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Abstract: Electric mobility is a global trend and necessity, with electric and solar boats offering a
promising alternative for transportation electrification and carbon emission reduction, especially
in the Amazon region. This study analyzes the system of a solar boat from an electric mobility
project—to be implemented at Universidade Federal do Pará (UFPA)—using MATLAB software for
modeling. The Simulink tool was utilized to model the system, focusing on operational parameters
such as module voltage, converter voltage, and speed. The results indicate that the solar boat’s
operational cost is significantly lower compared to a similar internal combustion model, considering
diesel’s high consumption and cost. The environmental impact is also reduced, with nearly 72 tons of
CO2 emissions avoided annually, thanks to Brazil’s renewable energy matrix. Simulations confirmed
the project’s parameters, demonstrating the efficiency of digital-twin technology in monitoring and
predicting system performance. The study underscores the importance of digital twins and renewable
energy in promoting sustainable transportation solutions, advocating for the replication of such
projects globally. Future research should focus on further advancing digital-twin applications in
electric mobility to enhance predictive maintenance and operational efficiency.

Keywords: electric mobility; solar boats; digital twin; renewable energy; carbon emission reduction;
sustainable transportation

1. Introduction

The energy transition and the decarbonization of vehicles are global trends driven
by the increasing consumption of electricity, especially in transportation, and the urgent
need to reduce greenhouse gas (GHG) emissions [1]. This context has bolstered the growth
of distributed generation, including photovoltaic and storage systems, aimed at more
intelligently and sustainably meeting the complex energy needs of urban centers [2].

In 2022, the transportation sector accounted for 31% of the final energy consumption
in Europe [3], and in 2023, this percentage was 33% in Brazil [4]. These data highlight the
significant participation of the transport sector in the global energy matrix. However, the
transition from fossil fuels to non-fossil electricity depends on each country’s electricity
matrix composition, increasingly focused on clean and renewable energy generation to
reduce GHG emissions [5]. In this context, replacing internal combustion vehicles is crucial,
as they are one of the main GHG emitters [6]. It is important to note that while vehicles
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significantly contribute to GHG emissions, the effectiveness of this replacement depends
on each country’s electrical matrix, many of which still rely on fossil fuels for electricity
generation [4,7].

In the Brazilian context, diesel and gasoline represent 71.1% of transport energy
consumption, while 22.5% comes from renewable sources such as biodiesel and ethanol.
Brazil stands out as a pioneer in decarbonizing primary energy sources, with one of the
cleanest energy and electricity matrices globally, with approximately 89% renewable sources
in the electricity matrix, compared to 35% in OECD countries and the global average of
30% [4]. The Brazilian transport sector has 22.5% of its energy consumption from renewable
sources [4].

When addressing mobility in Brazil, it is crucial to take into account river transport.
River mobility plays a vital role in the country, which features a river network spanning
63,000 km, with nearly 27,000 km deemed navigable. Nevertheless, only about 30% of
this network is utilized for the commercial transportation of goods and passengers [8].
To address this demand in a more sustainable manner, alternatives that promote electric
mobility are essential.

In addition to advancements in technologies for land transportation, such as electric
cars and buses, it is essential to promote research and development for water-based trans-
port modes. A notable example in the Amazon is the Intelligent Multimodal System of
the Amazon (SIMA), hosted at the Universidade Federal do Pará (UFPA), proposing a
project integrating land and river electric mobility powered by photovoltaic energy [9]. To
substitute fossil fuel consumption in boats, energy produced by photovoltaic systems is
regarded as the most appropriate renewable energy source. [10].

Currently, solar boats are defined as vessels equipped with an electric motor powered
by electricity sourced from both the grid and an energy storage system, as well as from
solar energy converted through photovoltaic modules. This design positions them as an
effective alternative for cleaner and more sustainable water transport, significantly reducing
greenhouse gas emissions. [11].

The use of photovoltaic systems in boats is a way to generate electricity without
constantly relying on fossil fuels. Photovoltaic modules have several advantages as they
convert energy silently and, unlike wind turbines, do not have rotating components that
could affect the boat’s stability [10]. Another way to categorize boats is based on their hull
design, which can be monohulls, catamarans, or trimarans [12]. Research indicates that
catamaran-structured boats are the most effective for utilizing solar photovoltaic energy.
Their flat roofs and optimized space for photovoltaic module installation enable maximum
exposure to solar radiation from the beginning of the day. This design minimizes any
obstructions to solar rays caused by the boat’s structure itself [10].

In this context, the electric boat Poraquê, developed by UFPA, stands out as an in-
novative example. It uses an electric propulsion system powered by an energy storage
system and photovoltaic modules for charging these batteries. Additionally, part of the
energy consumed by the boat can be supplied by onshore photovoltaic systems and storage
systems, which are part of the DERs. This project demonstrates the feasibility of using
distributed energy resources (DERs) in transportation applications in the Amazon. Fur-
thermore, the implementation of a digital twin in the project allows for the optimization
of the boat’s performance. It also allows for accurate projections of the system’s energy
consumption, demonstrating how digitalization can complement DERs and enhance energy
management efficiency.

This case study highlights the importance of integrating DERs with the electricity
grid in the Amazon and underscores the benefits of digitalization for sustainability and
operational efficiency, offering valuable insights into the opportunities and challenges in
implementing advanced technologies in remote and ecologically sensitive regions.
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2. Literature Review

The purpose of this literature review is to conceptually demonstrate the use of digital-
twin technology through studies that focus on its application in various scenarios, contexts,
and purposes. Digital twins can be classified into different types, such as part twins, unit
twins, and process twins, and are applied in various fields including aerospace, automotive,
and smart cities [12,13].

Research has demonstrated the expansion of digital-twin usage beyond flow analysis
and optimizations, showing applications in planning and managing structures, such as in
smart cities [14]. This study illustrates the potential for using digital twins to determine
the operation of autonomous vehicles in urban centers, conducting traffic studies and
optimizing routes for electric and autonomous vehicles with a focus on energy efficiency
and consumption minimization.

Concepts of the lifecycle of systems are presented, covering everything from the
theoretical design phase of a project to the end of its stipulated useful life [15]. The
lifecycle of a system is seen as a performance indicator for analyzing the wear and tear of
electrical components, such as battery health, influenced by various economic or technical
aspects, directly impacting production costs. This study demonstrates that the digital twin
allows for the implementation of new technologies based on a defined model, enabling the
comparison of techniques and system management methods to achieve excellence.

Various challenges regarding electric mobility for autonomous vehicles are presented,
highlighting that the dynamism of highways can cause delays in simulations and complicate
the understanding of regional dynamics [16]. This study highlights the significance of
accurately mirroring real vehicles to effectively represent automated models and optimize
load flow for electric chargers. It also discusses the development of a charging station for
electric boats in Malaysia, comparing conventional fuel use with electric energy. The focus
is on the economic benefits and the reduction of greenhouse gas emissions, particularly
when the energy is sourced from renewable resources.

Another important study examines electric mobility in air traffic, specifically focusing
on taxis and ambulances operating at low altitudes in urban environments [17]. The
application of digital twins facilitates the prediction of potential challenges related to
traffic, routing, and weather conditions, thereby enhancing the likelihood of successful
implementations. Furthermore, the use of digital twins allows for the complete study of
the operation of an electrical mode, with virtual and physical models that communicate,
thus obtaining optimal results, as demonstrated by [18]. This study complements the study
by [13], which presents the efficiency of vehicle traffic routes.

In addition to digital and technological issues, the energy transition is crucial for
reducing climate change, especially in urban centers, which are the major contributors to
these problems [19]. In the Amazonian context, the low number of electric vehicles and the
implementation of electric mobility projects, such as the SIMA by UFPA, which integrates
electric land and water modes with hybrid photovoltaic systems, are essential to address
the lack of sustainable modes [20].

Complementary aspects of electric mobility within the European context emphasize
that electric vehicles are crucial for lowering greenhouse gas emissions [21–23]. The first
and secound paper emphasizes the social, economic, and environmental impacts of incor-
porating electric modes, as well as the challenges related to the scarcity of raw materials
and the generation of energy required for these vehicles. The last paper focuses on the
energy transition in Europe, which, although not following the expected projections, shows
an increase in electric vehicle sales. It is crucial to ensure the energy transition and the
decarbonization of vehicles, promoting the development of renewable energy matrices to
combat GHG emissions, with Brazil being a world reference with approximately 88% of its
renewable energy matrix [4].

Research has also demonstrated that internal combustion systems are detrimental
both environmentally and economically, due to rising fuel tariffs [24]. This study presents a
zero-emission conceptual model, simulated via MATLAB/Simulink, using photovoltaic
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modules and an electrical energy storage system. Challenges such as the seasonality of
energy generation curves and the low efficiency of photovoltaic systems are addressed,
highlighting that the application of monocrystalline/polycrystalline silicon modules in
the Amazonian context is advantageous due to high solar radiation indices and constant
temperature, as well as their greater efficiency and positive impact on the stability of
vessels [25].

Some experiments have demonstrated the effectiveness of converting conventional
boats, which used combustion engines, into electric boats equipped with electric motors
combined with energy storage systems, as exemplified in [26], which demonstrates that
the electric energy storage system is effective in managing the boat’s loads. Other studies
present the operation of a solar-electric boat in sunny areas, aiming at the sizing of energy
storage systems or the modules for energy generation to charge the batteries, as is the
case of [27,28], which use different methods for sizing parameters but present interesting
results regarding the final operation of the solar-electric boat. These studies showcase
distinct optimization approaches for different operating conditions. The development of
all projects involving an energy storage system must be mindful of the battery bank’s
depth of discharge, as poor optimization can lead to future problems and high costs for
the large-scale implementation of boats with this integrated storage system. According
to [29], the improper management of battery depth of discharge can significantly reduce
the lifespan of the battery and increase operational costs due to more frequent replacements
and reduced efficiency.

This brief state-of-the-art study was conducted with the aid of artificial intelligence (AI)
for the recommendation of selected works, using a tool named Research Rabbit. Figure 1
presents the main keywords of relevant articles in the research areas used, with the fields
of electrical engineering and computer engineering being the most utilized, represented
by keywords such as renewable sources and digital twin, respectively. Furthermore, it is
possible to analyze the publication years of these academic works, as shown in Figure 2,
which indicates that the database is recent, with articles from 2020 onwards. It is important
to note that the normalization of these results refers to the most frequent keywords in
the database, meaning there may be articles prior to 2020 that do not contain the most
relevant keywords for the analyses. The database utilized includes 42 articles from the
most renowned bibliographic sources in scientific content for engineering, such as MDPI,
IEEE Xplore, and Elsevier.
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Therefore, the frequency of recent articles is essential for maintaining the relevance of
academic work, making updated publications crucial considering scientific advancements
in recent years. This ensures that the research and discussions are aligned with the latest
trends, fostering innovation and integration with established methodologies, thereby
developing more precise analyses, results, and recommendations.

3. Methodology

The methodology of this study focuses on the creation of a digital-twin model of the
electric boat within the SIMA project. This involves the use of software tools such as MAT-
LAB (R2023b Update 4) for modeling the electrical and mechanical elements, both internal
and external to the boat, and PVsyst 7.2 for assessing photovoltaic energy generation. The
primary objective is to simulate the boat’s operation under various conditions to evaluate
its performance, energy balance, and greenhouse gas emissions. The results from this study
will integrate with other systems already in operation within the SIMA project to provide a
comprehensive evaluation of energy balance and emission issues.

3.1. Digital-Twin Modeling

The digital-twin model will be developed using MATLAB, a powerful tool for simu-
lating and analyzing complex systems. This involves creating detailed models of the boat’s
electrical and mechanical components. The electrical model includes the battery storage
system, photovoltaic generation system, and propulsion system, while the mechanical
model incorporates aspects such as the boat’s structure and hydrodynamics.

MATLAB is widely utilized for various mathematical procedures, integrating numeri-
cal analysis, matrix calculations, signal processing, and graph plotting. The software uses
a programming language similar to Fortran, Basic, or C [30]. It also features numerous
tools that facilitate power system simulations, allowing for the modeling and analysis of
dynamic systems. One of these tools is Simulink, which offers a graphical interface where
users can employ pre-existing blocks from the software’s library, as well as custom blocks,
simplifying the modeling approach [31]. In Figure 3, an example of a control system for a
boat using Simulink is presented. This is an example of a digital twin, where it is possible
to perform various operational analyses of the boat under different conditions, considering
both electrical and physical equipment included in the object under study. Various variables
can be obtained, such as movement speed, fuel usage, and even the energy used to keep
the internal lights on.
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Additionally, there are specific libraries such as Simscape, which is used for various
power electronics applications. These specialized libraries aim to simplify the simulation
of specific applications, like photovoltaic modules, which are elements of electrical power
systems. Thus, it is possible to use basic and specific elements to build a complete physical
system [32].

MATLAB also supports the creation of digital twins, which represent a way to evaluate,
simulate, and improve real products. By virtually replicating a real physical system, the
digital model can provide valuable data on the stability and utilization of the product, such
as the product’s lifecycle [32].

3.2. Photovoltaic System Simulation

The photovoltaic system simulation is conducted using PVsyst to provide foundational
support for the MATLAB simulation of the boat’s photovoltaic system. PVsyst analyzes the
performance of the photovoltaic modules under the unique meteorological conditions of
the Amazon region, including solar irradiance and temperature variations.

The photovoltaic system is configured in PVsyst by specifying the type and number
of photovoltaic modules, their arrangement, and their connection to the boat’s electrical
system. Key parameters such as module orientation, tilt angle, and shading effects are
input to ensure accurate modeling. Environmental data specific to the Amazon, such
as solar irradiance and temperature, are integrated into PVsyst to accurately predict the
photovoltaic system’s performance [33].

The simulations account for various impactful variables such as climate, solar irradi-
ance, and precipitation, considering the system’s location. Location differences are observed
through parameters like latitude, longitude, and altitude [34], which directly affect the
climatic conditions in a region. These factors influence the amount of solar irradiance
reaching the system due to the region’s cloud cover.

PVsyst simulates the energy output of the photovoltaic system over various periods,
providing detailed reports on expected energy production. These results are used to inform
the MATLAB simulation, ensuring realistic energy input data, as energy generation fluctu-
ates throughout the year due to daily variations in the sun’s position. The integration of the
photovoltaic system with the boat’s electrical system is evaluated to ensure compatibility
with the battery storage and propulsion systems. PVsyst also helps identify optimization
strategies to enhance the system’s efficiency and reliability.
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By utilizing PVsyst for initial simulations, accurate input data for MATLAB are pro-
vided, enabling a comprehensive evaluation of the photovoltaic system’s performance and
supporting the SIMA project’s goal of sustainable mobility in the Amazon region.

3.3. Financial and Ecological Comparison

Using the data from the digital-twin model and photovoltaic system simulation, this
study assesses the greenhouse gas emissions of the electric boat. The goal is to identify
scenarios where the boat operates most efficiently, minimizing emissions and maximizing
energy use.

To perform the financial and ecological analysis, comparisons were made between the
operating costs of this electric boat and an equivalent internal combustion engine boat. An
estimation of the total energy consumption of the solar boat on a typical sunny day was
developed. Using the installed peak power values (Pp), the average PVOUT is obtained,
based on the specific production calculated by PVsyst of 4.21 kWh/kWp/day (annual
average value).

The comparison between the systems considers the available generated energy—total
energy (Etotal), obtained through simulation—and the theoretical total consumption (Cto-
tal). The three possible scenarios are shown in Table 1.

Table 1. Performance scenarios based on the relationship between energy generation and consumption.

Scenario Description Performance Evaluation

Etotal > Ctotal The generated energy
exceeds consumption

The system operates with an energy
surplus, ensuring reliable
performance and stability.

Etotal = Ctotal The generated energy
matches consumption

The system requires optimal
operational efficiency to maintain a

balanced state.

Etotal < Ctotal The generated energy is insufficient
to meet consumption

The system will fail to operate
efficiently within the defined period

due to energy deficit.

The total available energy in a service day is calculated as shown in Equation (1),
where Etotal is the sum of the energies from the photovoltaic modules (Emodules) and the
storage system (Ebatteries):

Etotal= (Emodules +Ebatteries) (1)

Subsequently, the energy consumption in the propulsion system is calculated based
on the engine load and its usage percentage to maintain cruising speed, as shown in
Equation (2). The Ctotal is the relation between the engine power (Pengine), the number of
engines (n), and the engine usage percentage at cruising speed (Pu):

Ctotal = Pengine × A × n × Pu (2)

Based on these results of Ctotal, the daily and monthly cost of electricity consumed
from the grid for the catamaran can be calculated considering different tariff types, such
as single-rate tariffs and time-of-use tariffs (peak and off-peak), as shown in Table 2,
obtained from the local energy concessionaire in 2022. The exchange rate considered was
5.66 BRL/USD, and the values were converted accordingly.

Table 2. Daily cost of boat electricity.

Fare Type Price (BRL/kWh) Price (USD/kWh) Grid Energy (kWh)

Single Rate BRL 0.88 USD 0.16 45.15
Peak BRL 3.59 USD 0.63 45.15

Off-Peak BRL 0.33 USD 0.06 45.15
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For a catamaran with a cruising speed of 8 knots (approximately 7.3 knots for a solar
boat), the estimated consumption is 20 L per hour of operation. Thus, the consumption for
the same autonomy of 3 h and 5 min and the cost of fuel were calculated, considering the
average price of nautical diesel for 2022, as shown in Equation (3):

CDtotal = (CD/h × A) (3)

where CDtotal is the total diesel consumption in liters, and CD/h is the hourly diesel con-
sumption. Based on Equation (3), the total consumption is 61.6 L.

Diesel-powered vehicles emit more CO2 per unit volume or weight of fuel compared
to other motorized modes. In this study, an average emission factor of 2.6 kg of CO2 per
liter of diesel burned was used, plus an average of 0.5 kg of CO2 emitted to produce and
distribute the fuel, resulting in a total emission rate of approximately 3.2 kg of CO2 per liter
of diesel. The total daily CO2 emission is calculated using Equation (4):

EtCO2 = (EpCO2 + EqCO2 ) ∗ Vd (4)

where EtCO2 is the total CO2 emission, EpCO2 is the CO2 emission from producing 1 L of
diesel, EqCO2 is the CO2 emission from burning 1 L of diesel, and Vd is the daily volume of
diesel, totaling 197.12 kg/day.

By incorporating these methodologies, this study aims to provide a comprehensive
evaluation of the electric boat’s environmental impact and its potential for reducing green-
house gas emissions, thereby supporting the broader objectives of the SIMA project in
promoting sustainable mobility in the Amazon region.

4. Subject of Study: SIMA PROJECT

The Intelligent Multimodal System of the Amazon (SIMA) project is an initiative of
the UFPA in partnership with Norte Energia and the Center for Research and Development
in Telecommunications (CPqD). Its objective is to promote sustainable mobility in the
Amazon region based on the pilot project installed at the Guamá campus of UFPA through
electric modes, including electric buses and boats, supported by photovoltaic generation
and energy storage systems [20,35,36]. The topology is presented in Figure 4.
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4.1. Supporting Energy Infrastructure and Electric Mobility

The supporting energy infrastructure of the SIMA project consists of photovoltaic
generation systems, energy storage, and charging stations for electric vehicles. These
systems are integrated to create distributed energy resources (DERs), characterized by
decentralized energy generation and the intelligent management of energy flows.

4.1.1. Photovoltaic Generation Systems

Two main photovoltaic generation systems are in operation on the Guamá campus:

• The Mirante do Rio Photovoltaic System, Belém-Pa, Brazil.

Power: 59.29 kWp.
Modules: 177 photovoltaic modules of 335 Wp (BYD).
Inverter: 60 kW
Connection: On-grid.

• The Ceamazon Hybrid Mini-grid, Belém-Pa, Brazil.

Power: 78.39 kWp.
Components: SMA system: 54.94 kWp (on-grid/hybrid), Fronius system: 18.09 kWp

(on-grid/hybrid), Victron system: 5.36 kWp (off-grid/hybrid).
Biodiesel Generator: Backup for extreme cases.
Connection: Part of the system is connected to the internal mini-grid, while another

part is connected to the UFPA grid.

4.1.2. Energy Storage System

The energy storage system uses lithium-ion batteries to ensure the continuous opera-
tion of electric modes. Specifications:

Total Capacity: 110.4 kWh.
Technology: BYD batteries, with 80% depth of discharge.
Management: Interconnected controllers manage battery charge and discharge, main-

taining system efficiency and safety.

4.1.3. Charging Stations

The Guamá campus has four charging stations for electric vehicles, strategically located
next to the sports hall and CEAMAZON. Specifications of the main models:

• The BYD EVA080KI/01 Charging Station, Belém-Pa, Brazil.

Output Power: 80 kVA.
Input Voltage: 380–480 V AC.
Output Current: ≤126 A AC.

• The ABB TERRA 54HV Charging Station, Belém-Pa, Brazil.

Output Power: 50 kW.
Maximum Output Current: 125 A DC.
DC Output Range: 200–950 V DC.

4.1.4. Real-Time Monitoring

A real-time monitoring system has been developed to collect and analyze data from
electric modes. Variables such as current, voltage, and power are continuously monitored,
facilitating the efficient management and preventive maintenance of the systems. This
system uses sensor technology and cloud data transmission, providing managers with
accurate and up-to-date information.

4.2. Electric Mobility Modes

SIMA introduced three electric mobility modes on campus: two electric buses and a
solar-electric boat.
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4.2.1. Electric Buses

The buses, both intercity and urban models, have permanent magnet synchronous
motors with a nominal power of 110 kW each and BYD LiFePO4 batteries with a capacity
of 324 kWh, offering a range of up to 250 km.

• Intercity Bus, Belém-Pa, Brazil.

Motor: Two permanent magnet synchronous motors, 110 kW each.
Battery: BYD LiFePO4, 324 kWh.
Range: 250 km.
Charging: 4–5 h, power 2× 40 kW AC.
Operation: Daily trip UFPA Belém campus—Castanhal.

• Urban Bus, Belém-Pa, Brazil.

Motor: Two synchronous motors, 110 kW each.
Battery: BYD LiFePO4, 324 kWh.
Range: 250 km.
Charging: 4–5 h, power 2× 40 kW AC.
Operation: Internal transport on the Guamá campus.

4.2.2. Solar-Electric Boat

The project includes a solar-electric boat in the final stages of implementation, which
is the main study object of this work. The SIMA project’s solar-electric boat is a catamaran
equipped with an integrated photovoltaic system and energy storage system. The topology
is presented in Figure 5, and it is designed to operate efficiently and sustainably in the
Amazon rivers. Table 3 presents the physical specifications of the electric boat, including
length, width, and structure weight.
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Table 3. Physical specifications.

Specifications Value

Length 12.3 m
Width 6 m

Weight of the structure 1386 kg
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Meanwhile, Table 4 presents various characteristics of the electric boat’s propulsion
system, such as motor information, power, and technical details. These specifications are
essential to understand the performance capacity and efficiency of the boat in daily opera-
tions.

Table 4. Propulsion system specifications.

Parameters Value

Quantity of motors 2
Maximum mechanical power 24 kW

Nominal voltage 51 V
Total weight 118 kg

Furthermore, Table 5 presents the parameters of the photovoltaic system and storage
system, such as power, quantity, and weight, among other parameters. These details are
crucial to evaluate the feasibility of using photovoltaic energy on the boat and ensure it can
operate efficiently and sustainably during its trips.

Table 5. Photovoltaic nad storage system specifications.

Parameters Value

Maximum PV power 6.7 kWp
Quantity of PV modules 20

Technology of PV modules Polycrystalline
Weight of PV system 430 kg

Total capacity of storage system 14,760 Ah
Quantity of batteries 72

5. Results

The digital-twin model of the electric boat accurately simulates the boat’s electrical
and mechanical components under various operational scenarios. The model provides
detailed insights into the boat’s energy consumption, propulsion system performance, and
overall efficiency.

5.1. Photovoltaic Modules

The photovoltaic system simulation utilized the PVarray block from the Simscape
library to model the arrangement of photovoltaic modules. This block requires two key
parameter inputs: irradiation and temperature. In addition to these inputs, the block has
three outputs: a negative pole, a positive pole for voltage measurements, and an output
labeled “m” for displaying measured parameters. Figure 6 illustrates the block representing
the photovoltaic generation system.
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To assess the performance under different environmental conditions, simulations were
conducted with varying ambient temperatures. Figure 7 presents the current and power
curves as functions of voltage for scenarios with ambient temperatures of 25 ◦C and 45 ◦C.
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For the specific case defined in the schematic input, with an irradiance of 1000 W/m2

and a temperature of 30 ◦C, the simulation indicates a voltage output of 233.2 V, as shown
in Figure 8.
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Figure 8. Output voltage of the photovoltaic system.

Given that the battery bank charging voltage is 72 V, which is lower than the PV array
output voltage, a DC-DC converter is essential to adjust the voltage output to match the
input voltage of the battery bank. This step ensures efficient charging and energy transfer
between the photovoltaic system and the battery storage.

Optimizing the photovoltaic system involves ensuring the proper alignment of the
modules to maximize solar exposure and implementing a monitoring system to track
performance metrics. These data help maintain efficiency and inform potential adjustments
or upgrades. Additionally, integrating the photovoltaic system with the boat’s overall
energy management system allows for real-time adjustments based on energy demand
and storage capacity. This integration enhances operational efficiency and supports the
SIMA project’s sustainability goals by maximizing renewable energy use and minimizing
dependency on external sources.

The simulation results highlight the importance of considering environmental factors
such as temperature and irradiation when designing photovoltaic systems. By accounting
for these variables, the system can be optimized for the specific meteorological conditions of
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the Amazon region, supporting the project’s objectives of promoting clean and sustainable
energy solutions.

5.2. DC-DC Converter

The DC-DC converter is crucial in photovoltaic systems, performing tasks like opti-
mizing power generation through maximum power point tracking (MPPT) and aligning
voltage for battery charging. In this project, the converter regulates the voltage to 72 V,
ensuring compatibility with the storage system. Figure 9 displays the converter model in
Simulink, and Figure 10 shows the photovoltaic system’s output voltage after conversion.
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Figure 9. DC-DC converter in Simulink.
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Figure 10. DC-DC converter output voltage.

Beyond simple voltage regulation, the converter dynamically adjusts to maintain
system efficiency, compensating for variations in irradiation and temperature. This ensures
the optimal operation of the photovoltaic modules, maximizing energy capture and conver-
sion. Using MPPT algorithms within the converter enhances the system’s adaptability to
changing environmental conditions, improving overall performance and reliability.

Integrating the DC-DC converter into the photovoltaic system enhances compatibility
with the storage system and contributes to the energy management setup’s longevity and
stability. By maintaining consistent voltage levels, the converter prevents the overcharging
or undercharging of the batteries, thereby extending their lifespan and efficiency. This
integration is essential for the electric boat’s operation within the SIMA project, ensuring
the effective and sustainable use of renewable energy.

5.3. Battery Bank

The Simscape battery block was used to represent the storage system, as shown in
Figure 11. Three battery blocks are connected in parallel, with the main parameters being a
nominal voltage of 76.8 V and a capacity of 205 Ah per block (Figure 12). This configuration
results in a total storage capacity of 615 Ah.
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Figure 12. Storage system parameters.

The parameters V1 Voltage and AH1 Charge represent the no-load voltage and no-load
capacity at a specific point, which are used to plot the battery discharge curve, as shown in
Figure 13.
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Figure 13. Storage system discharge curve.

Integrating this battery bank with the photovoltaic system and the DC-DC converter
ensures efficient energy storage and management. The system can store sufficient energy
to meet the boat’s daily operational needs, supporting its sustainable and independent
operation. This integration is key to achieving the SIMA project’s goals of promoting clean
and renewable energy in the Amazon region.



Machines 2024, 12, 803 15 of 22

5.4. DC-AC Converter

The DC-AC inverter is a crucial component of the system, converting the DC voltage
from the bus—where the photovoltaic generator and storage system are connected—into
AC voltage at the specifications required by the electric motors. In the original design,
two inverters divide the power, but in the simulation, a single average-value inverter (three
phases) block is used to perform the entire conversion process. Figure 14 shows the block
with positive and negative DC inputs and the three-phase AC output on phases ABC.
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The parameter configurations for the inverter block were selected based on the motor
specifications: three phases at 60 Hz, a 120◦ phase shift, and an output voltage of 51 V, as
shown in Figure 15.
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Figure 15. Inverter block parameters.

Thus, the energy signal at the inverter output, with maximum voltage values of 53 V
and a frequency of 60 Hz, is depicted in Figure 16.
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This conversion process is vital for ensuring that the energy generated and stored by
the photovoltaic and battery systems is effectively utilized by the boat’s electric motors,
contributing to the overall efficiency and sustainability of the system.
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5.5. Motors

To model the propulsion motors of the boat, the induction-machine squirrel-cage block
was used, which represents a squirrel-cage three-phase motor. As shown in Figure 17,
two motors connected in delta configuration were placed just after the frequency inverter.
This block has two outputs: R, the mechanical rotational port associated with the machine
rotor, which transmits the values of angular speed, and the output torque of the motor.
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The design parameters were added to the simulation for each motor with 13 kW of
power and a nominal voltage of 51 V in a three-phase alternating current at a frequency of
60 Hz, as depicted in Figure 18.
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These parameters ensure that the motors are accurately represented in the simulation,
reflecting the real-world operational characteristics necessary for efficient boat propulsion.

5.6. AC-DC Converter

Since the photovoltaic generation system does not supply all the energy needed for
the boat’s daily autonomy, a power supply for recharging at land-based charging stations
is necessary. Therefore, an AC-DC converter was developed to transform the 127 V AC
from the UFPA power grid into the continuous 72 V DC required for the battery bank. A
subsystem was created in Simulink, featuring an alternative voltage source to represent the
energy input, a switching mechanism controlled by a step block to indicate when it is on or
off, and the AC-DC converter power source subsystem, as shown in Figure 19.
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The converter source diagram was built based on a simple analog electronics circuit,
which includes a voltage transformer, a rectifying bridge with diodes, and a capacitor. This
circuit allows for the unilateral conversion of the alternating current from the university
grid into direct current for battery charging. The source circuit is depicted in Figure 20.
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5.7. Physical Representation of the Boat

The physical representation of the boat follows the motors and includes three mea-
surement blocks and four system representation blocks. The measurement blocks are as
follows: an angular velocity meter at the motor output (measuring in rad/s, converted
to rpm), a force meter showing the projected force on the boat (in Newtons), and a linear
velocity meter showing the boat’s cruise speed (initially in m/s, converted to knots).

The system representation blocks consist of a gearbox to increase torque and propul-
sion, a wheel-and-axle block that converts wheel and axle size, and angular rotation speed
and torque data to produce a propulsion output force. Additionally, there are blocks rep-
resenting the boat’s inertia, considering a mass of 1389 kg plus 20 passengers averaging
70 kg each, totaling 2789 kg. Finally, a block simulates the friction force between the boat
and the water, set at 150 N/(m/s). The complete system is shown in Figure 21.
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Figure 21. System for representing the physical parameters of the boat.
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Using these sensors, various scenarios were simulated to evaluate the boat’s operation.
Figure 22 shows the result of a 100 s full power simulation, where the boat reached its
maximum design speed of 10 knots in 40 s. Another simulation, using the total autonomy
time of 3 h and 5 min (11,100 s) at cruising speed, achieved the expected result, maintaining
speed throughout the period with constant irradiation at 1000 W/m2, as shown in Figure 23.
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5.8. Financial and Ecological Comparison

To evaluate the economic and environmental impact of the electric boat, a compre-
hensive comparison was made between its operational costs and emissions and those of
a conventional internal combustion engine boat. Table 6 shows the energy parameters
obtained through simulation, including values for PVOut, Ebatteries, and Emodules.

Table 6. Metrics obtained in simulation for electrical energy generation and battery discharge.

PVOut (kWh/kWp/Day) Ebatteries (kWh) Emodules (kWh)

4.21 47.23 28.20

The energy generated by the modules is 28.20 kWh, and the energy available in the
storage system is 47.23 kWh, resulting in a total energy of 75.43 kWh for the operation of the
electric boat. Upon calculation, 73.35 kWh is needed for the boat’s operation, as shown in
Equations (2) and (3). Therefore, the specified storage and generation values are sufficient
for the proposed autonomy, as Etotal is greater than Ctotal, with a daily consumption
coverage rate of 38% of the photovoltaic generation system, while the remaining 62% of the
battery charge will be recharged at the university’s charging stations.

The daily fuel cost was calculated using the average diesel price in 2022, as shown
in Table 2. It can be observed that the diesel cost is more than 10 times higher than the
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electricity cost for the solar boat. Table 7 shows the total consumption, diesel price, and daily
and monthly costs, with values converted to USD at an exchange rate of 5.66 BRL/USD.

Table 7. Consumption metrics, diesel price, and daily and monthly costs.

Total Daily
Consumption (L) Diesel Price (USD/L) Diesel Daily

Cost (USD)
Diesel Monthly

Cost (USD)

61.6 USD 1.20 USD 73.66 USD 2209.80

Considering that the electricity generation source is renewable and non-polluting,
it is possible to calculate the number of tons of CO2 avoided annually. The annual CO2
emissions amount to 71,948.8 kg/year, or nearly 72 tons of pollutants per year. The
contribution of such a modal to the environment is evident, with significantly lower
maintenance costs and potentially faster investment returns if off-peak charging strategies
are utilized.

5.9. Estimated Energy Balance

Based on the daily energy consumption of the electric boat, an annual consumption of
approximately 26.77 kWh was estimated. This estimation allowed us to analyze the impact
of adding this load to the SIMA project’s overall energy balance.

Considering the distributed energy resources (DERs) outlined in Section 4, the annual
photovoltaic generation capacity is around 206 MWh. The operational loads, including
electric buses and other systems, consume approximately 169.63 MWh annually. Figure 24
illustrates the energy balance for the SIMA project, including the primary DERs, operational
loads, and the projected consumption of the electric boat.
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Figure 24. Energy balance of the SIMA project.

In the months of February, April, May, and November, the energy consumption slightly
exceeded the energy generated by the photovoltaic systems. However, considering the
increased generation during other months, the total load for the SIMA project represents
95% of the total energy generated. As a result, the project is still considered 100% supplied
by photovoltaic energy, maintaining its status as a zero-energy and low-carbon project.

6. Conclusions

The implementation of electric mobility through the SIMA project represents a signifi-
cant step toward sustainable energy use in transportation, especially in the Amazon region,
where river-based mobility is essential. By integrating distributed energy resources (DERs)



Machines 2024, 12, 803 20 of 22

with advanced real-time monitoring and energy management, the project has successfully
maintained a balanced energy system. This has enabled the operation of electric buses and
boats powered entirely by photovoltaic energy, furthering the region’s sustainability goals.

The UFPA electric boat, Poraquê, is a remarkable demonstration of the feasibility of
using renewable energy for transportation in remote and ecologically sensitive areas. This
boat alone contributes to the annual reduction of approximately 72 tons of CO2 emissions,
showcasing the immense environmental benefits of this project. Moreover, the successful
deployment of digital-twin technology has provided a prediction of energy consumption
forecasting, which has been crucial in managing energy loads efficiently.

The optimization of the boat’s operation is an ongoing process, which will begin in
earnest once the boat enters into real-world operation and operational data are collected.
The real boat is expected to start operating in the coming months, at which point the final
validation of the developed digital-twin model will be possible, allowing for comparisons
with the real boat’s performance characteristics. Nevertheless, this article has already
demonstrated that the model functions within standard conditions. The validation of
the digital-twin model in this paper is achieved through the detailed analysis of each
component within the boat’s powertrain system.

Although the project can face challenges in energy generation during specific months,
the overall energy performance of the photovoltaic systems ensured that 100% of the
project’s energy demands were met through renewable sources. This achievement solidifies
the SIMA project as a zero-energy, low-carbon initiative, demonstrating the feasibility of
achieving energy self-sufficiency in complex environments.

Looking ahead, expanding the deployment of DERs, optimizing energy storage sys-
tems, and further advancing digital-twin technologies will be crucial for scaling these
innovations to broader transportation networks. This will further reduce the environmental
impact and contribute to the global transition toward clean, renewable energy in trans-
portation. The SIMA project not only sets a strong example of the benefits of integrating
renewable energy with mobility solutions but also offers a scalable model for other regions
seeking to achieve similar sustainability outcomes.

By embracing such innovative energy solutions, the project serves as a beacon of hope
for future transportation systems worldwide, leading the way for the widespread adoption
of low-emission, renewable-powered mobility.
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