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Abstract: Solar energy can mitigate the power supply shortage in remote regions for portable
irrigation systems. The accurate prediction of solar irradiance is crucial for determining the power
capacity of photovoltaic power generation (PVPG) systems for mobile sprinkler machines. In this
study, a prediction method is proposed to estimate the solar irradiance of typical irrigation areas.
The relation between meteorological parameters and solar irradiance is studied, and four different
parameter combinations are formed and considered as inputs to the prediction model. Based on
meteorological data provided by ten typical radiation stations uniformly distributed nationwide, an
Extreme Gradient Boosting (XGBoost) model optimized using the Whale Optimization Algorithm
(WOA) is developed to predict solar radiation. The prediction accuracy and stability of the proposed
method are then evaluated for different input parameters through training and testing. The differences
between the prediction performances of models trained based on single-station data and mixed data
from multiple stations are also compared. The obtained results show that the proposed model
achieves the highest prediction accuracy when the maximum temperature, minimum temperature,
sunshine hours ratio, relative humidity, wind speed, and extraterrestrial radiation are used as input
parameters. In the model testing, the RMSE and MAE of WOA-XGBoost are 2.142 MJ-m2-d~! and
1.531 MJ-m~2-d 1, respectively, while those of XGBoost are 2.298 MJ-m~2-d~! and 1.598 MJ-m~2-d 1.
The prediction effectiveness is also verified based on measured data. The WOA-XGBoost model
has higher prediction accuracy than the XGBoost model. The model developed in this study can be
applied to forecast solar irradiance in different regions. By inputting the meteorological parameter
data specific to a given area, this model can effectively produce accurate solar irradiance predictions
for that region. This study provides a foundation for the optimization of the configuration of PVPG
systems for mobile sprinkler machines.

Keywords: mobile sprinkler machine; electrical system; power devices; photovoltaic power generation;
irradiance; optimization algorithm; prediction model

1. Introduction

A mobile sprinkler machine is a motor-driven irrigation device whose operation relies
on grid power. However, in remote areas suffering from electricity shortage or during peak
demand periods, ensuring a stable power supply is often challenging, which results in
delaying the timely irrigation of crops [1,2]. At present, photovoltaic (PV) power is mainly
adopted to maintain the power supply for mobile sprinkler machines in regions exhibiting
electricity shortage [3,4]. Due to the randomness and instability of solar power generation,
it is crucial to properly configure the components of the PV power generation (PVPG)
system. A decent configuration allows for increasing the adaptability of the machine,
reducing the setup costs, and improving the efficiency. Solar irradiance is the key factor
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affecting the configuration of PV systems [5]. Figure 1 shows a schematic diagram of a PV
power supply system for a mobile sprinkler irrigation machine. However, acquiring these
data is challenging in remote regions due to the lack of weather stations. Therefore, the
accurate prediction of solar irradiance is crucial to optimize the configuration of the PVPG
system for mobile sprinkler machines.
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Figure 1. A schematic diagram of a PV power supply system for a mobile sprinkler irrigation machine.

Daily global solar radiation observations are highly restricted due to the high cost of
the monitoring equipment. In particular, in developing countries, obtaining daily global
solar radiation data is not as straightforward as acquiring conventional meteorological
data such as the sunshine hours and temperature [6-8]. In China, out of 752 national
meteorological stations, only 122 are equipped to measure solar radiation, which leads to a
sparse and uneven distribution of these monitoring stations [9]. Even the available solar
irradiance data often suffer from incomplete time series and frequent gaps [10]. Therefore,
the development of a daily global solar radiation prediction model is crucial to acquire
precise solar irradiance data.

The estimation of daily global solar radiation using empirical formulas is the most
widely used approach, providing high simulation accuracy [11,12]. Although it is limited
by insufficient sunshine data, the Angstrom—Prescott method based on sunshine hours
is widely applied. Jemaa et al. [13] addressed this limitation by adopting three simple
sunshine-based models to estimate daily global solar radiation and monthly average radia-
tion. Their results showed that the linear model outperforms quadratic and cubic models.
Khorasanizadeh et al. [14] compared several sunshine-based empirical formula models
for solar radiation. Their results demonstrated that the third-degree model is the optimal
one. Mahima et al. [15] proposed a model for daily global solar radiation prediction based
on meteorological parameters (e.g., temperature, relative humidity, and wind speed). In
complex weather conditions, empirical formulas cannot deal with the complex nonlinear
relationship between independent and dependent variables. Consequently, intelligent algo-
rithms, such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), and
Adaptive Neuro-Fuzzy Inference Systems (ANFISs), have been widely used to estimate so-
lar radiation [16]. For instance, Chen et al. [17] compared the performances of SVM models
and sunshine-based empirical models in predicting solar radiation. Their results showed
that the former have higher estimation accuracy than the latter. Ramli et al. [18] studied
the accuracy of SVM and ANN models in predicting solar radiation. Their results showed
that the former have higher prediction accuracy and computational speed compared with
the latter.

Most of the models based on the aforementioned intelligent algorithms are complex,
and thus they require significant computational resources during the training phase. In
recent years, ensemble methods based on decision trees have been widely studied. These al-
gorithms are straightforward and have high robustness [19]. For instance, Hassan et al. [20]
studied the application of decision tree-based ensemble methods for simulating solar ra-
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diation, reaching high reliability and accuracy. Fan et al. [21] compared the accuracies
of an SVM, Extreme Gradient Boosting (XGBoost), and four empirical formula models
in estimating solar radiation in subtropical regions of China. Their results showed that
the SVM and XGBoost outperform the empirical models. Benali et al. [22] compared the
efficiencies of ANN and RF models in estimating solar radiation. Their results showed
that the latter are more effective than the former. XGBoost merges gradient boosting with
decision trees, and employs second-order derivative expansion to improve the accuracy
in optimizing target error functions. Its key advantage is the use of parallel computing
on multi-core CPUs, greatly boosting computational speed. The WOA overcomes the
limitations of other population-based optimization algorithms that often become stuck in
local optima, resulting in global optimization through a thorough search process. This
study integrates these two methods to achieve solar irradiance prediction.

However, in the application of solar irradiance forecasting for PV systems, most of
the existing studies rely on the development of prediction models based on meteorological
data from a single station. Moreover, these studies rarely focus on the accuracy of solar
irradiance forecasting under different combinations of meteorological input parameters.
Few general models trained by mixed data from multiple representative stations exist, and
those validated based on actual measurements are even fewer [23,24]. In this study, when
optimizing the configuration of a mobile irrigation system powered by a PV system based
on predicted solar irradiance, the model should exhibit high universality.

The objectives of this study are to (i) select the optimal combination of input parameters
for the prediction model to ensure high accuracy and strong stability in solar irradiance
forecasting, (ii) develop a predictive method for forecasting solar irradiance in typical
irrigation areas, and (iii) compare the prediction effects based on mixed data from multiple
stations versus single-station data. The research results can provide technical support
for optimizing decision-making regarding the configuration of PVPG systems for mobile
sprinkler machines.

The remainder of this paper is organized as follows. The system composition and
model construction are presented in Section 2. Section 3 details the analysis of the accuracy
and stability of the prediction method. A discussion is presented in Section 4. Finally,
conclusions are drawn in Section 5.

2. Materials and Methods
2.1. PV Power Generation System for Sprinkler Machine

The structure of the mobile sprinkler machine is shown in Figure 2. Its locomotion
system mainly comprises four identical drive wheels, a set of PV panels (CS5M32-260, with
a peak power of 260 W, peak voltage of 49.71 V, and peak current of 5.25 A, supplied by
Golden Electronics Co., Limited, Taizhou, China), a set of batteries (6-QA-200, rated capacity
of 200 Ah, rated voltage of 12 V, supplied by Wind Sail Co., Ltd., Baoding, China), four
DC stepper motors (3404HS60-F, Hamderburg Motors Co., Ltd., Shenzhen, China), four
reducers, and a controller. The stepper motors are a crucial component of the drive system.

Table 1 presents the main technical parameters of the mobile sprinkler machine. The
solar PV components of the unit convert the solar energy into electricity. During operation,
electricity is partially converted into mechanical energy by the stepper motor to drive the
wheels and partially transformed into pressure utilized by the water pump to lift water.
Any remaining electricity is subsequently directed into the battery for storage. All the
stepper motors are equipped with drive controllers to regulate the motor speed and allow
the irrigation system to move.

To appropriately use the mobile sprinkler machine, it should be ensured that the
power demand for locomotion matches the power generated by the PV system. The
daily global solar radiation is the sum of the direct and diffuse solar radiation received
on a horizontal surface at a specific observation point on the Earth’s surface in a day.
The required configuration of PV components for the mobile sprinkler machine varies
depending on its application area. This is mainly due to the different levels of daily global
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solar radiation in different regions, which leads to varying irradiance levels on an hourly
basis. This results in differences in PVPG, that is, the capacity of the PV system to generate
electricity. In remote irrigation areas where monitoring daily global solar radiation is
challenging, forecasting methods should be adopted to obtain daily global solar radiation.

T T BN I Sh
T W r e |

Figure 2. Structure and composition of mobile sprinkler machine, where 1-5 represent PV panel,
battery, controller, stepper motor, and reducer, respectively.

Table 1. Main performance parameters of sprinkler.

Items Value Items Value
Total weight/kg 3500 Working speed/ m-s~! <1.0
Truss length/m 70 Nozzle spacing/m 3
Spray range/m 72~76 Ground clearance/m 1.8
Unit flow/(m3-h~1) <48 Inlet pressure of sprinkler/MPa 0.1
Power of machine/kW 2.56 Clearance from ground/mm 1800

2.2. Development of Solar Radiation Prediction Model
2.2.1. Meteorological Data for Prediction Model Construction

In this study, data from ten national evenly distributed typical radiation stations
between the years 1960 to 2020 were considered to estimate, validate, and construct a solar
radiation dataset. The meteorological data were obtained from the National Meteorological
Information Center (NMIC) of the China Meteorological Administration (CMA). The station
codes, geographical location information, and climatic characteristics of these stations are
shown in Table 2, and their geographical distribution is illustrated in Figure 3.

Table 2. Spatiotemporal distribution of ten weather stations.

Daily
Global Sunshine Maximum Minimum Relative Wind
Station Station Longitude Latitude Altitude Solar Duration 1 Temperature Temperature Humidity Speed
Code Name /° (E) /2 (N) /m Radiation hd-1 Tmax Tmin Ru w
R, /°C /°C 1% /m-s—1
/MJ-m-2-d-1
50953 Harbin 126.46 45.45 146.0 12.96 6.76 10.24 —0.94 65.02 3.32
51076 Altay 88.05 4744 735.1 15.30 8.13 10.92 -1.19 58.03 2.28
52818 Golmud 94.38 36.12 2806.1 19.10 8.42 13.07 -1.25 32.25 2.64
54511 Beijing 116.19 39.35 29.4 14.35 7.20 18.09 7.42 56.06 243
53068 Erenhot 111.32 44.13 964.8 17.30 8.77 11.98 —2.19 47.18 3.97
56778 Kunming 102.41 25.01 1891.3 15.04 6.19 21.13 10.67 71.42 2.14
57083 Zhengzhou 113.39 3443 109.0 13.29 5.81 20.37 9.84 64.35 2.51
57494 Wuhan 114.17 30.38 22.8 12.19 5.28 21.44 13.19 76.98 1.95
59287 Guangzhou 113.19 23.08 6.3 11.82 4.58 26.55 18.99 76.93 1.83
51828 Hotan 79.55 37.07 1374.6 16.20 722 19.36 7.36 41.18 1.94
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Figure 3. The geographical locations of the ten weather stations.

Based on the quality control protocol proposed by Liu et al. [25], the meteorological
data were processed as follows: if one or more data points are missing from the daily
meteorological data, the data of the entire day are excluded; if the daily global solar
radiation exceeds the extraterrestrial total radiation on a given day, all the data of this day
are removed.

2.2.2. Selection of Input Parameters for Prediction Model

The spatial and temporal distributions of daily global solar radiation are affected by
various factors. The latter include astronomical factors, such as the solar altitude, Earth-Sun
distance, and geographical latitude, which are considered direct influencing factors, as well
as meteorological factors, which are considered indirect influencing factors. Under the
combined influence of these factors, the global radiation exhibits significant spatial and
temporal variations. The accurate calculation of the amount of global radiation is essential
for the analysis and effective utilization of the solar radiation. Among the numerous factors,
temperature can significantly influence radiation transfer processes, while water vapor
exhibits an absorptive effect on certain wavelengths of light. Higher wind speeds may in-
duce a cooling effect that impacts the radiation of surfaces. The sunshine hour ratio directly
affects the land surface’s energy absorption efficiency, and extraterrestrial radiation serves
as a fundamental parameter in solar radiation prediction. Numerous previous studies have
demonstrated effective predictive outcomes utilizing these parameters. For instance, in
daily solar radiation predictions, meteorological observation data included sunshine dura-
tion, minimum temperature, maximum temperature, average relative humidity, average
air temperature, wind speed, and actual values of solar radiation [26]. The astronomical
factor of extraterrestrial radiation, along with climatic variables such as sunshine duration,
maximum temperature, minimum temperature, and cloud cover were employed as input
attributes in estimating daily global solar radiation [27].

Therefore, based on a previous study, this paper uses partial or complete sets of six
factors (maximum temperature (Tmax), minimum temperature (Tpn), relative humidity
(Rp), wind speed (up), sunshine hour ratio (1n/N) (i.e., ratio of the sunshine duration
to the maximum possible sunshine hours), and extraterrestrial radiation (R;)) as input
parameters to analyze the predictive effects of the daily global solar radiation for different
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combinations of input parameters. The R, is mainly affected by astronomical factors, such
as the solar altitude angle, Earth-Sun distance, and geographical latitude. It is calculated as
follows [28,29]:

24 %60

R, dyIsc(cos ¢ cos 6 sin ws + ws sin ¢ sin 6) 1)
dy =1+ 0033 cos( 2% ) 2)
T ' 365
. 27
5 = 0.409sin(z ] — 1.39) 3)
ws = arccos(— tan ¢ tan d) 4)

where d, is the Earth-Sun distance factor; I is the solar constant (1367 W-m~2); ] is the day
of the year; and ¢, J, and w; are, respectively, the latitude, declination angle, and sunset
hour angle (rad).

Note that the unit of R, is MJ-m~2.d 1.

The sunshine hour ratio is that of the actual sunshine duration to the maximum possi-
ble sunshine hours. The maximum possible sunshine duration is computed as follows [28]:

24
Four different sets of input parameters to the model were established to accurately
estimate the daily global solar radiation, in order to evaluate the effect of various meteoro-
logical factors on solar radiation. As presented in Table 3, these combinations are denoted
by Al, A2, A3, and A4, respectively.

Table 3. Combinations of input meteorological factors.

Codes Combinations
Al Tmaxs Tmin, 42, /N, Ry, Ry
A2 Tmax, Tmin, 42, 1/N, Ry
A3 Tmaxs Tmin, 42, RH, Ra
A4 Tmax, Tmin, /N, Ry, Rq

2.2.3. Development of Prediction Models

The daily global solar radiation has complex nonlinear relationships with meteoro-
logical factors, such as temperature, humidity, and wind speed. Machine learning models
are well suited for addressing the complex nonlinear relationships between dependent
and independent variables. This study adopts the XGBoost machine leaning model to
accurately estimate the total surface solar radiation. It also uses the Whale Optimization
Algorithm (WOA) to optimize the parameters of the XGBoost model.

(1) The WOA

The WOA simulates whales hunting for prey. It uses random search agents to mimic
the hunting behavior and perform global search. This process involves surrounding,
attacking, and searching for the optimal prey [30].

(i) Surrounding prey

In the WOA, the assumed best candidate position for prey is either the hunting target
or a location near the optimal search agent. The other individuals will constantly adjust
their positions relative to the optimal agent in real-time, which can be mathematically
expressed as follows:

X(t+1) = X*(t) + AD (6)

D = [CX*(t) + X(1)| )
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where ¢ is the current iteration number, X(f) is the position vector of the current search agent,
X* (t) is the position vector of the current best search agent, and A and C are coefficient
matrices given by the following;:
A =2mr —
_ (®)
C= 21’2

where r1 and r, are random vectors of components in the range 0~1.
Note that m linearly decreases at [0, 2].

(ii) Attacking prey

The bubble-net feeding behavior of humpback whales consists of two mechanisms:
contraction and spiral position updating. These two behaviors simultaneously occur, while
the whale randomly chooses to either contract in a loop or move along a spiral path, with
equal probability for its choices. The position of the whale is updated accordingly in

real-time:
X*(t) — AD P <05

(t+1) = { X*(t) + D'e’'cos(2ml) P >05 ®)

where D = X*(t) — X(t) is the distance between the positions of the current search agent
and the best one, b is a constant determining the shape of the spiral path, [ is a random
number in the range —1~1, and P is the probability.

(iii) Searching for the optimal prey

In contrast to the development phase, during each iteration, the remaining search
agents update their positions in real-time based on the randomly selected search agent,
rather than the current best search agent. The iteration process is expressed as follows:

D= |Cand(t) _X(t)| (10)

X(t+1) = Xpana(t) + AD (11)

where X4 (t) represents the position vector of the randomly chosen search agent.

The WOA avoids the pitfalls of other population-based optimization algorithms that
often become trapped in local optima by balancing and enhancing the development and
search abilities, which results in global optimization through a searching process.

(2) The XGBoost model

XGBoost is an advanced machine learning model built on gradient boosting and
decision trees. Its key strength lies in leveraging parallel computing on multi-core CPUs,
which allows for increasing the computational speed compared with the traditional models.
Moreover, it employs second-order derivative expansion, which increases the accuracy
when optimizing target error functions. When predicting the PV power using XGBoost,
the model is essentially a collection of K decision trees. Each decision tree, denoted by
fx, operates on the input vector set D = {(x;, y;)}. By combining these K decision trees, the
model generates predictions for the PV power of individual samples [31]:

K K
=Y filx) =Y & (fo = 0) (12)
k=1 k=1
where j = ¢ (x;) is the leaf node in the k-th tree and ¢ is the score vector of the leaves.
The errors of all the samples are aggregated to calculate the sum (S) as follows:

n

5= 2 yl/yz +20fk (13)

i=1



Machines 2024, 12, 804

8 of 18

() = 92+ el (14)

where s(y;, ) is the loss function,  and A are hyperparameters, Z is the amount of leaf
nodes, and (2(f) is a regular term.

Based on Equation (13), the loss function obtained after the superposition of the k-th
decision tree is expressed as follows:

S5 =Y sy 051+ fi(x) + Q(fi) + Q (15)
i=

where Q is a constant.
Equation (15) is then expanded using a Taylor series:

n 1
S = (s(yi, 91 + uifi(xi) + S oif (x0) + Q(fi) + Q (16)
i=1
ui = 0s(y;, 95 1) /09f ! (17)
v; = Ps(y;, 91 /a7 Y (18)

(3) Implementation of WOA-XGBoost

This study uses three key hyperparameters (max_depth, learning rate, and L2
reg_lambda) in the WOA optimization forecasting model. The process can be divided into
the following steps: (1) normalizing and splitting the experimental data into training and
testing sets; (2) initializing the WOA by setting search parameters; (3) defining the parame-
ter ranges for XGBoost and creating an initial whale population; (4) computing the fitness
for each whale position; (5) ranking the fitness, selecting the best agent, and updating the
corresponding positions; (6) iteratively updating the positions using Equations (6)-(11);
(7) repeating steps (2)—(6) using the mean squared error as the fitness function until the
termination criteria are met; (8) applying the optimized parameters to the XGBoost model.
Note that after optimization, the maximum decision tree depth, learning rate, and L2
regularization coefficient were 7, 0.033, and 0.05, respectively.

Figure 4 shows the calculation process of the daily global solar radiation estimation
model. Based on the collected data, such as solar radiation, temperature, and sunshine
duration, 70% of the data are used as training samples and the remaining 30% are used as
testing samples.

i - - - -

Data collection and 4 _ ; b
preparation(Data during 1960~ ! |'Two machine learning models: !
2020) —>| (1) WOA-XGBoost 1
3 ' |2 XGBoost I
|
} |
} |
Different combinations of Tmax, Tmin, | @ ;
uz, n/N, Ru, Ru | — |
\ | Hyperparameter determination |
@ R S 4
Part 1:Training dataset @

(70%) Building daily global solar radiation
prediction models

$ <

Part 2:Testing dataset ) Model validation and comparison
(30%) based on statistical indicators

Figure 4. Flowchart of proposed methodology.
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The daily global solar radiation is considered as the dependent variable, while other
variables, including the maximum temperature, minimum temperature, sunshine hour
ratio, relative humidity, wind speed, and extraterrestrial radiation, are taken as independent
variables. The machine learning models are employed to develop the daily global solar
radiation prediction model. Finally, statistical metrics are used to evaluate the estimation
accuracy of the models. Note that all the models are implemented in Python 3.6.

2.2.4. Indicators for the Evaluation of the Prediction Accuracy

The Coefficient of Determination (R%), Root Mean Squared Error (RMSE), and Mean
Absolute Error (MAE) are employed to evaluate the accuracy of the proposed model. These
metrics are presented in Equations (19)-(22). R? is utilized to evaluate the adequacy of
the model'’s fit to the data. Higher R? values indicate a stronger correspondence between
the observed data and the model output. RMSE reflects the degree of difference between
actual measurements and those predicted by the model. MAE quantifies the average size of
errors in a model, focusing solely on their magnitude and ignoring their signs. The optimal
outcomes for RMSE and MAE are both zero, while an R? value of one signifies a perfect fit.
Consequently, model performance improves as RMSE and MAE values approach zero and
the R? value approaches one.

n - L 2
L (Ei—Ei) - (M; — M)
R?= = - (19)
v (B -E) ¥ (M- M)
i=1 i=1
f (Ei Mz)z
RMSE = lzlf (20)
i |Ei — M|
MAE = =L 1)

where E; represents the estimated value, M; represents the measured value, E; represents
the mean of the estimated values, M; represents the mean of the measured values, and 7 is
the number of samples.

2.3. Calculation of Hourly Solar Irradiance

In order to evaluate the hourly solar irradiance conditions per unit area, the daily
global solar radiation is converted into hourly solar irradiance. The adopted calculation
steps are based on the method of Picazo et al. [32]. The ratio (7;) of hourly total to daily
total radiation is expressed as follows:

COS W — COS Wy

rt—(;L)(a—i—bcosw)( ) (22)

Sin Wy — Wy COS Wy

a = 0.409 + 0.5016 sin(ws — g ) (23)

b = 0.6609 + 0.4767 sin(w, — g) (24)

where w represents the hour angle between the sunrise and sunset (rad).
The hourly solar irradiance (It (t)) is calculated as follows:

Ir(t) = 1R, (25)

where R is the daily global solar radiation (MJ-m~2.d~1).
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3. Results

3.1. Prediction Accuracy of WOA-XGBoost Model and XGBoost Model (Single-Station Data)

The proposed WOA-XGBoost model was used to predict the daily global solar ra-
diation at ten typical stations. Table 4 shows the results obtained during the training
and testing phases for each station. It can be clearly seen that the input parameters af-
fect the prediction accuracy of the model, which is highlighted by the variations in the
statistical metrics.

Table 4. Statistical metrics for the evaluation of daily global solar radiation estimation obtained by
the WOA-XGBoost model.

Training Phase Testing Phase

Station Codes R RMSE/ MAE/ R2 RMSE/ MAE/
MJ-m—2.d-1 MJm2.d-1 MJm—2.d-1 MJm2d1

Al 0.936 2.021 1.477 0.922 2.126 1.427

Harbi A2 0.924 2132 1511 0.901 2341 1.506

arbin A3 0.805 3.015 2213 0.812 3.378 2.345

Ad 0.919 2.044 1.501 0.911 2.198 1.525

Al 0.963 1.642 1.174 0.962 1.724 1.197

Alta A2 0.958 1.705 1.209 0.953 1.828 1.255

y A3 0.901 2.988 2122 0.876 3.309 2.303

A4 0.959 1.736 1.203 0.957 1.881 1.271

Al 0.961 1.423 1.009 0.962 1.530 1.058

Colmud A2 0.955 1.607 1.132 0.948 1.606 1.137

olmu A3 0.874 2.875 2.021 0.845 2.997 2212

A4 0.951 1.533 1.011 0.957 1.623 1.117

Al 0.954 1.455 1.092 0.941 1.597 1.164

Beifin A2 0.947 1.656 1.201 0.935 1.880 1.215

e A3 0.889 2.788 2.065 0.811 3.137 2138

A4 0.950 1.703 1.137 0.939 1.609 1.288

Al 0.944 1.936 1.152 0.929 1.993 1.406

Erenh A2 0.938 2011 1.265 0.921 2.038 1411

renhot A3 0.885 3.164 2.188 0.802 3.508 2.389

A4 0.943 1.979 1.139 0.923 2.019 1.277

Al 0.896 2214 1.673 0.877 2.403 1.683

Kunmin A2 0.881 2.145 1.764 0.858 2.531 1.795

& A3 0.805 3.013 2.334 0.816 3.181 2397

A4 0.878 2.256 1.764 0.867 2.368 1.801

Al 0.950 1.584 1.175 0.942 1.749 1.262

Zhenezhon A2 0.935 1.735 1315 0.927 1.965 1.343

& A3 0.864 3.020 2.124 0.801 3.241 2.402

A4 0.945 1.763 1.214 0.932 1.721 1.335

Al 0.932 2.053 1577 0.920 2311 1.701

Wuh A2 0.926 2.152 1.620 0.902 2.434 1.814

uhan A3 0.875 3.204 2112 0.816 3.483 2543

Ad 0.922 2.143 1.526 0.904 2.403 1.651

Al 0.938 1.624 1.243 0.925 1.775 1.413

Guanezhou A2 0.905 1.954 1.392 0.891 2.002 1.442

& A3 0.849 2.553 1.678 0.810 2.589 2.071

A4 0.915 1911 1.402 0.905 1.788 1.344

Al 0.942 1.612 1.193 0.935 1.744 1.239

- A2 0.931 1.689 1.202 0.921 1.670 1.321

otan A3 0.859 2.743 2.003 0.803 2.989 2.113

A4 0.933 1.685 1.167 0.925 1.758 1.302

Note: A1, A2, A3, and A4 denote four combinations of Table 3, respectively.
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Considering the Harbin station as an example, during the training and testing phases,
the highest R? value as well as the lowest RMSE and MAE were obtained by the proposed
model for the Al input parameter combination, which denotes the highest accuracy. On the
contrary, for the A3 input parameter combination, the model yields the lowest R? value and
the highest RMSE and MAE values, which denotes the lowest accuracy. It can be observed
that the maximum, minimum temperature, wind speed, sunshine duration ratio, relative
humidity, and extraterrestrial radiation affect the daily global solar radiation. The sunshine
duration ratio has the most significant impact on the daily global solar radiation.

The optimal input parameter combinations and the results obtained by the machine
learning model for the Altay, Golmud, Beijing, Erenhot, Kunming, Zhengzhou, Wuhan,
Guangzhou, and Hotan stations are consistent with those of the Harbin station.

The effectiveness of the WOA-XGBoost model is then compared with that of the XG-
Boost model without parameter optimization. Figure 5 shows the relationship between
the measured values during the testing phase at each station and the predicted values
calculated by these two models for the Al parameter combination, including the maxi-
mum, minimum temperature, wind speed, sunshine hours ratio, relative humidity, and
extraterrestrial radiation. It can be seen that at all the stations, the WOA-XGBoost model
generates scatter plots of daily global solar radiation closer to the 1:1 line compared with
the XGBoost model. This demonstrates that the WOA-XGBoost model exhibits reduced
error between the predicted and measured daily global solar radiation.

40 40 40 40
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Figure 5. Scatter plots of the predicted daily global solar radiation versus the corresponding mea-
sured values for the testing phase at the (a) Harbin, (b) Altay, (c) Golmud, (d) Beijing, (e) Erenhot,
(f) Kunming, (g) Zhengzhou, (h) Wuhan, (i) Guangzhou, and (j) Hotan stations. Note that the straight
lines represent the 1:1 line.
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3.2. Prediction Stabilitiy of WOA-XGBoost Model and XGBoost Model (Single-Station Data)

The prediction stability of WOA-XGBoost and XGBoost was evaluated by measur-
ing the percentage increase in RMSE on the testing set compared with the training set
((RMSEtesting — RMSE¢raining) / RMSE¢esting). The average RMSE values during the training
and testing phases were calculated for the same input parameter combinations (A1) at ten
stations. The average percentage increase in RMSE for each station was then calculated for
the input parameter combinations. The obtained results are shown in Figure 6. It can be ob-
served that the ranges of average percentage increase in RMSE for the WOA-XGBoost and
XGBoost models are 2.86-11.16% and 4.29-13.06%, respectively. The WOA-XGBoost model
has a smaller average percentage increase in RMSE, which denotes a higher predictive
stability compared with the XGBoost model.

14} [ xGBoost [l WOA-XGBoost]

2 |l 13.06%
=12

c; 1.06% 11.16%

o~ 10+ 9.81% 9.43% 9.82%
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Figure 6. Percentage increase in testing RMSE over training RMSE for WOA-XGBoost and XG-
Boost models.

3.3. Prediction of the WOA-XGBoost and XGBoost Models (Mixed Data of Multiple Stations)

This study also involves the development of daily global solar radiation prediction
models using mixed data from ten meteorological stations. A total of 70% of the data
are used for model training, and the remaining 30% are used for testing. The prediction
accuracies of the WOA-XGBoost and XGBoost models, trained on mixed data from all
the stations, are compared. The results obtained during training and testing are shown in
Table 5. From Table 5, it can be seen that in the testing, the model built on mixed data from
multiple stations, WOA-XGBoost, has RMSE and MAE values that are lower than those
of XGBoost by 0.156 MJ-m~2-d~! and 0.067 MJ-m~2.d~!, respectively. For the A1 input
combination, including the maximum, minimum temperature, relative humidity, wind
speed, sunshine duration ratio, and extraterrestrial radiation, the WOA-XGBoost model has
higher prediction accuracy than the XGBoost model. Thus, it can be used to forecast daily
global solar radiation in various regions nationwide. Although its prediction accuracy may
be slightly lower than those of models built solely on data from individual meteorological
stations, this model can still be applied to forecast the daily global solar radiation in various
regions across the country, showcasing its broader range of applications.
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Table 5. Statistical indices calculated on the results obtained by the WOA-XGBoost and XGBoost
models during training and testing phases.

Training Testing
Model R RMSE/ MAE/ R2 RMSE/ MAE/
MJ-m—2-d-1 MJ-m-2-d-1 MJ-m—2-d-1 MJ-m-2-d-1
WOA-XGBoost ~ 0.938 1.987 1.442 0.929 2142 1.531
XGBoost 0.925 2.102 1.493 0912 2.298 1.598

3.4. Experimental Verification for Prediction Results
3.4.1. Verification Experiment for Prediction Method

Hourly solar irradiance data were collected by the China Institute of Water-Saving
Agriculture in the Northwest A&F University in Yangling, Shaanxi (34°18' N, 108°24’ E;
521 ma.s.l.). The experimental setup includes monocrystalline PV panels of the CS5M32-260
model (the same PV panels as the mobile sprinkler machine), with a peak power, voltage,
and current of 260 W, 49.71 V, and 5.25 A, respectively (Figure 7). The solar irradiance was
monitored using an AV6592 portable PV tester (environmental temperature testing: accu-
racy £1 °C; testing range —30-100 °C; PV panel temperature detection: accuracy £+1 °C;
irradiance detection: accuracy +3%; testing range 0-1800 W-m~2; PV power generation
testing: testing range 0.1-500 W). Data were collected every ten minutes, transmitted via
Bluetooth and serial interface, displayed, and stored on a personal computer. Meteorologi-
cal data were automatically collected (once per hour) and recorded by a weather station
located 400 m south of the PV panels, including the temperature, humidity, and wind
speed, etc.

CS5M32-260
Photovoltaic panel

(a) (b)
Figure 7. Experimental platform: (a) mobile sprinkler machine, and (b) PVPG testing system.

3.4.2. Experimental Results

We utilized data from four days (15 March 2021, 28 June 2021, 29 September 2021, and
15 December 2021) in the Yangling region for experimental verification. The objective of
this experiment was to evaluate the consistency between the predicted hourly irradiance
values generated by the WOA-XGBoost model and the measured hourly irradiance values.

On 15 March 2021, the meteorological parameters were a maximum temperature of 20 °C,
a minimum temperature of 7 °C, a relative humidity of 33%, a wind speed of 3.4 ms™}, a
sunshine hourly ratio of 0.72, and an extraterrestrial radiation of 31.437 MJ-m~2.d~!. The
initially computed daily global solar radiation is 18.345 MJ-m~2-d~!. Afterwards, hourly
irradiance calculations were made from 1 to 24 h. The resulting hourly irradiance calculation
is presented in Figure 8a. It can be observed from Figure 8a that the measured and predicted
hourly irradiance values are consistent. The maximum absolute error between the predicted
and measured values is 10 W-m 2. The RMSE and MAE are 5.295 W-m 2, and 3.375 W-m 2,

respectively.
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Figure 8. A comparison of predicted hourly irradiance values generated by the WOA-XGBoost model
and measured hourly irradiance values are presented for (a) 15 March 2021, (b) 28 June 2021, (c) 29
September 2021, and (d) 15 December 2021.

On 28 June 2021, the meteorological parameters were a maximum temperature of 34 °C,

a minimum temperature of 21 °C, a relative humidity of 58%, a wind speed of 2.5 m-s~ !, a
sunshine hourly ratio of 0.78, and an extraterrestrial radiation of 44.343 MJ-m~2.d~!. The
initially computed daily global solar radiation was 29.512 MJ-m~2-d~!. Afterwards, hourly
irradiance calculations were made from 1 to 24 h. It can be observed from Figure 8b that
the maximum absolute error between the predicted and measured values is 19 W-m~2.
The RMSE and MAE are 7.121 W-m~2, and 4.792 W-m~2, respectively. This shows that the
proposed method has a high prediction accuracy.

On 29 September 2021, the meteorological parameters were a maximum temperature of

26 °C, a minimum temperature of 14 °C, a relative humidity of 46%, a wind speed of 1.5 m-s 1

7

a sunshine hourly ratio of 0.74, and an extraterrestrial radiation of 38.258 MJ-m~2.d-L. The
initially computed daily global solar radiation was 24.113 MJ-m~2.d~!. Afterwards, hourly
irradiance calculations were made from 1 to 24 h. Figure 8c also demonstrates that the mea-
sured and predicted hourly irradiance values are consistent with each other. The maximum
absolute error between the predicted and measured values is 11 W-m~2. The RMSE and MAE
are 5.323 W-m 2 and 3.833 W-m 2, respectively.

On 15 December 2021, the meteorological parameters included a maximum temperature

of 6 °C, a minimum temperature of 0 °C, a relative humidity of 62%, a wind speed of 1.5m-s !

4

a sunshine hourly ratio of 0.70, and an extraterrestrial radiation of 23.462 MJ-m~2.d~!. The
initially computed daily global solar radiation is 12.565 MJ-m~2-d 1. Afterwards, hourly
irradiance calculations were made from 1 to 24 h. The resulting hourly irradiance calculation
is presented in Figure 8d. It can be seen from Figure 8d that the predicted and measured
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hourly irradiance values are highly consistent. The maximum absolute error between
the predicted and measured values is 6 W-m~2 with an RMSE and MAE of 2.508 W-m~?2
and 1.458 W-m 2, respectively. This demonstrates that the proposed method has a high
prediction accuracy.

4. Discussion

This study addressed the prediction of solar irradiance for optimizing the configura-
tion of a portable solar-powered irrigation system in remote areas. The solar irradiance
can be calculated once the daily global solar radiation is obtained. The WOA-XGBoost
model was employed to develop a daily global solar radiation prediction model using
meteorological data from ten typical locations nationwide having different input parameter
combinations. The obtained results demonstrate that the predictive accuracy of the pro-
posed method is higher than that of the XGBoost model. By taking the factors affecting the
ground total radiation into consideration, the influencing parameters were categorized into
different combinations for optimal parameter selection. In addition, the WOA was adopted
to solve the problem of excessive hyperparameters in XGBoost. The data from the ten
stations were combined for model training and prediction to obtain a universal daily global
solar radiation prediction model. Many studies have been conducted on solar irradiance
forecasting. For instance, Chakchak and Cetin [33] evaluated daily global solar radiation
prediction models for different weather conditions using Nonlinear Autoregressive models
with External Input neural networks, feedforward neural networks, and generalized re-
gression neural network models. The models that utilize actual sunshine duration, cloud
cover, air temperature, relative humidity, wind speed, wind direction, air pressure, global
solar radiation during cloudless skies, and extraterrestrial solar radiation as climatic input
variables. Given the consideration of different types of cloud cover, these models cannot
be developed at a regional scale. These studies place significant emphasis on algorithm
accuracy [34] and short-term solar irradiance predictions of a certain region [35]. Addi-
tionally, current research has paid less attention to the effect of mixed data from multiple
meteorological stations on the accuracy of solar irradiance predictions.

There are some challenges involved in combining data from multiple meteorological
stations. First, the use of different equipment and measurement standards across stations
can result in inconsistencies and inaccuracies within the data. Additionally, meteorological
conditions, such as temperature, humidity, and wind speed, can vary significantly between
locations, leading to spatial heterogeneity. Furthermore, data from multiple stations may
contain redundant information, making dimensionality reduction or feature selection
necessary to prevent model overfitting. Addressing these challenges entails extensive data
preprocessing, which is crucial for enhancing the accuracy and reliability of solar irradiance
prediction models.

XGBoost has significant advantages in weather data management, but optimizing
its hyperparameters can be challenging [36]. The WOA-XGBoost model outperforms the
XGBoost model, since the former can automatically search for the optimal prediction
parameters [37], while the latter manually determines them [38]. WOA is highly effective in
solving the problem of excessive hyperparameters in XGBoost. The WOA-XGBoost model
solves the overfitting problems encountered by the XGBoost model, which allows for an
increase in data fitting and prediction accuracy.

The daily global solar radiation can only reflect the overall radiation situation through-
out the day, while it cannot reflect the hourly radiation per unit area within a specific region.
On the other hand, the hourly solar irradiance denotes the hourly radiation energy reaching
the Earth’s surface per unit area after the solar radiation undergoes absorption, scattering,
reflection, and other effects in the atmosphere. It is a crucial parameter for quantitatively
describing the solar radiation. A quantitative conversion relationship exists between the
daily global solar radiation and hourly irradiance [32]. However, in real applications, the
hourly irradiance holds broader application value [39]. Thus, in this paper, the daily global
solar radiation was converted into hourly irradiance for evaluation.
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However, this study has some limitations, such as the use of data from typical areas
for prediction, which results in a limited sample size. In future work, efforts will be made
to increase the sample size. Additionally, we intend to develop a hybrid predictive system
that utilizes models such as Recurrent Neural Networks (RNNs), Convolutional Neural
Networks (CNNs), and Long Short-Term Memory (LSTM) Neural Networks. This approach
seeks to integrate the strengths of these diverse predictive models to enhance the overall
accuracy of solar irradiance predictions.

5. Conclusions

This paper addressed the solar irradiance prediction problem for a solar-powered
system in a shifting irrigation machine. A daily global solar radiation prediction model was
developed using the WOA-XGBoost machine learning model. Performing predictions using
this model allowed us to obtain gradual irradiance for ten typical meteorological stations
nationwide. The prediction accuracy and stability were then analyzed. The model reached
its highest precision when the input parameters were the maximum, minimum temperature,
sunshine duration ratio, relative humidity, wind speed, and extraterrestrial radiation. The
rates of average percentage increase in RMSE for the WOA-XGBoost and XGBoost models
were in the ranges 2.86-11.16% and 4.29-13.06%, respectively. The WOA-XGBoost model
had a lower percentage increase in RMSE between the training and testing sets compared
with the XGBoost model, which demonstrated its higher stability. The WOA-XGBoost
model has better parameter initialization and search capabilities compared to the XGBoost
model, further enhancing prediction performance. In the testing of the model built on
mixed data from multiple stations, WOA-XGBoost had RMSE and MAE values that were
lower than those of XGBoost by 0.156 MJ-m~2-d~! and 0.067 MJ-m~2-d !, respectively.
The model using mixed data from multiple stations, compared to the model using single
station data, exhibited good universality, and can be applied to predict solar irradiance in
different regions. Overall, the experimental validation showed that the proposed method
has high accuracy, meeting the requirements of solar irradiance prediction.
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