM [20], and LOF [24] were 1.2 s, 1.5 s, 2.1 s, 2.5 s, and 1.8 s, respectively.
These measurements were taken under the same conditions to ensure a fair comparison.

4.2.2. Performance Comparison of Parameter Analysis

As show in Figure 8, we evaluate the performance of different data processing meth-
ods through a series of exhaustive experiments and visualize them using precision–recall
(PR) curves. By comparing multi-scale versus single scale methods, and adaptive threshold
versus fixed threshold strategies, we comprehensively analyze the performance differences
of these methods when dealing with complex non-stationary signals. Especially in indus-
trial applications such as wire rope flux leakage detection, multi-scale methods have shown
significant advantages.
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Figure 7. Detection performance of different anomaly detection methods under experimental data:
(a) detection performance of the proposed method on experimental data; (b) detection performance
of the attention mechanism on experimental data; (c) detection performance of the isolation forest on
experimental data; (d) detection performance of the kernel density estimation on experimental data;
(e) detection performance of the LSTM on experimental data; (f) detection performance of the local
outlier factor on experimental data.
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Figure 8. Comparison of parameter analysis performance: (a) single scale vs. multi scale detection
performance; (b) adaptive threshold vs. constant threshold at k = 1; (c) adaptive threshold vs.
constant threshold at k = 2; (d) Bayesian single scale detection performance, ws = 1; (e) Bayesian
single scale detection performance, ws = 2.

Bayesian Single Scale vs. Multi-Scale

Multiscale methods have significant advantages over single scale methods. It can
simultaneously capture the characteristics of signals on different time and frequency scales
and handle non-stationary signals and complex noise backgrounds more effectively. For
example, in wire rope defect detection, small cracks may be more obvious at high-frequency
scales, while large areas of corrosion may be easier to identify at low-frequency scales.
Multi-scale methods achieve comprehensive identification of defects of different types
and sizes by conducting independent anomaly detection at each scale and then fusing

Figure 7. Detection performance of different anomaly detection methods under experimental data:
(a) detection performance of the proposed method on experimental data; (b) detection performance
of the attention mechanism on experimental data; (c) detection performance of the isolation forest on
experimental data; (d) detection performance of the kernel density estimation on experimental data;
(e) detection performance of the LSTM on experimental data; (f) detection performance of the local
outlier factor on experimental data.
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Figure 7. Detection performance of different anomaly detection methods under experimental data:
(a) detection performance of the proposed method on experimental data; (b) detection performance
of the attention mechanism on experimental data; (c) detection performance of the isolation forest on
experimental data; (d) detection performance of the kernel density estimation on experimental data;
(e) detection performance of the LSTM on experimental data; (f) detection performance of the local
outlier factor on experimental data.
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Figure 8. Comparison of parameter analysis performance: (a) single scale vs. multi scale detection
performance; (b) adaptive threshold vs. constant threshold at k = 1; (c) adaptive threshold vs.
constant threshold at k = 2; (d) Bayesian single scale detection performance, ws = 1; (e) Bayesian
single scale detection performance, ws = 2.

Bayesian Single Scale vs. Multi-Scale

Multiscale methods have significant advantages over single scale methods. It can
simultaneously capture the characteristics of signals on different time and frequency scales
and handle non-stationary signals and complex noise backgrounds more effectively. For
example, in wire rope defect detection, small cracks may be more obvious at high-frequency
scales, while large areas of corrosion may be easier to identify at low-frequency scales.
Multi-scale methods achieve comprehensive identification of defects of different types
and sizes by conducting independent anomaly detection at each scale and then fusing
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Bayesian Single Scale vs. Multi-Scale

Multiscale methods have significant advantages over single scale methods. It can
simultaneously capture the characteristics of signals on different time and frequency scales
and handle non-stationary signals and complex noise backgrounds more effectively. For
example, in wire rope defect detection, small cracks may be more obvious at high-frequency
scales, while large areas of corrosion may be easier to identify at low-frequency scales.
Multi-scale methods achieve comprehensive identification of defects of different types
and sizes by conducting independent anomaly detection at each scale and then fusing
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these results. To verify the advantages of multi-scale methods, researchers usually conduct
comparative experiments with single scale methods.

P(A|D)sc =
P(D|A)P(A)∫
P(D|A)P(A)dA

(15)

For the single scale method, the PR curve shows that with an increase in tolerance
level, both precision and recall rate increase, but at a tolerance level of 0.7778, the precision
reaches the maximum and then stabilizes. This shows that the method can achieve good
performance under medium tolerance conditions.

Adaptive Threshold vs. Constant Threshold

The constant threshold strategy usually uses a fixed threshold for anomaly detection.
Its most basic form can be expressed as

T = µ + kσ (16)

where µ is the global mean of the signal, σ is the global standard deviation, and k is a
constant factor. For the multi-constant threshold strategy, multiple fixed thresholds may be
set for different signal characteristics or frequency ranges. In contrast, the formula for the
adaptive threshold strategy is more complex and flexible. Adaptive threshold strategies
have significant advantages over constant threshold strategies. Although the constant
threshold strategy is simple and intuitive, it is difficult to adapt to dynamic changes in
signals and complex noise environments. Even if multiple constant thresholds are used,
it is difficult to fully cover all possible states of the signal. On the contrary, the adaptive
threshold strategy can dynamically adjust the threshold according to factors such as local
signal characteristics, signal-to-noise ratio, and information entropy, so that it can better
adapt to the non-stationary nature of the signal and changes in the environment. This
method is particularly suitable for complex industrial applications such as flux leakage
detection, where signal characteristics may change frequently due to factors such as equip-
ment status and environmental conditions. The adaptive strategy can effectively reduce
false positive detections while maintaining high sensitivity, improving overall detection
performance.

The PR curves of the constant threshold (Figure 8b,c), k = 2 and k = 1) methods have
similar trends. Both have low precision and recall when the tolerance level is low. As the
tolerance level increases, both gradually improve, especially when the tolerance level is
0.625, the precision of the Figure 8b method reaches the maximum.

4.2.3. Multi-Scale vs. Single Scale

The single scale feature processing method can usually be expressed as

F = f1, f2, . . . , fM = Φ(dk) (17)

where dk represents the detection result at a single scale, Φ is the feature processing
function, and f1, f2, . . . , fM are the extracted features. There are significant differences
between multi-scale feature fusion and single scale feature processing in signal analysis
and defect detection. single scale methods analyze signals only at one fixed scale, which
may perform well when dealing with specific types or sizes of defects, but face serious
limitations. It struggles to simultaneously capture microscopic details and macroscopic
trends in signals, resulting in insufficient detection capabilities for certain types of defects,
such as tiny cracks or large-scale corrosion. In addition, single scale methods are more
sensitive to noise and interference in the signal, which may lead to higher false alarm
rates. In contrast, the multi-scale feature fusion method Fj = f j,1, f j,2, . . . , f j,M = Φ(dj,k)
can comprehensively capture the multi-level characteristics of signals. This method can
not only detect defects of different sizes and types simultaneously but also effectively
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distinguish between real defects and noise interference. The advantage of multi-scale
methods lies in their comprehensiveness and robustness, and their ability to adapt to
complex signal structures and changing environmental conditions. It provides a richer
information basis and significantly improves the accuracy and reliability of detection,
especially when processing complex signals with multi-scale characteristics (such as wire
rope signals in magnetic flux leakage detection). By fusing information at multiple scales,
this method can better balance the sensitivity and specificity of detection and reduce false
positives and false negatives, thereby achieving more efficient and reliable defect detection
in practical industrial applications.

As shown in Figure 8d,e, The PR curves of the ws = 1 and ws = 2 methods also show
that the performance gradually improves with an increase in the tolerance level, but the
improvement is relatively small, indicating that these methods have limited performance
improvement when processing data with different tolerance levels.

In summary, the multi-scale Bayesian adaptive method shows significant advantages
in processing complex industrial signals. This method is not only able to effectively identify
defects of different types and sizes but also can adapt to the non-stationary characteristics
of the signal and environmental changes. Future research directions may focus on further
optimizing the multi-scale feature fusion strategy and applying this method to a wider
range of industrial inspection scenarios.

Table 1 offers a concise comparison of the proposed method with existing state-of-the-
art techniques for MFL signal analysis, emphasizing average F1 scores and computational
complexity. The proposed method achieves an F1 score of 0.913 with low computational
demands, outperforming ATT [21], KDE [23], IF [22], LSTM [20], and LOF [24], which show
F1 scores ranging from 0.126 to 0.655 and varying computational complexities. This analysis
highlights the proposed method’s efficiency and effectiveness in MFL signal analysis.

Table 1. Comparison of State-of-the-Art Methods for MFL Signal Analysis Based on Average F1
Score.

Method F1 Score Computational Complexity

Proposed Method 0.913 Low

ATT [21] 0.655 Medium

KDE [23] 0.565 High

IF [22] 0.153 Medium

LSTM [20] 0.126 High

LOF [24] 0.576 Low

Overall, these PR curves provide us with an intuitive way to compare the performance
of different data processing methods under different tolerance conditions, thus providing a
scientific basis for choosing appropriate data processing strategies. Through these detailed
data and charts, we can deeply understand the advantages and limitations of each method
under specific conditions.

4.2.4. Experimental Performance Analysis

As show in Figure 7, comparing the PR curves of the proposed method with LSTM,
ATT, KDE, and LOF on actual datasets, we can observe performance changes from simula-
tion to real applications. Overall, all methods exhibit larger performance fluctuations and
discreteness on real data, which reflects more complex challenges in real environments.
However, the proposed method still maintains obvious advantages. Its average PR curve is
significantly better than other methods in most recall ranges, especially in high recall areas,
and it can still maintain a high precision rate. The performance of LSTM and ATT methods
on actual data is relatively stable, but the overall performance is lower than the proposed
method. The performance degradation of IF, KDE, and LOF methods on real data is more
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obvious, their PR curves are lower in most recall ranges, and the differences between differ-
ent datasets are larger. Compared with the simulation results, the performance differences
of each method in the actual data are more prominent, and the advantages of the proposed
method are more obvious. This superior performance in practical applications further
confirms the effectiveness of the proposed method in processing complex MFL signals and
dealing with strong strand noise and jitter noise. Although it brings more challenges from
simulation to practical application, the proposed method still shows strong adaptability
and reliability and is significantly better than other comparisons in terms of the balance
of precision, recall, and stability across datasets. method, which fully proves its excellent
performance and potential application value in actual wire rope defect detection tasks.

4.2.5. Tolerance Analysis for Performance Comparison

As shown in Figure 9, through a series of computational experiments, we aim to
evaluate and visualize the performance of different data processing methods under specific
conditions. The main variables involved in the experiments are tolerance levels and
their impact on recall. The methods studied include the proposed method, PM, KDE,
LOF, LSTM, attention, and IF, and each method is comprehensively evaluated with its
corresponding dataset.

The experimental results show that for the proposed method approach, the recall
remains at 1.0 in the interval of tolerance from 0.5 to 1.0, indicating that the method is able
to identify all relevant data points with 100% accuracy within this error range. The LSTM
method performs poorly at lower tolerance levels, but as the tolerance level increases, the
recall rapidly improves to 1.0. kernel density estimation method’s recall remains consistent
at most tolerance levels, stabilizing at around 0.7778, showing good robustness. LOF
method has a low recall at low tolerance levels, but as the tolerance level increases, the
recall increases significantly and peaks at a tolerance level of 1.0. The LSTM method shows
very high consistency with almost all recall measurements being 0.4444, indicating that the
method has a stable performance across different tolerances. The attention method’s recall
fluctuates more at lower tolerances, but as the tolerance increases, the fluctuation decreases
and the recall stabilizes. Finally, the if method exhibits extremely high recall at all tolerance
levels, with most measurements close to or equal to 1.0.

Further, we calculated the average recall for each method and represented it as a
blue line in the figure. This average provides an intuitive understanding of the overall
performance of each method. For example, the average recall of the proposed method
approach stays at 1.0 in the interval of tolerance from 0.5 to 1.0, while the average recall of
the LSTM method increases as the tolerance increases.

As shown in Figure 10, we show the accuracy comparison of different anomaly
detection methods on simulated datasets. The figure intuitively shows the performance
changes in each method on different datasets (dataset1 (DS1) to DS6) in the form of box
plots. The line in the center of the box plot represents the median accuracy value, the box
represents the interquartile range, and the “whiskers” extend to the extreme value of the
data, but not more than 1.5 times the interquartile range. Points outside this range are
marked as outliers.

The experimental results demonstrate varying performance across different methods
and datasets. The proposed method (PM) shows superior performance with the highest
median precision values, ranging from 0.88 to 0.98, and notably smaller variance across
datasets. The attention mechanism (ATT) achieves moderate performance with precision
values between 0.50 to 0.78. The kernel density estimation (KDE) method shows less
consistent performance, with precision values varying from 0.33 to 0.67. The isolation forest
(IF) method demonstrates relatively poor performance with precision values mostly below
0.25. The LSTM approach shows limited effectiveness with precision values ranging from
0.06 to 0.22. The local outlier factor (LOF) method exhibits moderate performance but with
significant variation across datasets, with precision values between 0.50 and 0.67. Across all



Machines 2024, 12, 801 18 of 20

six datasets (DS1-DS6), the proposed method consistently maintains the highest precision
and stability, demonstrating its robust performance in defect detection tasks.
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Figure 9. Comparison of detection performance of different anomaly detection methods on experi-
ment datasets: (a) F1 score of the PM; (b) F1 score of the ATT; (c) F1 score of the KDE; (d) F1 score
of the LOF; (e) F1 score of the LSTM; (f) F1 score of the EWMA; (g) recall performance of the PM;
(h) recall performance of the ATT; (i) recall performance of the KDE; (j) recall performance of the
LOF; (k) recall performance of the LSTM; (l) recall performance of the EWMA.
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As can be seen from the figure, our proposed method shows high median accuracy on
all datasets, and the range of accuracy variation is relatively small, which shows that the
method has good consistency and stability on different datasets. In addition, compared with
other methods, our method shows higher accuracy on most datasets, further confirming its
effectiveness in processing complex MFL signals.

5. Conclusions

This study presents an innovative adaptive multi-scale Bayesian framework for an-
alyzing MFL signals in wire rope inspection, marking a significant advancement in the
field of NDT. The method, which integrates wavelet transform, adaptive thresholding, and
channel fusion, has been extensively experimentally validated and performs well in detect-
ing defects under complex noise conditions. Numerically, the method achieves an average
precision of 91%, a recall of 89%, and an F1 score of 0.90 at various tolerance levels, which
outperforms existing techniques and maintains high detection sensitivity in high-noise
environments. Overall, this research contributes to the advancement of signal processing
and anomaly detection techniques to improve the safety and maintenance efficiency of
critical infrastructures. Future work will focus on optimizing algorithm efficiency and
exploring migration learning to improve the adaptability of different NDT applications.
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